Heisenbergs Equation of Motion [Gottfried 2.4] TDSE (time-dependent Schrodingers eq.):

 $\frac{1}{4} \frac{d \psi}{d b} = \frac{1}{4b}$

Assuming \hat{H} is independent of time, the solution is $|\psi(t)\rangle = e^{-i\hat{H}t}|\psi(t=0)\rangle$.

This implies that the expectation value of an operator \hat{O} at time t is:

 $\langle \hat{0} \rangle \langle \hat{H} \rangle = \langle \hat{H} \rangle \langle \hat{0} \rangle$ $= \langle \varphi(t=0) | \underbrace{e^{i\hat{H}t}}_{0} \underbrace{e^{-i\hat{H}t}}_{0} | \varphi(t=0) \rangle$

 $= \langle \psi(t=0) \rangle \langle \psi(t) \rangle \psi(t=0)$

The operator $\delta(t) = e^{i\hat{H}t} \delta e^{i\hat{R}t}$ is called "Heisenberg evolved operator", the

same way as 14(+)? is called "Schrodinger-endred state",

Therefore, there are two ways to calculate $\langle \hat{O} \rangle \langle 1 \rangle$; grisu (ct) pl of (co=t) pl sylord (D) (tt) of 1(tt) pr shall be 320T where O's time-independent. This is called "schrodinger's picture". (b) Alternatively, don't evolve 147, and instead evolve the operator \hat{O} as $\hat{O}(t) = e^{iHt} \hat{O} = e^{iHt}$ and calculate f = 0) | 0 (t) | \phi(t'=0) >. This is called "Heisenberg picture". Of course, both methods give the same answer for any physical property (e.g. (67(t)), but depending on the context, one method might be more convenient over other.

The Heisenberg evolution of operator can also be written in a differential form: 4 û (t) = iĤ e iĤt ôco) é teint ocole -int $= i\hat{H} \hat{O}(t) - i\hat{O}(t)\hat{H}$ = 1 [A, ôct] This is called theisenberg's eggn of wother (analog of TDSF for operators). Since A commutea with itself >> $\hat{H}(t) = \hat{H}(t=0)$. Therefore, in the above

with Hill.
Let's consider a few examples...

equation one way replace H (= A(t=0))

(1) A non-relativistic particle in a potential
$$V(\hat{x}): \hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}).$$

$$\frac{d\hat{\chi}(t)}{dt} = -i \left[\hat{\chi}(t), \frac{\hat{p}^2(t)}{2m} + V(\hat{\chi}(t)) \right]$$
Importantly, the commutation relations are

unchanged under the Heisenberg evolution.

$$[X(t), p(t)]$$

$$= e^{iHt} \times (0) = e^{iHt} = e^{iHt}$$

$$= e^{iHt} \times (0) = e^{iHt}$$

$$\frac{dx(t)}{dt} = -i \left[\frac{x(t)}{x(t)}, \frac{p^2}{2m} \right] - i \left[\frac{x(t)}{x(t)}, \frac{y(x(t))}{2m} \right]$$

$$= \frac{p(t)}{m} \quad \text{(note that this resembles)}$$

$$= \frac{w_{\text{mass}}}{m} \quad \text{(relocity} = \frac{w_{\text{mass}}}{m}$$

$$= \frac{dp(t)}{dt} = -i \left[\frac{p(t)}{x(t)}, \frac{p(t)}{2m} \right] - i \left[\frac{p(t)}{x(t)}, \frac{y(x(t))}{2m} \right]$$

Therefore:

Similarly,

 $= -i -i \frac{\partial \hat{y}(\psi)}{\partial y(\psi)} = -\frac{\partial \hat{y}(\psi)}{\partial y(\psi)}$ Combining the two equations. $m \frac{d^2 \hat{\chi}}{dt^2} = \frac{d\hat{\rho}(t)}{d\hat{r}} = -\frac{\partial \hat{\chi}(\hat{\chi}(t))}{\partial \hat{\chi}(t)}$

which resembles Newton's equation of which since $-\frac{3\dot{v}}{3r}$ ~ force.

However, this parallel with Newton's laws is somewhat misleading, because classical equalities of motion would be $\frac{Md^2\chi(t)}{dt^2} = -\frac{3\chi(\chi(t))}{3\chi(t)}$

where XH) is a <u>number</u> and not on operator. To make correspondence

with the benbers's equation, the most natural meaning of x(t) would be $x(t) = \langle \gamma(0) | \hat{\chi}(t) | \gamma(0) \rangle$ i.e. the

expectation value of it operator at time to. Therefore lets consider taking

expectation value writ. (40) in $\frac{d^2 \hat{\chi}}{dt^2} = -\frac{3 \hat{\chi}(\hat{\chi}(t))}{3 \hat{\chi}(t)}$

The LHS is
$$\langle \psi(0) \mid m \frac{d^2 \hat{\chi}(t)}{dt^2} \mid \psi(0) \rangle$$

$$= m \frac{d^2 \hat{\chi}(t)}{dt^2} \text{ where } \hat{\chi}(t) = \langle \psi(0) \mid \hat{\chi}(t) \mid \psi(0) \rangle$$
The RHS is $\langle \psi(0) \mid -\frac{3}{3}\hat{\chi}(t) \mid \psi(0) \rangle$.

This does not equal $-\frac{3\sqrt{(xut)}}{3xut}$ where Mt) = <p(0)/ x(t)/p(0)/ generically.

Only when the force operator"
$$-\frac{3V(\hat{x})}{3\hat{x}}$$
is linear in \hat{x} (e.g. simple harmonic

oscillator), $\langle \psi(0) | -\frac{3\sqrt{(\chi(\tau))}}{2\sqrt{(\chi(\tau))}} \rangle = -\frac{9\lambda(\chi(\tau))}{2\lambda(\chi(\tau))}$ the deviation from Newton's To see

lete Taylor expand - 2v(x(t)) laws, around $\hat{\chi}(t) = \chi(t) = \chi(t)$

= <\p(0)/x(t)/\p(0)> 1.

$$=\frac{F(x(t))}{2x(t)} + \frac{\partial F(x(t))}{\partial x(t)} +$$

 $\hat{\mathcal{L}}(\hat{\mathcal{L}}(\mathcal{L})) = \frac{-3\hat{\mathcal{L}}(\mathcal{L}(\mathcal{L}))}{3\hat{\mathcal{L}}(\mathcal{L})}$

 $\langle \psi(0) \mid m \frac{d^2 \hat{\chi}(t)}{|\psi(0)\rangle} = \langle \psi(0) \mid \hat{F}(\hat{\chi}(t)) \mid \psi(0)\rangle$

and using the above Taylor exhauston

for
$$F(\hat{\chi}(t)) \Rightarrow$$
 $F(\chi(t)) = \sum_{n=1}^{\infty} (2nn) (2nn)$

 $m_{3} = \langle \psi(0) | E(x(+)) | \lambda(0) \rangle$ $\frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{(2470)}{\lambda \psi} (3442) + \frac{1}{2} \frac{\partial^{2} f(\lambda \psi)}{\partial \lambda \psi} \right] \left[\frac{\partial^$

of Heisenbers eq.

 $= F(x(t)) + \frac{1}{2} \frac{\partial^2 F(x(t))}{\partial x(t)^2} \langle xy(0)(\hat{x}(t) - x(t)) | xy(0) \rangle$ Therefore if $\frac{\partial^2 F(x)}{\partial x^2}$ is not zero, one obtains corrections to Newton's laws

of motion.
Let's study the case of SHO (simple harmonic oscillator) explicitly, based

on above discussion, here we expect that expectation value of operators satisfy Wewton's laws.

$$\Rightarrow \frac{\partial \hat{\alpha}(t)}{\partial t} = i \left[c^{\dagger}(t) \alpha(t) + \frac{1}{2}, \alpha(t) \right]$$

$$= i \alpha(t)$$

$$\Rightarrow \hat{\alpha}(t) = e^{-it} \hat{\alpha}(t=0)$$
Using $\hat{\alpha}(t) = [\hat{\alpha}(t) + i \hat{\beta}(t)] / \sqrt{2}$,

 $H = \frac{\hat{p}^2}{2} + \frac{\hat{x}^2}{2} = a^{\dagger}a + \frac{1}{2}$ (m=10=1)

$$\Rightarrow \hat{\chi}(t) = \hat{\chi}(0) \cos(t) + \hat{p}(0) \sin(t)$$

$$\hat{p}(t) = \hat{p}(0) \cos(t) - \hat{\chi}(0) \sin(t)$$
Putting back units of M, W :

$$\hat{\chi}(t) = \hat{\chi}(0) \cos(\omega t) + \frac{\hat{\gamma}(0)}{m\omega} \sin(\omega t)$$

$$\hat{\gamma}(t) = \hat{\gamma}(0) \cos(\omega t) - m\omega \hat{\chi}(0) \sin(\omega t).$$

Taking expectation value work. $|\psi(0)\rangle \Rightarrow \chi(t) = \langle \psi(0)| \hat{\chi}(t)| \psi(0)\rangle$

$$= \chi(0) \cos(t) + \frac{\gamma(0)}{2} \sin(t)$$

$$= \chi(0) \cos(t) + \frac{\gamma(0)}{2} \sin(t)$$

p(t) = p(0) cos (not) - m w x(0) sin (not)

Therefore, expectation values satisfy

Newton's lower as expected (since Force = $-\frac{\partial V(\hat{x})}{\partial \hat{x}} = -\hat{x}$ is linear in \hat{x}).

Operator 32 However, quantum mechanics still

matters. For example, $\Sigma \hat{\chi}(t)$, $\hat{\chi}(0)$] ± 0 .

In particular, using above result, $\Gamma \hat{\chi}(t) \hat{\chi}(0) = \Gamma \hat{\chi}(0)$, $\hat{\chi}(0)$ sinuot) = t sinuot

 $[\hat{\chi}(t), \hat{\chi}(0)] = \frac{[\hat{\rho}(0), \hat{\chi}(0)] \sin(\omega t)}{m\omega} = \frac{1}{i} \sin(\omega t)$ where we have put back to show that this

is a quantum effect.