I Mustrative Examples

Three Hamiltonians that are useful for

illustrations:

- Particle in a box. - Simple hormonic oscillator.

- Two-state system.

1. Partill in a box:

 $\hat{H} = \frac{\hat{p}^2}{\hat{p}^2} + v(\hat{x})$ where $v(\hat{x}) = 0$ for

reco, L) and of otherwise.

The eigenvector and Risenvalues of H

one siron by: $\langle x | E_n \rangle = \sqrt{2} \sin \left(\frac{N x x}{N} \right)$

 $E_{N} = \frac{\hbar^{2} n^{2} \pi^{2}}{2mL^{2}} = \frac{n^{2} \pi^{2}}{2mL^{2}}$ 2m L2 $(\pi = 1 \text{ notation})$ $N=1,2,\ldots,\infty$

The Hilbert space Il is infinite dimensional One choice of basis for H is Int with XE(0,L). Another possible basis 13 16n7 with N=1,2,--8. There exist infinitely many other possibilities for the basis? Example: A particle in a box is in its ground state. A measurement is made

of its position. What is the probability ent ul soil emortuo ent tant window $x \in \Sigma_0, \frac{L}{3}$. L13 Intuitively, probability = [KXIE17 dx

but let's re-den're it more formally. Projection P onto the measurement $\frac{L}{3}$ $\frac{L}{3}$ $\frac{L}{3}$ $\frac{L}{3}$

Probability =
$$\langle E_1 | D | E_1 \rangle$$

= $\langle E_1 | D | E_1 \rangle$
 $= \langle E_1 | D | E_1 \rangle$

$$= \int_{\Gamma_{3}}^{\Gamma_{3}} \langle E_{1} | \chi \rangle \langle \chi | E_{1} \rangle dx$$

$$= \int_{\Gamma_{3}}^{\Gamma_{3}} \langle E_{1} | \chi \rangle \langle \chi | E_{1} \rangle dx.$$

=
$$\int_0^2 \frac{2}{L} \sin^2(\frac{\pi x}{L}) dx$$

Example: A particle is in a two-dimensional

what is the probability that the outcome is
$$\frac{5}{2}\frac{7^2}{mL^2}$$
?

2. Simple harmonic oscillator:

Define $a = \frac{\chi + ip}{\sqrt{2}}$, $a^{+} = \frac{\chi - ip}{\sqrt{2}}$.

 \Rightarrow $H = a^{\dagger}a + \frac{1}{2}$, with $\sum a_1 a^{\dagger} = 1$.

Importantly, at a is a possitive-definite

 $\langle \psi | a + \alpha | \psi \rangle > 0 \Rightarrow \text{eigenvalues}$

Of ata are non-negative. Our task

Operator, i.e., for any state 147,

is to find these eigenvalues.

$$H = \frac{g^2}{2m} + \frac{1}{2} m\omega^2 x^2$$

So that $H = \frac{p^2}{2} + \frac{n^2}{2}$.

PITM P.

het's rescale: x \(\text{mw}^2 \rightarrow x \)

rescale:
$$\chi \sqrt{m\omega^2} \rightarrow P/$$

(bottfried)

Let's consider one specific eigenvector of at a with eigenvalue in Ludwich is as yet undetermined), lets denote this eigenrecha as In>. $\Rightarrow a+a m = n m.$ Now consider aln>. We claim that this is also an eigenvector of ata. To see this: $ata a ln \rangle = (aat - 1) a ln \rangle$ $= a a + a \ln b - a \ln b$ $= \alpha n \ln \gamma - \alpha \ln \gamma = (n-1) \alpha \ln \gamma.$ => aln's is an eigenvector of ata with eigenvalue N-1. One can similarly show that at my is an eigenvelop of ata with eigenvalue n+1.

Thus, $\alpha \ln \gamma \propto \ln -1\gamma$, at $\ln \gamma \propto \ln +1\gamma$. Let's find the proportionality constants We chose the convention that all eigenrelos are unit norm i.e. $\langle N/N \rangle = 7 + N$ \Rightarrow if a(n) = c(n) \Rightarrow C = In upto an Irrelevant phase. $\Rightarrow \alpha \ln \gamma = \sqrt{n} \ln - 1 \gamma$ Similaren, at In> 2 Just 1417. Now, we use the constraint that at a is positive-delivate. It is is not an integer, then one will generate eigenvectors of at a with negative eigenvalues.

which is not allowed. On the obven hand, it we restrict in to be integers, them eigenrectors with negative eigenvalues are not generated.

On the allowed.

On the property of the property of the person of the allowed of the allowed of the allowed.

for example 0 (N = 0.47 = 50.4 1-0.67

Therefore, for consistency, we require $n \in n$ non-negative integers.

 $= (n+\frac{1}{2}) \ln \gamma$ $= (n+\frac{1}{2}) \ln \gamma$

 $N = 0, 1, 2, -\infty$

Let's find real-space wave-frs. of Sto. Ground state ware-fn. = <x1n=07. C / N = 0今 (x+ip) (n=0) = 0=> $\left(\chi + \frac{qx}{q}\right) |u=0\rangle = 0$ \Rightarrow $\chi < \chi \mid N = 0 \rightarrow \frac{d}{d\alpha} < \chi \mid N = 0 \rightarrow 0$ $\langle x | n = 0 \rangle \propto e^{-\chi^2/2}$ \Rightarrow Restoring physical units and normalizing $\langle x \mid n = 0 \rangle = \left(\frac{m\omega}{r} \right)^{1/4} e^{\frac{\chi^2 m\omega}{2}}$ Using In = (at) 107, one may construct real space wave-firs for any Into They turn out to be related to Kernike polynomials. See Coffied 4.2.

- Quantum systems with finite Hilbert space for portill in a box, & is infinite-dim.
(basis {1x} is infinite dimensional).

For simpler are problems with a finite-dim Il. Let's consider a few examples.

(a) Consider He spanned by two states that we denote by 107 and 117. An arbitrary State is given by C110> +c211>

where C1, C2 are complex has with 10,12+10,2=1. An arbitrary operator A is fully

specified by its actor on the basis

 $\langle 0| \ \langle 0| \hat{A} | 0 \rangle + \langle 1| \ \langle 0| \hat{A} | 1 \rangle = \langle 0| \hat{A}$ 121 (21A10) + (11 (11A11) = (11 A

Thus the matrix representation of
$$\hat{A}$$
 in this borns is:

$$\hat{A} = \left[\langle 0|\hat{A}|0\rangle \ \langle 0|\hat{A}|1\rangle \right]$$
Change of books:

There exist infinitely many possibilities for charsing bossis. For example, another possibility is $1+\rangle = \frac{10\rangle + 11\rangle}{12}$,

$$1-\rangle = \frac{10\rangle - 11\rangle}{12}$$
. Note that $\langle +1+\rangle$

$$= \langle -1-\rangle = 1$$
 and $\langle +1-\rangle = 0$.

As a matrix equation, one may write
$$\begin{bmatrix} 1+\rangle \\ 1-\rangle \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 1 \\ 1-1 \end{bmatrix} \begin{bmatrix} 10\rangle \end{bmatrix}$$

One votion that $U^{\dagger}U = 1$. This is a general property of watrix that implements a basis chanse, as it guarantees that the new borns is complete and orthorormal. For example if the original basis is {lir} and new burns is { | d > }, related wa 1dy = \(\mathbb{I} \) di lir, then $\langle \alpha | \beta \rangle = \sum_{ij} u_{\alpha i}^* \langle i | u_{\beta j} | j \rangle$ $= \mathcal{U}^*_{\alpha} \times \mathcal{V}_{\beta}$ $= \sum_{i} N_{\beta_{i}} (N_{+})^{i} = (NN_{+})^{\beta_{\alpha}}$ $= \sum_{i} N_{\beta_{i}} (N_{+})^{i} = (NN_{+})^{\beta_{\alpha}}$ The matrix representation of an operator À In the new-bands is given by:

$$\begin{aligned}
&\mathcal{A}_{AB} &= \langle \alpha | \hat{A} | \beta \rangle \\
&= \mathcal{A}_{Ai} \langle i | \hat{A} | i \rangle \mathcal{A}_{Bi} \\
&= (\mathcal{A}_{Ai} | \mathcal{A}_{Ai})_{Bi}
\end{aligned}$$

= (U A U[†]) Bx where A (without hat) denotes the matrix representation of A in the original barts lix.

longider, for example the operator with motrix representation [-1] in the

basis 10>, 12>. In the new basis

1+>, 1->, tub same operator will

now be represented as.

 $\mathcal{U} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ as written above.

U = I = I where

Calculations such as above can be

$$\begin{aligned}
\gamma \begin{bmatrix} 1 \\ 1 \end{bmatrix} &= \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \gamma \begin{bmatrix} 1 \\ -1 \end{bmatrix} &= -\begin{bmatrix} 1 \\ 1 \end{bmatrix}. \\
\gamma \begin{bmatrix} 1 \\ 1 \end{bmatrix} &= \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad Z \begin{bmatrix} 0 \\ 1 \end{bmatrix} &= -\begin{bmatrix} 0 \\ 1 \end{bmatrix}.
\end{aligned}$$

$$\mathbb{Z}\left[\begin{bmatrix}1\\0\end{bmatrix}=\begin{bmatrix}1\\1\end{bmatrix},\ \mathbb{Z}\left[0\right]=-\begin{bmatrix}0\\1\end{bmatrix}.$$

Lets return to the columbiation of UAU+ where $A = \begin{bmatrix} 1 & 1 \\ -1 \end{bmatrix} = Z$, $V = \frac{1}{42} \left[\frac{1}{1} - \frac{1}{1} \right]^{2} \frac{1}{42} (x + z)$ =) $UAU^{+} = \frac{1}{2}(x+z) Z(x+z)$ $= \frac{1}{2} \left[XZX + XZZ + ZZX + ZZZ \right]$ $=\frac{1}{2}\left[-2+\times+\times+2\right]$ $= \qquad \times = \begin{bmatrix} 0 & 1 \\ 1 & \lambda \end{bmatrix}.$ Thus, the operator A In the basis (0), 11) is [1-1]=2 and in the pass 1+>, 1-> is [0 1]=x. Note that the trace and determinant are unchanged after the bornis Charge.

Problem: Let's chose the bard's stated 10%,
$$117 \times 117 = -119$$
. 117 so that $2107 = 109$, $2117 = -119$. Consider the time-evolution of the state 107×109 the following unitary $1109 \times 109 \times 109$

 $\begin{aligned}
&V = \frac{1}{2}Z(x+2)(x-1) = \frac{1}{2}[1+2x][x-1] \\
&= \frac{1}{2}[x-1] + \frac{1}{2}[1-i] + i \\
&= \frac{1}{2}[x-1] + \frac{1}{2}[1-i] + i \\
&= \frac{1}{2}[x-1] + i + i \\
&= \frac{1}{4}[x-1] + i + i \\
&= \frac{1}{4}[x-1] + i$

 $=\frac{1}{4}$ $|1-i|^2 \times 2 = 1$.