Tensor Operators and

Wigner-Eckart theorem

Let's recall the definition of a vector operator: a vector operator transforma like a rector under rotation. Specifically, if V; is a realor operator with three components (V1, Vy, Vz), then Under a rotation implemented by the unitary operator DCR) = e 17.99, $D^{+}(R)\hat{V}_{i}$ $D(R) = \sum_{i} R_{ij}\hat{V}_{j}$ where R is the 3x3 modrix that implements the rotation, for example, consider a rotation by an angle of around the 2-axis. For this case, $D(R) = e^{-iJ_z\theta}$ and R is:

$$R = \begin{cases} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \end{cases}$$
So that
$$\begin{cases} 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases}$$
the rotated operator has components:
$$V_{\mathbf{h}}' = V_{\mathbf{h}} \cos(\theta) - V_{\mathbf{h}} \sin(\theta) \text{ and}$$

$$V_{\mathbf{h}}' = V_{\mathbf{h}} \cos(\theta) + V_{\mathbf{h}} \sin(\theta) \text{ exactly}$$

 $\hat{V}_{y} = \hat{V}_{y} (os(0) + \hat{V}_{x} sin(0), exactly$ like the components of an ordinary

3-component rector subjected to rotation around the z-axis. It one chooses the rotation angle 0 to be infinitesimal,

tren tre equation Dt(R) V; DCR)= Z Rij Vj

becomes [Vi, Jj] = izijk Vk. i.e. [Vx, Jy] = iVz $\sum_{x} \hat{J}_{x} \hat{J}_{x} = \hat{J}_{x} \hat{J}_{x}$

 $\{\hat{v}_z, \hat{J}_x\} = i\hat{v}_y$ etc.

so that

Let's write these commutation relations in a slightly different way. Lets define $V_0 = \hat{V}_Z$, $\hat{V}_{\pm 1} = \mp \hat{v}_{x} \pm \hat{v}_{y}$ One may town rewrite the above commutation relations as. $\begin{bmatrix} J_{Z}, V_{m} \end{bmatrix} = mV_{m}$ $L \pm m = \sqrt{(L \pm m)m - (L \pm l)} = \sqrt{m^2 + l}$ where j=1 and $w=0,\pm 1$. Note how dosely tuese equations

where j=1 and m=0, ± 1 .

Note how closely these equalities resemble J_Z/j , m/j=m/j, m/j

and $J \neq 1$, $m \rangle = \sqrt{\hat{j}(\hat{j}+1)} - m(m \neq 1) \hat{j}$, $m \neq 1$, and $m \neq 1$.

Therefore, a vector \hat{j}

with j=1. Therefore, a realor operator somehow resembles 1j=1, m.

However, we can't equate an operator to a state. A precise correspondence is that Vm1 132, m2> for any 32 and m2 transforms under notation in the same way as a state 1j=1, my & 1j, m2>. This directly follows from the above commutation relations: \hat{J}_{z} $\hat{V}_{m_1}\hat{J}_{z}$, m_2 $=\left[\left[\frac{1}{J_{Z}}, v_{m_{1}}\right] + v_{m_{1}}\frac{1}{J_{Z}}\right]\left[\frac{1}{J_{2}}, m_{2}\right]$ $= m_1 \hat{v}_{m_1} \hat{v}_{2} m_2 + \hat{v}_{m_1} m_2 \hat{v}_{2} m_2$ = (m,+m,) V m,1 j, m,2> Compare this with Jz/jz/, m, > & 1jz, m, > $= (\hat{J}_{12} + \hat{J}_{22}) | \hat{J}_{1} = 1, m_{1} \otimes | \hat{J}_{2}, m_{2} \rangle$ $= (m_1 + m_2) | \hat{j}_1 = 1, m_1 > 0 | \hat{j}_2, m_2 >$

 $J \pm \tilde{V}_{m_1} | \tilde{J}_2, m_2 \rangle$ $= (\begin{bmatrix} \begin{bmatrix} \end{bmatrix} \end{bmatrix} + V_{m_1} \end{bmatrix} + V_{m_2} \underbrace{J_{\pm}}) (\underbrace{J_{2}}, \underbrace{M_{2}})$ = $\sqrt{(i_1(i_1+1))} - m_1(m_1\pm 1) \sqrt{m_1\pm 1(i_2,m_2)}$ + $V_{M_{1}} \sqrt{j_{2}(j_{2}+1)} - m_{2}(m_{2}\pm 1) / j_{2}, m_{2}\pm 1$ where j=1. Compare tus with, J+ 1 j1=1, m1> 0 132, W2> = (J1+ + J2+)1 j1=1, m1> @ 1/2, m2> $= \sqrt{\hat{j}_{1}(\hat{j}_{1}+1)} - m_{1}(m_{1}\pm 1) |\hat{j}_{1}=1, m_{1}\pm 1 \rangle \otimes |\hat{j}_{2}, m_{2}\rangle$ + \(\inj_2 \left(j_2 + 1) - \max(m_1 \pm 1) \left(j_1 = 1, m_1 \right) \(\text{0} \left(j_2, m_2 \pm 1) \right). Therefore, we conclude that \m, 1 \j_2, m_2>

indeed transforms like 1j,=1, m,> 0/j2, m2>.

Similarly.

=> Acting with Vm on 1j2, m2> is akin to adding angular momentum of unit 1 to the state 112, m2>. We will soon see consequences of this Statement below in Wigner-Echart theorem. But first, let us generalize above discussion by introducing tensor operators. We define a tensor operator of rank

i ap a set of operators Dim with

 $m = -\hat{j}, -\hat{j}+1, --\hat{j}-1, \hat{j}$ Cire. $2\hat{j}+1$ components) that satisfy, $\begin{bmatrix} \hat{T}_{Z}, \hat{O}_{j,m} \end{bmatrix} = m \hat{O}_{j,m}$ $\begin{bmatrix} \hat{T}_{Z}, \hat{O}_{j,m} \end{bmatrix} = \sqrt{\hat{j}(\hat{j}+1)} - m(m+1) \hat{O}_{j,m}$ $\hat{O}_{j,m} = \sqrt{\hat{j}(\hat{j}+1)} - m(m+1) \hat{O}_{j,m}$

Therefore, a realor operator is just a special case of a tensor operator with j=1.

Following a derivation identical to above,

a state $0j_1, m_1 | j_2, m_2 \rangle$ transforms Under votation in the same way as

a state $1j_1, m_1 > \otimes 1j_2, m_2 >$.

Acting with $0j_1, m_1 \text{ on } 1j_2, m_2 >$ is abin to adding any $0j_2, m_2 > 0$

 \Rightarrow Acting with O_{51,m_1} on I_{12},m_2 ?

is akin to adding angular momentum of unit J_1 to the state I_{12} , m_2 ?

Wigner Edeart theorem: To motivate the discussion, courider applying an electric field along the z-direction to a hydrogen atom. Using perturbation theory, one can show that the energy levels are shifted by an amount proportional to <= 121En> where 18n7 devotes eisenstates. Consider for example IEn> = 12s state> i.e. Principal quantum number n=2 and orbital angular momentum J=0. We ask: which 18 m> with principal quantum number N=2 com have a non-zero matrix element

KEMI 2 1 25 State > ? The answer is that IEm? can be only 2p state with m=0 i.e. g=1, m=0.

To see this, we first notice that Z is a 0-th component of a vector operator i.e. $\hat{z} = \hat{v}_0$ in our Notation above. Therefore, 2/0=0transforma like 10=1, m=0> 0 10=0, m=07. Using angular momentum addition rules. this state transforms like j=1 and M=0, and therefore, 16m> must be the 12p state for < Eml 212s state> to be non-zero. Now we generalize this discussion in the form of the Wisner-Eckart theoremi < \a', j m 1 O j 1 m 1 \a', j 2 m 2 > $= \langle j m | j_1 j_2 ; m, m_2 \rangle + (j_1 j_1 j_2, d_1 d_2)$ where Ojimi is a tensor operator of rank

11, d, d' are some arbitrary quantum numbers other than the angular momentum, and f is some function of j.j., j2, d, & that has no dependence on m, m, and m2. Simi jijz; M, Mz> is just the Clebsch - bordon coefficient relating 1), m,> @1)2, m2> to 1) m>. This theorem implies that the ratios such 02 <2',jm10',m112,j2,m2> < \w, jm/10j1 m/11 \w, j2, m/2> < jm 1 j, j2: m, m2> ire. It is < jm/1 j, j2; m/1 m/2> independent of x and x!

Proof: We again consider the defining commutation relations for
$$0$$
 im, namely,
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{z}, 0 \end{bmatrix}_{z,m} = m 0 \end{bmatrix}_{z,m}$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{z}, 0 \end{bmatrix}_{z,m} = m 0 \end{bmatrix}_{z,m}$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{z}, 0 \end{bmatrix}_{z,m} = m 0 \end{bmatrix}_{z,m}$$
Consider the matrix element of the Second eq. between (d', j', m')

and $(\alpha, jm) \Rightarrow$ $\langle \alpha', jm \mid J_{\pm} \partial_{ij} m_1 \mid j_2 m_2 \rangle$ $- \langle \alpha', jm \mid \Delta_{im} J_{\pm} \mid \alpha_{ij} m \rangle$

 $- \langle \alpha', j m | \delta_{j_1 m_1} T + | \alpha_{j_2 m_2} \rangle$ $= \sqrt{j_1 c_{j_1 + 1} - m_1 c_{m_1} + 1} \langle \alpha', j m | \delta_{j_2 m_1} + 1 \alpha_{j_2 m_2} \rangle$

$$\Rightarrow \sqrt{j} (j+1) - m (m \mp 1) \langle \alpha', j, m \mp 1 | \delta_{j, m} | \alpha j, m_{j} \rangle$$

$$= \sqrt{j_{2}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{1}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{1}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{1}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle}$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle}$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle}$$

$$+ \sqrt{j_{1}(j_{2}+1) - m_{2}(m_{2}\pm 1)} \langle \alpha', j, m | \delta_{j, m} | \alpha, j_{2}m_{2}\pm 1\rangle}$$

$$+ \sqrt{$$

Satisfied by the so satisfies $\langle j, m | j_1 j_2 m_1 m_2 \rangle$, where $|j_1 j_2 m_1 m_2 \rangle = |j_1 m_1 \rangle \otimes |j_2 m_2 \rangle$.

To see this, we write $\langle j, m | = \sum_{m_1 m_2} \langle j, m | j_1 j_2 m_1 m_2 \rangle \langle j_1 j_2 m_1 m_2 \rangle$ Applying J_{\pm} on both sides and taking the dot product with $|j_1 j_2 m_1 m_2 \rangle$ implies,

$$\sum_{m_1m_2} \langle j, m | j_1 j_2 m_1 m_2 \rangle \langle j_1 j_2 m_1 m_2 \rangle \\
= \langle u, m | j_1 j_2 m_1 m_2 \rangle \langle j_1 j_2 m_1 m_2 \rangle \\
= \sum_{m_1m_2} \langle j, m | j_1 j_2 m_1 m_2 \rangle \langle j_1 j_2 m_1 m_2 | j_1 j_2 m_1 \pm 1, m_2 \rangle \\
= \sum_{m_1m_2} \langle j, m | j_1 j_2 m_1 m_2 \rangle \langle j_1 j_2 m_1 m_2 | j_1 j_2 m_1 \pm 1, m_2 \rangle \\
= \sum_{m_1m_2} \langle j, m | j_1 j_2 m_1 m_2 \rangle \langle j_1 j_2 m_1 m_2 | j_1 j_2 m_1 \pm 1, m_2 \rangle$$

 $\sqrt{j(j+1)} - m(m+1) \qquad \langle j, m+1 | j_1 j_2 m_1 m_2 \rangle$

 $T_{N} + w_{1} + w_{2} + w_{3} + w_{4} + w_{5} + w_{1} + w_{1} + w_{5} + w_{5} + w_{5} + w_{5} + w_{6} + w_{6$

$$m_2^2 = m_2$$
. Similarly, in the second term, $m_1^2 = m_1$, $m_2^2 = m_2 \pm 1 \Rightarrow$

$$\sqrt{j(j+1)} - m(m+1) \quad \langle j, m+1 | j_1 j_2 m_1 m_2 \rangle$$

 $= \sqrt{j_1(j_1+1) - m_1(m_1\pm 1)} < j, m | j_1 j_2 m_1 \pm 1, m_2 >$ $+ \sqrt{j_2(j_2+1) - m_2(m_2\pm 1)} < j, m | j_1 j_2 m_1, m_2 \pm 1 >$

This is precisely the same recursion relation as the one derived for the matrix element of the tensor operator Ojimi. Therefore, we have two sets of recursion relations, $\sum_{j} a_{ij} x_{j} = 0$ and Saijyj with x; ~ motix elements of Dim and y; ~ C-G coefficients. The only way to satisfy them is it; i.e. i.e. i.e. i.e. This concludes the proof of the Wigner-Eckart theorem.