
1 Angular momentum as a generator of rotations

Recall that the operator T̂a “ e´ip̂a generates translations, i.e., T̂a |xy “ |x` ay. Inspired by this,
now we will define an operator DpRq that generates a rotation R. To specify a rotation, one needs
to specify the axis n̂ around which the rotation is being performed and an angle θ that quantifies the
amount of rotation performed around n̂.

Similar to the case of linear momentum where we first focussed on infinitesimal translations,
it’s again easier to consider infinitesimal rotations. Under an infinitesimal rotation δθ along n̂, using
elementary geometry, you may show that a three-dimensional vector ~r (not an operator) transforms
as

~r Ñ Rp~rq “ ~r ` δθn̂ˆ ~r

For example, when n̂ “ ẑ, the rotated vector is (to linear order in δθ):

~r “ xx̂` yŷ ` zẑ Ñ ~r1 “ δθẑ ˆ pxx̂` yŷq “ px´ yδθqx̂` py ` xδθqŷ ` zẑ

We would like to define a corresponding unitary operator DpRn̂, δθq so that

DpRn̂, δθq |~ry “ |~r1y

where ~r1 is the aforementioned rotated vector.
Claim: DpRn̂, δθq “ e´iδθn̂¨px̂ˆp̂q where x̂, p̂ are position and momentum operators. Note that n̂

is just the unit vector specifying the axis of the rotation and is not an operator.
Verification:

DpRn̂, δθq |~ry “ p1´ iδθn̂ ¨ px̂ˆ p̂qq |~ry

“ |~ry ´ iδθpn̂ˆ ~rq ¨ p̂ |~ry

“ |~ry ` δθpn̂ˆ ~rq ¨ B
B~r

|~ry

“ |~r ` δθn̂ˆ ~ry

(recall |x` day “ |xy ´ da B
Bx

|xy)
Again, similar to the case of linear momentum, one may write an operator equation:

DpRn̂, δθq
:r̂DpRn̂, δθq “ r̂ ` δθn̂ˆ r̂

Again, keep in mind that on the RHS, r̂ is an operator, while n̂ is just a unit vector.
By applying repeated infinitesimal rotations around the same axis n̂, the above equations hold

also for finite rotations, i.e.
DpRn̂, θq |~ry “ |Rp~rqy

and
DpRn̂, θq

:r̂DpRn̂, θq “ Rpr̂q

where DpRn̂, θq “ e´iθn̂¨px̂ˆp̂q and Rp~rq is the rotated vector whose precise action can be determined
using geometry (it is not ~r ` θn̂ˆ ~r).
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2 Commutation relations for orbital angular momentum

As discussed above, the angular momentum operator is ~L “ r̂ ˆ p̂ e.g. Lx “ yp̂z ´ zp̂y.
Consider rLx, Lys:

rLx, Lys “ ryp̂z ´ zp̂y, zp̂x ´ xp̂zs

“ yrpz, zspx ` zrz, pxspy

“ ipypx ´ xpyq “ iLz

Similarly, rLy, Lzs “ iLx, rLz, Lxs “ iLy. We will soon show that these commutation relations
are rather constraining and determine the spectrum of ~L2. Further, there exist an infinite number
of possibilities for matrices that satisfy rJi, Jjs “ i~εijkJk where each choice corresponds to a
different sized matrix. Here are two possibilities:

2ˆ 2: Ji “ 1
2
σi where σi are the Pauli matrices.

3ˆ 3 matrices: Ji “ Li where Li are matrices

Lx “

¨

˝

0 0 0
0 0 ´i
0 i 0

˛

‚Ly “

¨

˝

0 0 i
0 0 0
´i 0 0

˛

‚, Lz “

¨

˝

0 ´i 0
i 0 0
0 0 0

˛

‚(We will soon derive these)

2.1 Alternative perspective on angular momentum commutation relations
It is an important fact that even classically, rotation matrices in d “ 3 don’t commute:

RxpθxqRypθyq ´RypθyqRxpθxq ‰ 0

In fact, for infinitesimal θx, θy,

rRxpθxq, Rypθyqs „ Rzpθxθyq

Explicitly as matrices:

Rx “

¨

˝

1 0 0
0 cos θ ´ sin θ
0 sin θ cos θ

˛

‚« 1´ iθIx

where Ix “

¨

˝

0 0 0
0 0 ´i
0 i 0

˛

‚and we have assumed |θ| ! 1.

Similarly, Iy “

¨

˝

0 0 i
0 0 0
´i 0 0

˛

‚, Iz “

¨

˝

0 ´i 0
i 0 0
0 0 0

˛

‚
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One notices rIx, Iys “ iIz:

rIx, Iys “ IxIy ´ IyIx

“

¨

˝

0 0 0
0 0 ´i
0 i 0

˛

‚

¨

˝

0 0 i
0 0 0
´i 0 0

˛

‚´

¨

˝

0 0 i
0 0 0
´i 0 0

˛

‚

¨

˝

0 0 0
0 0 ´i
0 i 0

˛

‚

“ i

¨

˝

0 ´i 0
i 0 0
0 0 0

˛

‚“ iIz

As discussed above, the unitary operator that implements the rotation is DpRn̂, θq “ e´iθn̂¨~L

where ~L is the quantum mechanical operator corresponding to the angular momentum.
We expect the operator DpRn̂, θq to satisfy the same algebra as the ‘classical’ rotation matrices

Rx, Ry, Rz:

rDpRx, δθxq, DpRy, δθyqs ´ rDpRy, δθyq, DpRx, δθxqs “ ´iδθxδθyLz

ñ rLx, Lys “ iLz etc.

i.e. rLi, Ljs “ iεijkLk, where εijk is the fully anti-symmetric tensor.

3 Scalar Vs Vector Operators

In this section, we will denote angular momentum operator as ~J instead of ~L. One defines a ‘vector
operator’ as an operator satisfies the following commutation relations with the angular momentum
operators:

rVi, Jjs “ iεijkVk

You may check that ~r, ~p, ~L are all vector operators.
We will now show that vector operators satisfy:

e´iθJzVxe
iθJz “ Vx cos θ ´ Vy sin θ

e´iθJzVye
iθJz “ Vx sin θ ` Vy cos θ

Therefore, a vector operator transforms like a standard vector under rotation, hence the name.
To derive the above result, we start with

Vxpθq “ e´iθJzVxe
iθJz

and then take derivative with respect to θ:

d

dθ
Vxpθq “ ie´iθJz rJz, Vxse

iθJz “ ie´iθJz piVyq eiθJz “ ´Vypθq

Similarly, d
dθ
Vypθq “ Vxpθq. Note that these can also be thought of as Heisenberg’s E.O.M. with

θ “ time, and Jz “ Hamiltonian. Solving these two equations with the boundary condition
Vxp0q “ Vx, Vyp0q “ Vy gives the above expression of Vxpθq, Vypθq.
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In contrast to vector operators, ‘scalar operators’ S transform trivially under rotations:

rS, Jis “ 0

An example is S “ ViVi where Vi is a vector operator (heuristically, S is the squared magnitude of
~V and hence does not change as ~V is rotated).

Check rS, Jks “ rViVi, Jks “ rVi, JksVi ` VirVi, Jks “ i~εkijVjVi ` i~εkijViVj “ 0 (recall that
εijk is fully antisymmetric).

4 Precession of a quantum-mechanical top
Let’s first recall the precession of a classical top of mass m.

H “
L2

2I
´mgz pz “ height of the center of massq

Lz is conserved since the torque is in the x-y planeñ the polar angle θ is independent of time, and
only the azimuthal angle φ changes as a function of time.

d~L

dt
“ ~τ “ ~r ˆ ~F “ ´r sin θφ̂ˆmgẑ “ mgr sin θθ̂

Lx “ L sin θ cosφptq, Ly “ L sin θ sinφptq

dLx
dt

“ ´L sin θ sinφ
dφ

dt
“ ´mgr sin θ sinφ

dLy
dt

“ L sin θ cosφ
dφ

dt
“ mgr sin θ cosφ

ñ
dφ

dt
“
mgr

L
“ ω

Lz “ L cos θ ñ mgz “ mgr cos θ “ pmgrqLz

L

Therefore, one may write,

H “
L2

2I
` ωLz rnote that this is time-independents

and d~L
dt
“ ωẑ ˆ ~L

ñ Lxptq “ Lxpt “ 0q cospωtq ´ Lypt “ 0q sinpωtq

Lyptq “ Lypt “ 0q cospωtq ` Lxpt “ 0q sinpωtq

These classical results motivate us to define a quantum mechanical top via the Hamiltonian
H “

~J2

2I
´ ~µ ¨ ~B

One may choose ~B along the z-direction. So that H “
~J2

2I
` ωJz (ω “ µB

~ )
rJ2, Hs “ rJz, Hs “ 0ñ Jz, J

2 are constants of motion, similar to the classical case.
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Heisenberg’s Eq. of motion:

Jxptq “ eiHt{~Jxe
´iHt{~

“ eiωJztJxe
´iωJzt

Using above discussion of vector operators:

Jxptq “ Jxp0q cospωtq ´ Jyp0q sinpωtq

Jyptq “ Jyp0q cospωtq ` Jxp0q sinpωtq

The derivation only relies on J being a vector operator i.e. rJi, Jjs “ iεijkJk. Note the close parallel
between the classical and the quantum mechanical top.

5 Wave-fn approach to precession for a spin-1/2 system

Let’s specialize to 2ˆ 2 angular momentum matrices, so that ~J “ 1
2
~σ. Above we considered the

operator approach to precession, where to calculate xJxptqy we evaluated xψ|eiHtJxe´iHt|ψy. One
can also consider the Schrödinger approach where we instead evaluate |ψptqy “ e´iHt|ψp0qy and
calculate xψptq|Jx|ψptqy.

At t “ 0, let’s say xJzy “ 1
2
cos θ, xJxy “ 1

2
sin θ cosφ, xJyy “ 1

2
sin θ sinφ i.e. xψp0q|~σ|ψp0qy “

n̂ “ psinpθq cospφq, sinpθq sinpφq, cospθqq
The corresponding state at t “ 0 is the eigenvector of ~σ ¨ n̂ with eigenvalue +1. Using our earlier

discussion:

|ψp0qy “

ˆ

cospθ{2q
sinpθ{2qeiφ

˙

Check:

xσzy “ cos2pθ{2q ´ sin2
pθ{2q “ cos θ

xσxy “ 2 cospθ{2q sinpθ{2q cosφ “ sin θ cosφ

xσyy “ 2 cospθ{2q sinpθ{2q sinφ “ sin θ sinφ

Therefore |ψp0qy is indeed the correct initial state.
Now, we time evolve |ψp0qy with respect to H “ ωJz “

ω
2
σz:

|ψptqy “ e´iHt|ψp0qy

“ e´iωtσz{2
ˆ

cospθ{2q
sinpθ{2qeiφ

˙

“

ˆ

cospθ{2qe´iωt{2

sinpθ{2qeipφ`ωt{2q

˙

Therefore, under time-evolution, the state at time t is obtained from the state at time t “ 0 by
the substitution θ Ñ θ, φ Ñ φ ` ωt i.e. xJzy remains unchanged, while the vector pxJxy, xJyyq
rotates at an angular velocity ω, exactly in agreement with the result in the operator (Heisenberg)
picture discussed in the last section.
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