A few illustrations of non-degenerate perturbation theory

Example 1: Consider a spirily system with H = -2 - hx with

 $h \ll 1$. We can solve for the eigenvectors and eigenvalues of H exactly as discussed earlier, and then ren'ty that

the perturbative result matched with the exact answer.

Fract solution: The two eigenstates one given by $1E'_0 \gamma = \begin{bmatrix} \cos(\theta_{12}) \\ 8\ln(\theta_{12}) \end{bmatrix}$ and $1E'_1 \gamma = \begin{bmatrix} -\sin(\theta_{12}) \\ \cos(\theta_{12}) \end{bmatrix}$

where tand = h . The corresponding eigenvalues are $E_0 = -\sqrt{1+h^2}$, E' = + 12+h2. To compare who the perturbative Solution, let's expand the exact eigenenergies to och2) and exact eigenstates to och) $\varepsilon_0' \simeq -2 + \frac{1}{2}$, $\varepsilon_0' \simeq \left[\frac{1}{N}\right]$

 $E_1^{\prime} \simeq 1 + \frac{h^2}{2}, \quad |E_1^{\prime}\rangle \simeq \left[-\frac{h}{2}\right].$

Perturbative solution:

We write
$$H = H_0 + W_{H_1}$$
 where

 $H_0 = -Z$, and $H_1 = -X$.

The eigenstates and eigenvalues of the unperturbed Hamiltonian H_0 are

 $|E_0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $E_0 = -1$;

 $|E_1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $E_1 = +1$.

The perturbed eigenenergies to occasion we therefore,

 $|E_0\rangle = |E_0\rangle + |K_0\rangle + |K_0\rangle$

 $+ \frac{\varepsilon_0 - \varepsilon_1}{\varepsilon_0 - \varepsilon_1} + och^2$

and
$$\langle E_0 | \hat{x} | E_1 \rangle = \frac{1}{2}$$

$$E'_0 = E_0 - \frac{h^2}{2} = -\frac{1}{2} - \frac{h^2}{2}$$

while $E'_1 = E_1 + h \langle E_1 | \hat{x} | E_1 \rangle$

$$+ h^2 \frac{1}{2} | \langle E_1 | \hat{x} | E_0 \rangle \rangle^2$$

$$= 1 + \frac{h^2}{2} + o(h^3).$$

Similarly, $|E_0 \rangle = |E_0 \rangle - \frac{h \langle E_1 | \hat{x} | E_0 \rangle}{E_0 - E_1}$

$$+ o(h^2)$$

 $\langle \varepsilon_0 | \hat{\chi} | \varepsilon_0 \rangle = 0$

Now

+ OCM2) = 1E0> +

W 1ETX

 $= \frac{1}{\sqrt{2}} + o(\sqrt{2})$

4031 4231 × 103> N - 4231 = 45,31 shinds ET-EO +ONS) $= 1E_1 - \frac{h}{2} 1E_0 + O(h^2)$

 $= \left| -\frac{h}{2} \right| + O(h^2)$

Therefore, the perturbative results

agree with the exact results to

the order we are working at.

where
$$F \ll 1$$
.

One can again find the exact Solution by completing the square:

$$H = (\hat{\chi} - F)^2 + \hat{p}^2 - F^2$$

$$= \frac{\hat{\chi}^2}{2} + \frac{p^2}{2} - \frac{F^2}{2}$$

where x = x-F. Since [x', p] = -i, the spectrum of

with n=0,1,2,-- -00-

H' is $\varepsilon_N = (N+\frac{1}{2}) - \frac{\varepsilon_2}{2}$

While the corresponding eisenstated one given by $-iF\hat{p}$ $|n\rangle = e \qquad |n\rangle_0 \quad \text{where}$ Into is the unperturbed eigenstate.

This is because $0^+ + 0 = +_0 - \frac{F^2}{2}$ where 0 = e Crecall that monuntum operator severates translation

Let's verify these exact results

using perturbation treory. Perturbative solution:

 $e^{u} = e_{o}^{u} + \langle u | - E^{x} | u \rangle^{o}$ $+\sum_{n}\frac{E_{n}^{2}-E_{m}^{2}}{\left|\langle n|E^{2}|m\rangle^{2}\right|_{2}}$

Now,
$$x = \frac{\alpha + \alpha + \alpha}{\sqrt{2}}$$
 and therefore

$$\begin{cases} \sqrt{n} / \sqrt{m} \rangle_0 = \frac{8m, n+1}{\sqrt{2}} \sqrt{m+1} \\ \sqrt{2} \\ \sqrt{2} \end{cases}$$

$$\frac{8m, n-1}{\sqrt{2}} \sqrt{m}$$

$$\Rightarrow + \frac{8m, n-1}{\sqrt{2}} \sqrt{m}$$

$$\Rightarrow + \frac{8m,$$

Now,

= = $(n+\frac{1}{2})-\frac{F^2}{2}$ in agreement with the exact result. One may similarly verify that the perturbed state In matches bee Shankar)

 $= E_N^N - \frac{2}{E_D^2}$

Consider a 1d harmonic oscillator with relativistic kinetic energy $H = \sqrt{m_5 + b_5} - m + \frac{\sqrt{3}}{\sqrt{3}} m$ Let's calculate the change in the ground state energy to the leading order in 1/m. By Taylor expansion, $\frac{P^2}{2m} + \frac{x^2m}{2} - \frac{P^4}{8m}$ \mathcal{H}^{o} \mathcal{H}^{T}

Example 3: Next consider on example

that is not exactly solvable.

Since
$$\sqrt{n=0}$$
 pt $\sqrt{n=0}$ is non-zero,
the leading order change in the
ground state energy is sim by,
 $\Delta E_0 = -\frac{1}{8m^3}$ $\sqrt{n=0}$ pt $\sqrt{n=0}$
 $= -\frac{1}{8m^3}$ $\sqrt{m\pi}$ $\sqrt{n=0}$ pt $\sqrt{n=0}$

8 M