Degenerate State Perturbation Theory
As discussed above, perturbative corrections

involve terms such as $\frac{\lambda < \alpha / H_1 / \beta >}{E_{\alpha} - G_{\beta}}$

and therefore noise perturbation theory breaks down if $\frac{1 < \alpha / H_1/p^2}{E_{\alpha} - E_{\beta}} \gtrsim 1$.

For concreteness, consider the following spectrum for the unperturbed Hamiltonian to:

States for removed from degenerate Supspace D.

Jeanly degenerate Supspace D

let's dende the states within the interest as subspace D of 12/18/12/ etc. and trobe outside D as Int, wx, 122 etc. Gottfried-Yan). Csame notation as Then, if ACXIHILBY 21 Ea-EB A < & IHIIp> << 1, then one $\mathcal{E}^{h} - \mathcal{E}^{\bowtie}$ expects that the perturbation All, will significantly mix the states within D amogust each other While reciering only a small correction from states outside D.

tus exbeelation, let us Based on perturbed eisenstates of write the 10> = \(\sigma \cap \) \(\tau \ where Cd=D(1) and dh=D(y). Similar to the non-degenerate care, one can consider two different kinds of matrix elements of the Schoolingers equi. (BIHIa>= Ea<Bla>

= $E_{\alpha} C_{\beta}$ where $|B\rangle \in D$ and $\langle D|H|\alpha \rangle = E_{\alpha} \langle D|\alpha \rangle = E_{\alpha} d_{D}$ where $|D\rangle \notin D$.

Expanding these two equalities

after substituting la>=\(\int \cap \alpha \a + <>> 1 \frac{h}{2} 9h Eh 1h> = Er 9D + y = 9 4 (D1H1/h) $O(N^2)$ Keeping terms only to $O(N) \Rightarrow$

Ea - E_D To the leading order, $E_a = mean$ enersy of levels within $D \equiv E_D$.

 $d_D = \lambda \leq c_{\alpha} < D|H||\alpha\rangle$

 $d_{D} = \sum_{\alpha} \frac{C_{\alpha} \langle D | H_{1} | \alpha \rangle}{E_{D} - E_{D}}$ So for, Cx are still underermined. To find trem, let us consider the second equation above obtained by taking the dot product of the Schrödingers equi with <BIED, <BIZCY EXINY + INXBIHITAY CX + [(B | 9) EP | D) + Y = 9 P (B | H) | D) = EacB the above obtained We now substitute in two egn. for 97 ex bression

CBEB+ N Z <BIHILX> CX $+ \sqrt{2} \sum_{\alpha} c_{\alpha} \sum_{\beta} \frac{\langle \beta | H_{1} | \beta \rangle}{\overline{\epsilon}_{p} - \epsilon_{\beta}}$ = Eock This agn, motivates one to delive an "effective Hamiltonian" Heff that acts only on the subspace D, and whose matrix elements are given by, <BIHettIX> = <BIHOIX> + > <BIHIX> + X = < B1 H112> < D1 H112> Compared to Gothfied-Year, we have added a term <BIHOld's to <BIHerrid's.
The is just a constant shift

Than the above equ. for coefficients CX is nothing but the schoolinger eque for the elgenstates of Reff. To see this, we expand eigenstates of Help in the basis Elass for D: 14> = \(\int \cap \alpha \) \(\tag{1d} \). The schrodinger equi is Heff ly> = Ealy> or Z<BIHettIX>CX = EacB which is precisely the above egn. Or Cx [note that the term Z<B IHOla> Ca = ZCa SaB Ed = EB CB].

Therefore, we have reduced the desenerate perturbation theory to diagonalizing lie finding eisenvolues and eisenvolues) of Heff. Since the degenerate subspace for simple probleme is typically small, the is a much Simpler problem than diagonalizing the fiel Hamiltonian H. The out come of this diagonalization will be the coefficients { C of Cond in torn the spefficients Edus) which then determine the perturbed eigenstates to O(N), and eigenenerging to O(N2). A few illustrations of degenerate state

perturbation theory

Example 1: let's consider the

following Hamillonian: $H = -Z_1 Z_2 + h Cx_1 + x_2$

$$H = -Z_1 Z_2 + h CX_1 + X_2)$$

$$\left[= -Z_1 \otimes Z_2 + h (X_1 \otimes d_2 + d_4 \otimes X_2) \right]$$
where $h \ll 1$. Therefore, we write

where N < 1. Therefore, we write $H = H_0 + hH_1$ where $H_0 = -Z_1Z_2$

and $H_1 = CX_1 + X_2$. The eigenspectrum of the is

$$E = +1 \frac{1017}{1007} \frac{1107}{1117}$$
 degenerate Subspace

If we are interested in how the perturbation help modifies the ground states of Ho, then we need to study the effective Hamiltonian Heff within the degenerate subspace D spanned by 1007 and 1117. But before we do trat, let's first find all the eigenstates and eigenrectors exactly for any h. This can be done because the problem has a finite-dimension Hilbert space. Since [H, X1x2] = 0,

the eigenstates can be labelled by eigenvalues of the operator XIX2.

The subspace $X_1 X_2 = +1$ is spanned by the states 1/100 + 1117 and 1/101 + 1107, while the subspace $X_1 X_2 = -1$ is Spanned by the states [[100] - 111] and $\frac{1}{42}[101] - 110]$ Where of Usual 107 and 117 denote eigenstates of Z with eigenvalues +1 and -1 respectively. lets first consider the subspace X1X2 = +1. The action of H within the subspace is:

$$= -\frac{1}{\sqrt{2}} [100 + 101 + 1$$

H 7[100> + 177>]

$$= + \frac{1}{\sqrt{2}} \left[110 + 101 \right] + \frac{2h}{\sqrt{2}} \left[100 + 111 \right].$$

Therefore, within this subspace, H may be written as matrix, $H = \begin{bmatrix} -1 & 2h \end{bmatrix}$

 $\mp \sqrt{1+4h^2}$, and the corresponding eigenvectors are $\cos(\theta_{12}) \left[\frac{1007+1117}{\sqrt{2}} \right]$

The eigenvalues of H are

+
$$8\ln(\theta_2)$$
 [$\frac{101}{\sqrt{2}}$ + 140], and $8\ln(\theta_2)$ [$\frac{100}{\sqrt{2}}$ + 141] - $\cos(\theta_2)$ [$\frac{101}{\sqrt{2}}$]

where tan(0) = -2h. Let's next find eigenvectors and eigenvalues within the subspace $\times_1 \times_2 = -1$.

$$= -\frac{1}{12} \left[100 \right] - 11$$

$$= -\frac{1}{1} \left[100 - 111 \right]$$

$$= -\frac{1}{\sqrt{2}} \left[100 - 133 \right]$$

$$\frac{\sqrt{2}}{1}$$

$$= + \frac{1}{\sqrt{5}} \left[111 - 100 + 100 - 111 \right]$$

 $= \frac{1}{\sqrt{2}} \left[1017 - 1107 \right].$

$$+ \frac{\sqrt{2}}{V} \left[110 - 101 + 101 - 170 \right]$$

Therefore, within this subspace, H may be written as watrix, $H \equiv \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ Therefore, the eigenvalues are I I and the corresponding eigenrelors are 100> - 111> and $\frac{1017-1107}{\sqrt{2}}$, respectively. Using these exact results. Even the perturbed eigenstates and eigenvectors within the subspace D are:

$$E=-1, (1007-1117) \sqrt{3}$$

$$E=-1-2h^2, \frac{1007+1117}{\sqrt{2}}$$
Lets now derive two result using theft for the degenerate perturbation theory, letall that the spectrum of the is
$$\frac{1017}{1117} \frac{1}{3}$$
Therefore, in our notation,

 $\{1 \times 7\} = 1007, 1117$ $\{1 \times 7\} = 1017, 1107$

<00 / Heft / 00> = <001 Ho100> + h <001(x1+x2) 100> + Nº <001(x1+x2)101> <01(x1+x2)100> $-2 (= \overline{\epsilon}_b - \epsilon_b)$ + h2 <001 (x,+x2) /107 <101 (x, +x2) /007 $= -1 - 1^{2}$ Similarly, <11 | Hett | 113> = -1-h2. while <001 Heff 1117 is given pot.

=
$$\langle 001 \text{ Ho}/\overline{1} \text{ i} \rangle + h \langle 001 \times \overline{4} \times 2 | 111 \rangle$$

+ $h^2 \langle 001 (x_1 + x_2) | 01 \rangle \langle 011 (x_1 + x_2) | 11 \rangle$
- 2
+ $h^2 \langle 001 (x_1 + x_2) | 10 \rangle \langle 101 (x_1 + x_2) | 11 \rangle$
- 2
= $-h^2$
Therefore, as a matrix, Heth

<001 Hett 1117

$$\equiv (-1-h^2) + -k^2 \times$$

 $=\begin{bmatrix} -1-h^2 & -h^2 \\ -h^2 & -1-h^2 \end{bmatrix}$

5001=51:11× and 51:11= <001 × =) The eigenreetors and eigenvalues $E_1 = -1 - k^2 - k^2 = -1 - 2k^2$ = 1007 + 1317 and $E_2 = -1 - k^2 + k^2 = -1$ 100> -171> 1E2> = which precisely matches the expression obtained above using exact calculation expanded to OCh2).

acks within the

subspace as

Where X

deservate