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Vector operators transform like rectors
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under rotation :
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In contrast to vector operators , scalat
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Precession of Angular Momentum

Let's recall the precession of a classical top .
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mMechanical top .
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A specific way
to get the above H :

Consider a quantum Metanical particle

coupled to external , constant
magnetic field .
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In the above deviration for precession of

the angular momentum ,
we only relied

on the commutation relations [Ti ,3j]= izijkJn,

and never had to write down an explicit

form of I operators in a chosen basis .

As we will soon discuss, there exist an

infinite number of possibilities for

matrices that satisfy [Ji ,5j]= isijbTk

where each choice corresponds to a different

sized matrix. Here are two possibilities ,
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Wave-f" approach 10 Precession

- Pauli
let's specialize to 2x2 matrices , so that

I =I matrices

Above we considered the operator approach
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Now
,
we time evolve int with respect
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Uncharsed ,
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Spin Resonance
-

As discussed above ,
if one applied a static

field only along the
z-axis, then

the

angular - momentum will process around the

2-axis . Therefore , if one goes
to a new

frame of reference that B rotaking
at the

anywar velocity corresponding to the

precession about 2-axis, then [5Trot-frame

will be independent of time . This change

of frame is implemented via a chitary
transformation . To see this , if there

is a static field only along
the z-axis ,
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Therefore ,
in the rotating frame, there

is no magnetic field along the Z-directionwo Magnetic
--

(in fact , the Hamiltonian is exactly
zero in the rotating framel .

Now , let's apply a field B1

along R-direction in the attaching

frame .
Based on our discussion of
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To find the Hamiltonian in the
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we write down the



Schrodinger's equation in the lab frame :
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I Boz+ By rs(Bot) +By ysinBot).

Therefore
,
we conclude that if

one applies a time-dependent field

B(t) = (B1 Cs(Bot) , B1 sin(Rot) , Bo)
,

in the frame , then -

in the rotating frame ,
the angular

nee

momentu will precess along M-axis.

In the lab frame ,
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oscillate at frequency Bo , for example,
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, $52Y =
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From an experimental standpoint ,

applying the above time- dependent

field that oscillates both along the

s and the y axis is a bit

inconvenient
. It's easier to apply

a field that in the dal frame

oscillates only along the it-directly
in addition to a static component

along the 2-direction . For example ,

-
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,
O
,
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We will now show that when

By Do
,
and we Bo s then

such a field produce an effect quite

similar to the one discussed above .



We will see below that the amplitude
M N

of oscillation in <Jz)dab= /Tz3r+
will be maximum , when =Bo ·

This has practical implications :

suppose one has a material in their

Rab in which there exists an

ruknown magntic field Boz · By

applying on oscillating field along
the d-direction

, and by maximizing
<2)

,
one can deduce Bo .
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We will be interested in the case

when w BoB1 :
Therefore

,

the terms such or costcot) and

sincewt) average out to zero on

-1
time-scale of order B1 and one

may approximate

COSKt [In Eskot) - by Sinwot]
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This is called stoteling-wave
approximation
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this expression is precisely the

term that deads to field only along
e-direction in the rotating frame .
The second term corresponde to

a field that is rotating at
the opposite frequency -w - Bo
-

and doesn't change the physics much .

completely neslecting the second term

then reproduces the effect of a

field along -direction in the

rotating frame .
Therefore

,
in the rotating wave

approximation ,

int = [Bo-w(2+ B1 InJ
= independent of time .
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let's assume that at time 20 ,

the state is 10) i ver the sain

points up . Crecall
2107 = 103) . Let's

fink the probability for the spin to

point down at time :
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