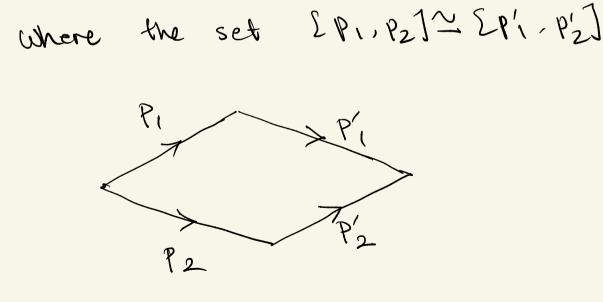
London's effective every functional for a fermi liquid.
One important consequence of above

discussion about scattering near the fermi surface is that the scattering is always in the forward direction that is P_1 , $P_2 \rightarrow P_1$, P_2



Therefore to the leading approximation. tre interaction between q.p.s looks $\mathcal{H}^{\mathcal{I}} \sim$ ct k, ct k2 Ck, Ck2 Nk, Nk2. Following such considerations, consider a fermi siquid with a siven distribution of quasiparticles, which we label as np. The excitations of this system are Jubeled by SNp, defined as 8u ba = u ba - u bac 1=0). It's important to note that NPCT=0) is just a reference distribution,

and only Enpo is physically meaningful Enp can be defined both for equilibrium settings, as well as out-of-equilibrium problems. Let us first courider the system at equibrium at T = 0. To determine upo of T +0, we will minimize the free energy of the system F(T) = E-TS w.r.t. 8N. To do so, we need on expression for E and an expression for S. Since grasiparticles are fermions, with eigenvalues for the number operator hpo = 0,1, the expression for entropy is simply given by the Shannon entropy of the distribution Enpol

 $S = -\sum_{pq} [n_{pq} \log n_{pq} + (1-n_{pq}) \log (1-n_{pq})]$

The expression for energy E (Enpos) is more interesting and is the essence of

Landon Fermi liquid theory. If Q.p.'s were non-interacting, then one

expects that $E = \sum_{p\sigma} (\sum_{p\sigma} - \mu) Np\sigma$ where $\sum_{p\sigma} = \frac{p^2}{2m}$ where m is the

electron mans. However, since 9.19.19
do interact, perhaps one can simply

replace m > m * the effective mass.
This, however, would be incorrect.

THE low T, SN pt is non-zero only in a small window 8 (= T if the system is at equilibrium).

Therefore the expression [(Epr-4)8Npo is order & Since Epr-µ is of order 8 in this small window. For Example, recall the calculation for specific heat C at TKEF, where for non-interacting es &~ T/EF, leading $b \quad \delta E = E(T) - E(T=0) \sim T^2 / (E_F = C) \sim \frac{T}{E_F}.$ To be consistent, we need to keep all terms of order 82. Since 9.8.5 interact. One can write down the following additional contribution to the Everyy: \frac{7}{7} \frac{50}{50}, \quad \

where for are some numbers. This 13 also of order 82.

for can be trought at or tre interaction energy between quasiponticle Excitations with momenta p and p'. [Note that, some books | papers put a factor of I in front of every Spp. eg. 1 202 pp. sp. sp. fpp, this changes the ornal scale and divension of for and is simply a matter of Contenton. One only needs to make Sure that the energy E is extensive, whatever the convention I. Combining everything, we now have an expression for F upto 0(82) where 8 doubles the density of

quasiparticles Cie use one doing a low-dousity expansion): F = E - TS == \frac{ba}{\infty} \frac{ba}{\infty} \frac{ba}{\infty} \frac{\lambda}{\infty} \frac{ba}{\infty} \frac{aa}{\infty} \frac{aa}{\infty} \frac{ba}{\infty} \frac{ba}{\infty} \frac{ba}{\infty} \frac{aa}{\infty} \frac T(29N-1) Sort (1-NPL) Jose Lube 1 (1-NDL) Jose Lube) where $\leq p_0 = \frac{p^2}{2m^*}$ ($m^* = \text{effective mass}$) 8Npa = Npa(T) - Npa(T=0)

and Npr CT) is as yet undetermined.

To determine, NpTCT), we now

minimise F w.r.t. Npo.

 $\frac{8F}{8np\sigma} = \frac{8E}{8np\sigma} - 7 \frac{8S}{8np\sigma} = 0$

One can call SE as the 8 npo Energy of the gravi porticle with moventum, spin = p, o, in analogy with non-interacting electrons where it Simply equals $\frac{P^2}{2m}$. Here, we find Eba = Eoba + 52, 262, 6,2, 806,6, i.e. the eversy of a graniparticle depends on the fuel distribution E8N3. i.e. it depends on the presence! absence of all excitations. Similarly, one type $\frac{8Nba}{8z} = -\log\left(\frac{1-Nba}{Vba}\right).$ In contrast to SE, twis oney depends on NPT and not full ESn3.

Equating $\frac{8E}{Snpr} = \frac{8E}{Snpr} - \frac{7}{8} \frac{8S}{Snpr} = 0$ $u^{ba} = \frac{e_{BC \in ba-h} + 1}{7}$ => where \$12 = \$pt + b.2, b.2, 8Nb.2, $= \frac{5m_*}{b_5} + \sum_{i} \frac{2m_i}{b_4} \left[N_{b_4}(L) - N_{b_4}(L=0) \right]$ Unlike the case of non-interacting 62 mper N62 = 7 (5000-h) + 7 here both sides of the equation depend on NpT (T). Therefore, as such, it is a complicated integral equation. Further nure. It is also temperature dependent as usual.

The key to make progress would he to utilize the fact that at T< µ(≈EF), Sn is small, and therefore we can linearize the above integral equation. We also note that at T=0, $\delta N = 0 \Rightarrow N^{ba}(L=0) = \Theta(E^{E} - \varepsilon_{0}^{ba})$ Where EF = p CT=0) B the fermi enersy, and O is the treamside the Assuming rotational symmetry, the ferri energy remains unchanged compared to the non-interacting es due to Luttinger treaseur.

Linearized equation for $N_{p}CT$:

At temperatures $T \ll \mu$, one may linearize the above equation for $N_{p}CT$: $N_{p}CT$ = $\frac{1}{e^{\beta(\epsilon^{0}p_{p}-\mu)}+1} + \frac{3n_{p}Cx}{3x} |\sum_{p} \beta \delta n_{p}e^{2p_{p}}$ $e^{\beta(\epsilon^{0}p_{p}-\mu)}+1 + \frac{3n_{p}Cx}{3x} |\sum_{p} \beta \delta n_{p}e^{2p_{p}}$

where $NF(x) = \frac{1}{e^x + 1}$ is the Fermi f^n .

Since T<\mu, nF(r) is almost a Delta for with width T/TF. Therefore, to the

to both undth 1/TE. Theretore, to the leading order, one may assume that fpp, depends only on the unit rectors \hat{h} , \hat{h}' and not the magnitudes P, P'.

P, P' and not the magnitudes P. P'.
Further, by rotational symmetry,

Snpo oney depends on the magnitude p and not p. Therefore the sum $\sum_{p' \in P'} 8np' e_1 \cdot 5pp'$ $\approx 3dp' 8np' e_1 \cdot 3dp' \cdot 5pp' \cdot (2n')$

where of particles is

Conserved, Sdp! 8npin = 0.

Therefore, to the leading order,

the distribution npr is infact just
given by the standard Fermi function

given by the standard Ferni for $\frac{1}{e^{\beta(\epsilon)p_{\overline{p}}-\mu)}+1}$

where $\mathcal{E}_{p\sigma}^{0} = \frac{P^{2}}{2m^{*}}$.