1 Angular momentum as a generator of rotations

Recall that the operator 7, — e~"* generates translations, i.e., 7, |2) = |z + a). Inspired by this,
now we will define an operator D(R) that generates a rotation R. To specify a rotation, one needs
to specify the axis 7 around which the rotation is being performed and an angle # that quantifies the
amount of rotation performed around 7.

Similar to the case of linear momentum where we first focussed on infinitesimal translations,
it’s again easier to consider infinitesimal rotations. Under an infinitesimal rotation 66 along 7, using

elementary geometry, you may show that a three-dimensional vector 7 (not an operator) transforms
as

7 — R(T) =7+ 00n x71
For example, when n = Z, the rotated vector is (to linear order in 96):
F=xi+yg+ 22 —>7 =002 x (i +yy) = (x —ydd)z + (y + x60)y + 22
We would like to define a corresponding unitary operator D(R;, d6) so that
D(R;,80) ) = |r')

where 7 is the aforementioned rotated vector.

Claim: D(R;,66) = e 99%(@xP) where &, p are position and momentum operators. Note that 72
is just the unit vector specifying the axis of the rotation and is not an operator.
Verification:

D(Rq, 80) | = (1667 - (& x p)) |7

— 17— i00( x 7) - |7

0

— 50(h x ) - —
7+ 800 x 7) - — )

= |F'+ 60n x )
(recall |z + da) = |z) — da- |z))
Again, similar to the case of linear momentum, one may write an operator equation:

D(Ry,80)'#D(R;, 00) = 7 + 500 x 7

Again, keep in mind that on the RHS, 7 is an operator, while 7 is just a unit vector.

By applying repeated infinitesimal rotations around the same axis 7, the above equations hold
also for finite rotations, i.e.

D(R;,0)|r) = |R(F))
and
D(R;,0)'#D(R;,0) = R(7)

where D(R;,, 0) = e~ 9%(@xP) and R(7) is the rotated vector whose precise action can be determined
using geometry (it is not 7+ 01 x 7).



2 Commutation relations for orbital angular momentum

As discussed above, the angular momentum operator is L =7 x pe.g. Ly =yp, — 2p,.
Consider [L,, L, |:

[L:va Ly] = [ypz - Zﬁya 2Dy — fﬂﬁz]
= y[pz, 2px + z[2, plpy
= l(ypm - pry) = le

Similarly, L, L,| = iL,, [L., L] = iL,. We will soon show that these commutation relations
are rather constraining and determine the spectrum of L2. Further, there exist an infinite number
of possibilities for matrices that satisty [.J;, J;] = ihe;;,Ji, Where each choice corresponds to a
different sized matrix. Here are two possibilities:

2 x 2: J; = 30, where o; are the Pauli matrices.

3 x 3 matrices: J; = L; where L; are matrices

00 0 0 0 i 0 -1 0
L,=100 —-1|L,=10 0 O0f,L,={[1 0 0] (Wewill soon derive these)
01 O -1 0 0 0 0 0

2.1 Alternative perspective on angular momentum commutation relations
It is an important fact that even classically, rotation matrices in d = 3 don’t commute:
Racwa:)Ry(ey) - Ry(ey)Rx(em) # 0
In fact, for infinitesimal 0, 0,,
[Rx(‘gm)a Ry(gy)] ~ Rz(erey)
Explicitly as matrices:

1 0 0
R,=10 cosf) —sinf|~1-—i01l,
0 sinf cosé

00 0
where [, = | 0 0 —i | and we have assumed || « 1.
01 0
0 0 i 0 -1 0
Similarly, I, = [ 0 0 0}, I,=(1i 0 0
-1 0 0 0 0 0



One notices |1, I,] = il,:

[I,.1,) = LI, — I,I,
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As discussed above, the unitary operator that implements the rotation is D(R;,6) = e "L
where L is the quantum mechanical operator corresponding to the angular momentum.

We expect the operator D(Rj;, 0) to satisfy the same algebra as the ‘classical’ rotation matrices
Ry, Ry, R.:

[D(R,,60,), D(R,,00,)| — [D(R,,00,), D(R,,00,)] = —106,00,L,

= [L,,L,| =1L, etc.

i.e. [L;, Lj] = i€;, Ly, where € is the fully anti-symmetric tensor.

3 Scalar Vs Vector Operators

In this section, we will denote angular momentum operator as J instead of L. One defines a ‘vector
operator’ as an operator satisfies the following commutation relations with the angular momentum
operators:

[Vi, Jj] = iﬁijka

You may check that 77, p, L are all vector operators.
We will now show that vector operators satisfy:

e 1072 0100 = V7 cosf — V,sin 6

e_'ejz%elejz = Vysinf + V, cos 0

Therefore, a vector operator transforms like a standard vector under rotation, hence the name.
To derive the above result, we start with

%(0) _ efiQJz‘/;Eeian
and then take derivative with respect to 6:

d ; i ‘ '
@Vﬂ:(@) = j€—10Jz [JZ7 Vz]eler _ ie—l@Jz (IVy) 6149Jz — _Vy(e)

Similarly, LV, (6) = V,(6). Note that these can also be thought of as Heisenberg’s E.O.M. with
0 = time, and J, = Hamiltonian. Solving these two equations with the boundary condition
V.(0) = Vi, V,,(0) = V,, gives the above expression of V,.(9), V,,(9).
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In contrast to vector operators, ‘scalar operators’ S transform trivially under rotations:
[S,J;] =0

An example is S = V;V; where V; is a vector operator (heuristically, .S is the squared magnitude of
V and hence does not change as V is rotated).

Check [S, Ji| = [ViVi, Ji] = Vi, Je]lVi + Vi[Vi, Ji| = ihegi;V;V; + iheg;;V;V; = 0 (recall that
€5 18 fully antisymmetric).

4 Precession of a quantum-mechanical top

Let’s first recall the precession of a classical top of mass m.

L2
H = o] ~ M9z (z = height of the center of mass)
L is conserved since the torque is in the x-y plane = the polar angle 6 is independent of time, and
only the azimuthal angle ¢ changes as a function of time.

-

aL
—_— =T =

dt
L, = Lsinfcos ¢(t), L, = Lsinfsin ¢(t)

=y

x F=—r sin f¢p x mgz = mgr sin 69

L
ddtx = —Lsinfsin gb% = —mgr sin fsin ¢
dL d
d_ty = sznecosgbd—f = mgrsinf cos ¢
_ 4o mgr _
dt L

L. = Lcosf = mgz = mgrcosf = (mgr)==
Therefore, one may write,
L2

H = o7t wL, [note that this is time-independent]

= L,(t) = Ly(t = 0) cos(wt) — L, (t = 0) sin(wt)
L,(t) = Ly(t = 0) cos(wt) + L,(t = 0) sin(wt)
These classical results motivate us to define a quantum mechanical top via the Hamiltonian
H=L_[-B

One may choose B along the z-direction. So that H = ‘2]—? +wJ, (w= %)

[J?,H] = [J., H] = 0 = J., J? are constants of motion, similar to the classical case.



Heisenberg’s Eq. of motion:
To(t) = et ] miHth _ giwlst J —iwlst
Using above discussion of vector operators:
J.(t) = J.(0) cos(wt) — J,(0) sin(wt)

Jy(t) = J,(0) cos(wt) + J,(0) sin(wt)

The derivation only relies on .J being a vector operator i.e. [.J;, J;] = ie;;i.Ji,. Note the close parallel
between the classical and the quantum mechanical top.

5 Wave-fn approach to precession for a spin-1/2 system

Let’s specialize to 2 x 2 angular momentum matrices, so that J = %5. Above we considered the
operator approach to precession, where to calculate {J,(t)) we evaluated (¢)|e** J,e~"H*|1)}. One
can also consider the Schrodinger approach where we instead evaluate [)(t)) = e[+ (0)) and

calculate (¢(t)|J, |1 (t)).
Att = 0,let’ssay (J.) = 1 cosf,{J,) = +sinfcosp, (J,) = Lsinfsingie. (4(0)|F(0)) =

n = (sin(0) cos(¢), sin(f) sin(¢), cos(?))

The corresponding state at ¢ = 0 is the eigenvector of & - n with eigenvalue +1. Using our earlier

discussion:
o) = (i)
Check:

{0,) = cos®(/2) — sin*(§/2) = cos O
(o) = 2cos(0/2) sin(6/2) cos ¢ = sinf cos ¢
(oy) = 2cos(0/2) sin(0/2) sin ¢ = sin @ sin ¢

Therefore |1(0)) is indeed the correct initial state.
Now, we time evolve |(0)) with respect to H = w.J, = $0.:

(1)) = e (0))
- o)
_ < cos(6/2)e" 2 )

sin(0/2)e'(@+«t/2)

Therefore, under time-evolution, the state at time ¢ is obtained from the state at time ¢ = 0 by
the substitution § — 6, ¢ — ¢ + wt i.e. {J,) remains unchanged, while the vector ({.J, ), {J,))
rotates at an angular velocity w, exactly in agreement with the result in the operator (Heisenberg)
picture discussed in the last section.
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