1 Angular momentum as a generator of rotations

Recall that the operator $\hat{T}_a = e^{-\mathrm{i}\hat{p}a}$ generates translations, i.e., $\hat{T}_a |x\rangle = |x+a\rangle$. Inspired by this, now we will define an operator D(R) that generates a rotation R. To specify a rotation, one needs to specify the axis \hat{n} around which the rotation is being performed and an angle θ that quantifies the amount of rotation performed around \hat{n} .

Similar to the case of linear momentum where we first focussed on infinitesimal translations, it's again easier to consider infinitesimal rotations. Under an infinitesimal rotation $\delta\theta$ along \hat{n} , using elementary geometry, you may show that a three-dimensional vector \vec{r} (not an operator) transforms as

$$\vec{r} \to R(\vec{r}) = \vec{r} + \delta\theta \hat{n} \times \vec{r}$$

For example, when $\hat{n} = \hat{z}$, the rotated vector is (to linear order in $\delta\theta$):

$$\vec{r} = x\hat{x} + y\hat{y} + z\hat{z} \rightarrow \vec{r}' = \delta\theta\hat{z} \times (x\hat{x} + y\hat{y}) = (x - y\delta\theta)\hat{x} + (y + x\delta\theta)\hat{y} + z\hat{z}$$

We would like to define a corresponding unitary operator $D(R_{\hat{n}}, \delta\theta)$ so that

$$D(R_{\hat{n}}, \delta\theta) | \vec{r} \rangle = | \vec{r}' \rangle$$

where \vec{r}' is the aforementioned rotated vector.

Claim: $D(R_{\hat{n}}, \delta\theta) = e^{-\mathrm{i}\delta\theta\hat{n}\cdot(\hat{x}\times\hat{p})}$ where \hat{x}, \hat{p} are position and momentum operators. Note that \hat{n} is just the unit vector specifying the axis of the rotation and is not an operator.

Verification:

$$D(R_{\hat{n}}, \delta\theta) | \vec{r} \rangle = (1 - i\delta\theta \hat{n} \cdot (\hat{x} \times \hat{p})) | \vec{r} \rangle$$

$$= | \vec{r} \rangle - i\delta\theta (\hat{n} \times \vec{r}) \cdot \hat{p} | \vec{r} \rangle$$

$$= | \vec{r} \rangle + \delta\theta (\hat{n} \times \vec{r}) \cdot \frac{\partial}{\partial \vec{r}} | \vec{r} \rangle$$

$$= | \vec{r} + \delta\theta \hat{n} \times \vec{r} \rangle$$

(recall $|x + da\rangle = |x\rangle - da \frac{\partial}{\partial x} |x\rangle$)

Again, similar to the case of linear momentum, one may write an operator equation:

$$D(R_{\hat{n}}, \delta\theta)^{\dagger} \hat{r} D(R_{\hat{n}}, \delta\theta) = \hat{r} + \delta\theta \hat{n} \times \hat{r}$$

Again, keep in mind that on the RHS, \hat{r} is an operator, while \hat{n} is just a unit vector.

By applying repeated infinitesimal rotations around the same axis \hat{n} , the above equations hold also for finite rotations, i.e.

$$D(R_{\hat{n}}, \theta) | \vec{r} \rangle = | R(\vec{r}) \rangle$$

and

$$D(R_{\hat{n}}, \theta)^{\dagger} \hat{r} D(R_{\hat{n}}, \theta) = R(\hat{r})$$

where $D(R_{\hat{n}}, \theta) = e^{-i\theta\hat{n}\cdot(\hat{x}\times\hat{p})}$ and $R(\vec{r})$ is the rotated vector whose precise action can be determined using geometry (it is not $\vec{r} + \theta\hat{n} \times \vec{r}$).

2 Commutation relations for orbital angular momentum

As discussed above, the angular momentum operator is $\vec{L} = \hat{r} \times \hat{p}$ e.g. $L_x = y\hat{p}_z - z\hat{p}_y$. Consider $[L_x, L_y]$:

$$[L_x, L_y] = [y\hat{p}_z - z\hat{p}_y, z\hat{p}_x - x\hat{p}_z]$$

$$= y[p_z, z]p_x + z[z, p_x]p_y$$

$$= i(yp_x - xp_y) = iL_z$$

Similarly, $[L_y, L_z] = iL_x$, $[L_z, L_x] = iL_y$. We will soon show that these commutation relations are rather constraining and determine the spectrum of \vec{L}^2 . Further, there exist an infinite number of possibilities for matrices that satisfy $[J_i, J_j] = i\hbar\epsilon_{ijk}J_k$ where each choice corresponds to a different sized matrix. Here are two possibilities:

 2×2 : $J_i = \frac{1}{2}\sigma_i$ where σ_i are the Pauli matrices.

$$3 \times 3 \text{ matrices: } J_i = L_i \text{ where } L_i \text{ are matrices:}$$

$$L_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathbf{i} \\ 0 & \mathbf{i} & 0 \end{pmatrix} L_y = \begin{pmatrix} 0 & 0 & \mathbf{i} \\ 0 & 0 & 0 \\ -\mathbf{i} & 0 & 0 \end{pmatrix}, L_z = \begin{pmatrix} 0 & -\mathbf{i} & 0 \\ \mathbf{i} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ (We will soon derive these)}$$

2.1 Alternative perspective on angular momentum commutation relations

It is an important fact that even classically, rotation matrices in d=3 don't commute:

$$R_x(\theta_x)R_y(\theta_y) - R_y(\theta_y)R_x(\theta_x) \neq 0$$

In fact, for infinitesimal θ_x , θ_y ,

$$[R_x(\theta_x), R_y(\theta_y)] \sim R_z(\theta_x \theta_y)$$

Explicitly as matrices:

$$R_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \approx 1 - i\theta I_x$$

where
$$I_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathrm{i} \\ 0 & \mathrm{i} & 0 \end{pmatrix}$$
 and we have assumed $|\theta| \ll 1$.

Similarly,
$$I_y = \begin{pmatrix} 0' & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}$$
, $I_z = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

One notices $[I_x, I_y] = iI_z$:

$$\begin{split} \left[I_x,I_y\right] &= I_x I_y - I_y I_x \\ &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathrm{i} \\ 0 & \mathrm{i} & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & \mathrm{i} \\ 0 & 0 & 0 \\ -\mathrm{i} & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & \mathrm{i} \\ 0 & 0 & 0 \\ -\mathrm{i} & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathrm{i} \\ 0 & \mathrm{i} & 0 \end{pmatrix} \\ &= \mathrm{i} \begin{pmatrix} 0 & -\mathrm{i} & 0 \\ \mathrm{i} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathrm{i} I_z \end{split}$$

As discussed above, the unitary operator that implements the rotation is $D(R_{\hat{n}}, \theta) = e^{-i\theta\hat{n}\cdot\vec{L}}$ where \vec{L} is the quantum mechanical operator corresponding to the angular momentum.

We expect the operator $D(R_{\hat{n}}, \theta)$ to satisfy the same algebra as the 'classical' rotation matrices R_x, R_y, R_z :

$$\begin{split} \left[D(R_x,\delta\theta_x),D(R_y,\delta\theta_y)\right] - \left[D(R_y,\delta\theta_y),D(R_x,\delta\theta_x)\right] &= -\mathrm{i}\delta\theta_x\delta\theta_yL_z \\ \\ \Rightarrow \left[L_x,L_y\right] &= \mathrm{i}L_z \ \mathrm{etc.} \end{split}$$

i.e. $[L_i, L_j] = i\epsilon_{ijk}L_k$, where ϵ_{ijk} is the fully anti-symmetric tensor.

3 Scalar Vs Vector Operators

In this section, we will denote angular momentum operator as \vec{J} instead of \vec{L} . One defines a 'vector operator' as an operator satisfies the following commutation relations with the angular momentum operators:

$$[V_i, J_j] = i\epsilon_{ijk}V_k$$

You may check that \vec{r} , \vec{p} , \vec{L} are all vector operators.

We will now show that vector operators satisfy:

$$e^{-i\theta J_z} V_x e^{i\theta J_z} = V_x \cos \theta - V_y \sin \theta$$
$$e^{-i\theta J_z} V_y e^{i\theta J_z} = V_x \sin \theta + V_y \cos \theta$$

Therefore, a vector operator transforms like a standard vector under rotation, hence the name.

To derive the above result, we start with

$$V_x(\theta) = e^{-\mathrm{i}\theta J_z} V_x e^{\mathrm{i}\theta J_z}$$

and then take derivative with respect to θ :

$$\frac{d}{d\theta}V_x(\theta) = ie^{-i\theta J_z}[J_z, V_x]e^{i\theta J_z} = ie^{-i\theta J_z}(iV_y)e^{i\theta J_z} = -V_y(\theta)$$

Similarly, $\frac{d}{d\theta}V_y(\theta)=V_x(\theta)$. Note that these can also be thought of as Heisenberg's E.O.M. with $\theta=$ time, and $J_z=$ Hamiltonian. Solving these two equations with the boundary condition $V_x(0)=V_x$, $V_y(0)=V_y$ gives the above expression of $V_x(\theta)$, $V_y(\theta)$.

In contrast to vector operators, 'scalar operators' S transform trivially under rotations:

$$[S, J_i] = 0$$

An example is $S = V_i V_i$ where V_i is a vector operator (heuristically, S is the squared magnitude of \vec{V} and hence does not change as \vec{V} is rotated).

Check $[S, J_k] = [V_i V_i, J_k] = [V_i, J_k] V_i + V_i [V_i, J_k] = i\hbar \epsilon_{kij} V_j V_i + i\hbar \epsilon_{kij} V_i V_j = 0$ (recall that ϵ_{ijk} is fully antisymmetric).

4 Precession of a quantum-mechanical top

Let's first recall the precession of a classical top of mass m.

$$H = \frac{L^2}{2I} - mgz \quad (z = \text{height of the center of mass})$$

 L_z is conserved since the torque is in the x-y plane \Rightarrow the polar angle θ is independent of time, and only the azimuthal angle ϕ changes as a function of time.

$$\frac{d\vec{L}}{dt} = \vec{\tau} = \vec{r} \times \vec{F} = -r \sin \theta \hat{\phi} \times mg\hat{z} = mgr \sin \theta \hat{\theta}$$

 $L_x = L \sin \theta \cos \phi(t), L_y = L \sin \theta \sin \phi(t)$

$$\frac{dL_x}{dt} = -L\sin\theta\sin\phi \frac{d\phi}{dt} = -mgr\sin\theta\sin\phi$$

$$\frac{dL_y}{dt} = L\sin\theta\cos\phi \frac{d\phi}{dt} = mgr\sin\theta\cos\phi$$

$$\Rightarrow \frac{d\phi}{dt} = \frac{mgr}{L} = \omega$$

 $L_z = L\cos\theta \Rightarrow mgz = mgr\cos\theta = (mgr)\frac{L_z}{L}$

Therefore, one may write,

$$H = \frac{L^2}{2I} + \omega L_z$$
 [note that this is time-independent]

and $\frac{d\vec{L}}{dt} = \omega \hat{z} \times \vec{L}$

$$\Rightarrow L_x(t) = L_x(t=0)\cos(\omega t) - L_y(t=0)\sin(\omega t)$$
$$L_y(t) = L_y(t=0)\cos(\omega t) + L_x(t=0)\sin(\omega t)$$

These classical results motivate us to define a quantum mechanical top via the Hamiltonian $H=\frac{\vec{J}^2}{2I}-\vec{\mu}\cdot\vec{B}$

One may choose \vec{B} along the z-direction. So that $H = \frac{\vec{J}^2}{2I} + \omega J_z$ ($\omega = \frac{\mu B}{\hbar}$) $[J^2, H] = [J_z, H] = 0 \Rightarrow J_z, J^2$ are constants of motion, similar to the classical case.

Heisenberg's Eq. of motion:

$$J_x(t) = e^{iHt/\hbar} J_x e^{-iHt/\hbar} = e^{i\omega J_z t} J_x e^{-i\omega J_z t}$$

Using above discussion of vector operators:

$$J_x(t) = J_x(0)\cos(\omega t) - J_y(0)\sin(\omega t)$$

$$J_y(t) = J_y(0)\cos(\omega t) + J_x(0)\sin(\omega t)$$

The derivation only relies on J being a vector operator i.e. $[J_i, J_j] = i\epsilon_{ijk}J_k$. Note the close parallel between the classical and the quantum mechanical top.

5 Wave-fn approach to precession for a spin-1/2 system

Let's specialize to 2×2 angular momentum matrices, so that $\vec{J}=\frac{1}{2}\vec{\sigma}$. Above we considered the operator approach to precession, where to calculate $\langle J_x(t)\rangle$ we evaluated $\langle \psi|e^{iHt}J_xe^{-iHt}|\psi\rangle$. One can also consider the Schrödinger approach where we instead evaluate $|\psi(t)\rangle=e^{-iHt}|\psi(0)\rangle$ and calculate $\langle \psi(t)|J_x|\psi(t)\rangle$.

At
$$t = 0$$
, let's say $\langle J_z \rangle = \frac{1}{2} \cos \theta$, $\langle J_x \rangle = \frac{1}{2} \sin \theta \cos \phi$, $\langle J_y \rangle = \frac{1}{2} \sin \theta \sin \phi$ i.e. $\langle \psi(0) | \vec{\sigma} | \psi(0) \rangle = \hat{n} = (\sin(\theta) \cos(\phi), \sin(\theta) \sin(\phi), \cos(\theta))$

The corresponding state at t=0 is the eigenvector of $\vec{\sigma} \cdot \hat{n}$ with eigenvalue +1. Using our earlier discussion:

$$|\psi(0)\rangle = \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2)e^{i\phi} \end{pmatrix}$$

Check:

$$\langle \sigma_z \rangle = \cos^2(\theta/2) - \sin^2(\theta/2) = \cos \theta$$

 $\langle \sigma_x \rangle = 2\cos(\theta/2)\sin(\theta/2)\cos \phi = \sin \theta \cos \phi$
 $\langle \sigma_y \rangle = 2\cos(\theta/2)\sin(\theta/2)\sin \phi = \sin \theta \sin \phi$

Therefore $|\psi(0)\rangle$ is indeed the correct initial state.

Now, we time evolve $|\psi(0)\rangle$ with respect to $H=\omega J_z=\frac{\omega}{2}\sigma_z$:

$$|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$$

$$= e^{-i\omega t \sigma_z/2} \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2)e^{i\phi} \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\theta/2)e^{-i\omega t/2} \\ \sin(\theta/2)e^{i(\phi+\omega t/2)} \end{pmatrix}$$

Therefore, under time-evolution, the state at time t is obtained from the state at time t=0 by the substitution $\theta \to \theta$, $\phi \to \phi + \omega t$ i.e. $\langle J_z \rangle$ remains unchanged, while the vector $(\langle J_x \rangle, \langle J_y \rangle)$ rotates at an angular velocity ω , exactly in agreement with the result in the operator (Heisenberg) picture discussed in the last section.