fx.1. Consider two distinguishable particles in a harmonic potential:

Charically. $H = \frac{P_1}{2m} + \frac{P_2}{2m} + \frac{1}{2} \frac{1$

Overtum mechanically, one needs to first define the Hilbert space for this

composite system. For a single-particle, one choice of basis is 1x7. Another choice is 1n7 where n=0,1,-. as

denotes eisenvalue of at a.

For the two-particle system, one may

Chause the basis to be

 $121 \otimes 12$. Another Possibility is $111 \otimes 112$. Here \otimes denotes

tensor product of states whose Meaning is as follows. Consider an operator of that only acts on particle #1. Its action on 12178127 is defined or ôs (12>>) = ôs12>> × 12>. Therefore, in the composite Hilbert spall, Or may be written as $0_1 \otimes 1_2$ where 1_2 denotes the identify operator actively on particle # 2. Similarly, on operator 02 that acts only on particle #2 is more precisely written as $1_1 \otimes 0_2$, and acts as

= 12/2 \ 02/27. More generally one can consider an operator $\hat{O}_1 \otimes \hat{O}_2$ that acts 02 0,00 (11,18/12) = Ô1 1/37 \ D2/127. Entangled states: Above, we mentioned one possible choice of the basis states of the form MIT & IN27 on MIT & M27. Both of these have direct product form 14,7 81627 where 1 by > lives in the Hilbert space belonging to particle 1, and similarly

 $1_1 \otimes \hat{O}_2 \quad |A_1\rangle \otimes |A_2\rangle$

1627 belongs to the Hilbert space belonging to particle 2. One may also construct states that do not have this form. For example, counder the State that Still lives in the Hilbert space belonging to two particles in a hormonic potential: 16> = 1NT=0> @ (N==1>+1N=1>@1N=0) where N, Nz again denote the occupation numbers at 10, and at 202 respectively. One can show that there exists no choice of basis states in I and 2 so that 14> may be written as 14>016>. In other words, there does not exist any unitaries U1, U2

acting on the first and the second particles respectively such that $U_1 \otimes U_2 | \psi \rangle = | \phi_1 \rangle \otimes | \phi_2 \rangle.$ Such states, which have a non-direct-Product form in any choice of born's are called entargled and they can have very counter-intuitive properties with no classical analogs 02 loc will discuss soon. EPR experiment with 14)=11,=0>0/10,=1)+10,=0010,=0 Record of Measurement A Speed Like separaka.

Partiel entangled Partiels

Partiel pair Partiels enfromes: person A person B $N_1 = 0$ $N_2 = 1$ $N_1 = 1$ $N_2 = 0$ Perfect anti-correlation but Still No faster than light communication because they would need to compare their records to notice the perfect anti-correlation!

Eigenstates and Eigenvectors of two Particles in a harmonic trap: Based on the above transion, the Hamiltonian $H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + \frac{1}{2}m\omega_{x_1}^2 + \frac{1}{2}m\omega_{x_2}^2$ can more precisely be written as

 $H = \left(\frac{P_1}{2m} + \frac{1}{2}m\omega^2\chi_1^2\right)\otimes 1_2 + 1_1\otimes \left(\frac{P_2}{2m} + 1_1m\omega\chi_2^2\right)$

for brevity, the tensoring with It or 1/2 is generally omitted. The above Hamiltonian has a

Separable form i.e. $\hat{O}_1 \otimes 1_2 + 1_1 \otimes \hat{O}_2$.

An example of a non-separable Hamiltonian unuls be above H+ X, 8 X2.

Since H is separable, one can

diagonalise its two pièces separately

where
$$a_1 = \sqrt{\frac{1}{2}} x_1 + i \sqrt{\frac{1}{2}} R_1$$
and $a_2 = \sqrt{\frac{1}{2}} x_2 + i \sqrt{\frac{1}{2}} R_2$
are the usual annihilation operators
that satisfy, $[a_1, at_1] = 1$,
 $[a_2, at_2] = 1$. Since a_1, a_2
act on different Hilbert spaces.
 $[a_1, a_2] = [a_1, a_2] = 0$.
Therefore, the eigenstates of H
are simply given by,
 $[n_1 > 0|n_2 > = (a_1)^{n_1} |o_1 > 0(a_2)^{n_2}$
 $[a_1, a_2] = (a_1)^{n_1} (a_2)^{n_2} |o_2 > 0$
where $[o_1, o_2] = (a_1)^{n_1} (a_2)^{n_2} |o_2 > 0$
where $[o_1, o_2] = (a_1)^{n_2} (a_2)^{n_2} |o_2 > 0$
where $[o_1, o_2] = (a_1)^{n_2} (a_2)^{n_2} |o_2 > 0$
where $[o_1, o_2] = (a_1)^{n_2} |o_2 > 0$
where $[o_1, o_2] = (a_1)^{n_2} |o_2 > 0$
 $[o_1, o_2] = (a_2)^{n_2} |o_2 > 0$
 $[o_2, o_3] = (a_1)^{n_2} |o_2 > 0$
 $[o_2, o_3] = (a_2)^{n_3} |o_3 > 0$
 $[o_3, o_3] = (a_1)^{n_2} |o_3 > 0$
 $[o_3, o_3] = (a_2)^{n_3} |o_3 > 0$
 $[o_3, o_3] = (a_1)^{n_3} |o_3 > 0$
 $[o_3, o_3] = (a_2)^{n_3} |o_3 > 0$
 $[o_3, o_3] = (a_1)^{n_3} |o_3 > 0$
 $[o_3, o_3] = ($

 $H = \omega \left[(\alpha_1^{\dagger} \alpha_1 + \frac{1}{2}) \otimes 1_2 + 1_1 \otimes (\alpha_2^{\dagger} \alpha_2 + \frac{1}{2}) \right]$

 $N_{\frac{1}{2}} + \frac{1}{2} + N_{2} + \frac{1}{2} = N_{1} + N_{2} + 1$ figuratates in a real-space basis:

The corresponding eigenvalue is

 $\langle \chi_1 | \otimes \langle \chi_2 | | \chi_1 \rangle \otimes \chi_2 \rangle \equiv \psi_{\chi_1, \chi_2} \langle \chi_1, \chi_2 \rangle$

 $\langle \chi_1 \mid \eta_1 \rangle \langle \chi_2 \mid \eta_2 \rangle$

 $-\frac{m\omega(x_1^2+x_2^2)}{2}+n_1(\sqrt{m\omega}x_1)+n_2(\sqrt{m\omega}x_2)$

where Hy denotes the n'th Hermite

Pdy no wal.

Composite Hilbert Spaces made out of Hilbert spaces with finite dimension lets consider Hilbert space Spanned by tensor product of the Hilbert spaces Corresponding two spin-1/2 objects. One possible basis choice is 1118111, 1018 111, 1118 101, 1018 101 let's study the eigenstates of two different Hamiltonians that act on tuis Hilbert space,

(a) $H = Z_1 \otimes Z_2$. (b) $H = X_1 \otimes X_2 + Y_1 \otimes Y_2$. The Hilbert space is 2x2 = 4 -dimensional in both cases.

(a)
$$H = Z_1 \otimes Z_2$$

The four eigenstates are $10 \times 910 \times 10 \times 911 \times 910 \times 911 \times 91$

1, -1, -1, 1 respectively. (b) H = X, &x2 + Y, & Y2.

one volices that [Z10Z2, H] = 0. Therefore, let us decompose the Hilbert Space into direct sum of two

subspaces where the states in the first subspace sabisty 2,002/b> = +1 1 b) and the states in the

Second subspace satisfy X1022107 = -167 [Since (2,022)=101 = ±1 one the only two eigenvalues of $\times_1 \otimes \times_2$

The basis for the first subspace may be chosen as {10>000, 13>012} and that for the seeard substace as { 10 > 0 | 12 > , 12 > 0 10 > }. Note toot Z, QZ2 [C, 107 8107 +c2 117 8 13>] = +1 [(10) (0) +(2 11) (0)] irrespective of C1, C2. Similarly for the second subspace. Therefore, we only need to diagonalize the 2×2 matrices corresponding to each subspace separately. (i) Subspace 1: $(\times_1 \otimes \times_2 + Y_1 \otimes Y_2)$ (10) \otimes 10) = 1178/11 - 1278/17 = 0 (x1 8 x2 + 41 842) (17 817) $0 = (0) \otimes (0) - (0) \otimes (0) = 0$

Therefore the Hamiltonian within this subspire is just a 2x2 matrix with all zero entries: And the eigentrebors may be chosen as any two independent rectors within this subspace eg. 1070107 and 1270117. or even 1078107 ± 1278127. (ii) supspace 2: (X1 8 x2 + 41 842) 107 8137 $= 117 \otimes 107 + 117 \otimes 107 = 2 117 \otimes 107.$ (x, 0 x2 + 4, 072) 117 8107 = 2107 \(117 Therefore, the restriction of 4 to twis subspace is [0 2]. We already

Of this matrix (Since its just like the Paul matrix X). Therefore, eigenrechors and eigenrobens within the Second Subspace: eigenvalue = +2eigenvector = $\frac{1}{\sqrt{2}}$ [10> \otimes 13> +13> \otimes 10>] eigenralue = -2essentetor = 1 [10> 11> -11> 10>]. Therefore the four eigenvalues of H are 0,0,±2 and the Corresponding eigenvectors are 1078107, 1178117, 1278107. entangled (EPR/Bell)

know the eigenvalues and eigenvalues

Explicit form of
$$H$$
:

 $X_1 \otimes X_2 + Y_1 \otimes Y_2$
 $|0| > |0|$

GHZ Experiment Counider the state 1[10> @ 10> @ 10>-13>81378137] that lives in the tellbert space of three spin-112 d.o.f. and imagine a schano where three space- like Separated observers A.B.C have access to the first, second and third spin-12 respectively: Third spin. I second spin first spin **** When one of the observers measure X and the other two measure y, then the product of the three measurements is always +1 because 147 is an eisenstate of X142 43 , 41 ×243, and Y142 ×3

with eigenvalue +1. lets denote measurement outromes by lower-care letters, two, N, 4243 = 1 etc. If one now uses the classical intuition that the products of several constants of motion is also a constant of motion, then one conciledes that 11 12 13 = 11 42 43 · 41 12 43 · 81 82 73 = $\sqrt{1}$ \times $\sqrt{1}$ \times $\sqrt{1}$ \times $\sqrt{1}$ Therefore, classical intuition implies that if all three observers (A,B,C) choose to measure their spirks X operator, then the product of measurement outcomes will be +1. However, $x_1 \otimes x_2 \otimes x_3 | \psi \rangle = - | \psi \rangle$ =) the classical intuition is incompatible with QM.