
Low-temperature Thermodynamics of

a Fermi liquid .

(a) Specific heat :

To calculate the specific heat . we simply
hole that the leading contribution

comes from stales close to the

Fermi surface with energy /Epp /IT .

As just discussed , at this order ,

NPCT ) ⇐ ep.es#m,-+-y , and therefore

one may carry out the
standard

Sommerfeld expansion , leading to

tn=÷T÷



where n =

NJ and Ef = Pff
⇒

N And PF are related as usual :

N = ppb
3*-2

.

Not again that pp

its unchanged compared to non-interacting
e-s Cluttiuyer theorems , and the only
effect of interactions is that the

electron mass is replaced by the

effective mass m* . Using above relations

one may also write .

cYN)_ = a
T n' 13 m*

where a is a numerical constant .

Therefore, the specific heat is



enhanced by a factor of
m*

m-

compared to the non-interacting case .

One may now calculate other quantities

such as entropy and the temperature

dependence of the chemical potential .

Entropy : T §⇒ = C = aTn"3m*
T

where as = scTgv .

⇒ on = an"3m*Ttf£I÷%
When there are no particles i. e. when

when N=0 ,
we expect that h=o .

Fortunes
, as CT=o) = 0 from

the third law of thermodynamics .

⇒ 5- CNN) =o ⇒ G=§= an"3m*F



Chemical potential :

One may use the Maxwell relation .

4g =
-

¥ = - Hsm
Tn

=- aµzñ%m*Tt n
"
't §÷n*]

⇒ pectin) = µCT=o) -a¥[m*n-213
f- EF) + n'132m¥

In ]

We note that in addition to

the standard contribution proportional

to -1-2 N→3m*
,
here one gets

an additional term proportional to

§* .

See Baym and Petrik for

an alternative derivation of Cib , µ .



CompressibilityalT_

Compressibility K is given by K = -÷p-

=¥§µn_ where n is the density .

Using the integral
equation for Npr ,

Srnpr = 2np= [ 8 Epo
- 8µL

2 Ept

Note that 8Epr = 8If ppl ( Np 're
- Moper)

person

depends implicitly on Sm due to the

variation of Mpir Wir -t - µ .

Summing over all B , T

8N = Esnpr = E2n_pr [F. try; 8hpm]
pr PO JE por

- E
Pr }n÷
,

SM



As usual , line factor of 2h restricts
Je

both P and P
' to lie at the

Fermi surface [ Ffg ~ - SCE-Ef)]

Let's consider the two terms on the

right hand
side separately .

- E An
p,# 8M = SDE UCE) see-Ef)

Epr 8M
= WCEF) 8 µ

where WCE) denotes density of states

(we use w
'instead of N or n to

make distinction with particle number

or quasi particle occupation ) .

The second term is -22ns [F. try; 8hpm]
por JE por

I -I f- ppl Snp 's /
Ppp / ppl

ore

C- Fermi surface



The sum I f- ppl can be simp lied

poor '

if fppi is expanded in angular
TT '

momentum modes in D= 2 , or

Using Legendre Polynomials in d=3 .

First , one utilizes the spin-
rotational

symmetry to write

f- ppl = fpsp , + f- pap , or '
or '

where f- S denotes the spin- symmetric

and fa the spin anti - symmetric

component . fs and 5-a may

then further be expanded in

terms of angle 0 between band p!

D= 3 : 5- §p%= %"
"

Peloso)
I=o
I



£-2 : 8%9=5-8:/aeieo
D= -✗

Returning to the sun ¥ £11 , •

only the 1=0 symmetric part

survives Epg 5- ppl = Vf ?e=o
rt '

⇒ -I fpp , Snpiri =-Vf§=o 8N
1%, or '

u CEF)
C- f. s .

Where 8M = E Sn por
por

combining everything ,
8N = resp) [ 8M

- Vf§=o8N]

⇒ 8N =

Stewards+ Fse -_ 0

where F§=o = Vf&=o UCEF)



⇒ compressibility K=n¥•÷
= _gWCEF#v_

.

n2 It Fse=o

Compared to the non-interacting fermions

Ove therefore obtains an additional

factor of Hit,=§⇒ .

Also, recall that

the density of states WCEF) is

also enhanced by a factor of m
compared to the non-interacting és .



(e) spinsuscebti-bie.ly:

The spin - susceptibility is defined as ✗

= Dm where m is magnetization

-2h

and he is the external magnetic

field . The derivation for
X is

almost identical to
that for K .

Epr in the presence of magnetic
field

his given by
Spr = Pfm - he Tnprtfppisnprsnp 'd

The variation of magnetization is

8m=§gT8npo = E2npr£§Fg,§g;
8hpm]

Pr Jeep on

-

%%÷F



Again p.pl C- f- S . because of the

factor §nz .
The siren Fg 0 fpp 'fore

= far
I=o

VV A /

⇒ 8m = - weep)Vf%=o 8m

+ 8h WCEF)

⇒ s÷w=÷÷÷
Where FEe=o = Vf%=oUEEfD



Effective mass m
*
:

-

Remarkably one may deduce a
relation between

M* and Landau parameter F§=1 .
ifthem

system is Galilean invariant leg . a

single - component tee-3 , but not
a

mixture of He-3 and He-47 .

Lets devote the Hamiltonian in the

Iab frame as H
,
and consider a

frame that is moving at velocity u→

w.r.tn the lab frame . The Hamiltonian

H
'
and momentum →P ' in this frame are

→ →

H '
= MA - P.ee#lzMu2 , B ' =P- Mu→

where P→ is the total momentum in

the lab frame , and M is the total

mass . which is frame invariant (because
the sustain is Galilean invariant) .



From now on
, we

will call the frame

moving want . lab as the
6
primed frame?

Consider adding a single fermion with

momentum p→ Ho tae system. As soon as it

is added
,
it will get dressed by other

fermions in the system , and become a

quasiparticle with momentum pp→ and

energy Eps = p→2
In#

+ # fpp ' sup ,

(we ignore the spin index in this discussion

as it doesn't matter) . The total mass

of the system changes by me
, the mash

of the bare fermion Ceg . mass of a single

He-3 atom)
.

⇒ BE (change in energy = Ep
in the lab frame)

AP ( change in momentum = p→
in the lab frame)

DM = m .



Using toe above mentioned relation between

relation between the two frames Cie . the

usual Galilean transformation law) :

BE ' Change in energy
in the primed frame)

= BE -8 .
AT t-LDMUZ-eps-B.us TIME

BP→ ' Change in momentum

in the primed frame)

= AP - (DM)Jo = p→ - mu→

Therefore ,
in the primed frame , the

energy-momentum dispersion for a g.p . is

E'p→_mu→ = Ep→_p→.u→ + Iz ma
'

or , equivalently ,

Ép→ = EPtmus-P.us - Imu?



Let's expand the R-H-s.to Ocu) :

E'p→ I Ep→ + 2Ep→
•
mu→ - p→•u→

Fps

In the lab frame , there are no

excitations , ⇒
'

Snp =o ⇒ Ep→=p÷m*
⇒ E'p→ As Ep→ +mmp→_*•u -B. u→

=

ep→t(mm*-1)p→Ñ
On the other hand , in the primed frame,

the distribution nips is a filled
Fermi sea centered at p→o= - mu→ .
primed frame Therefore , in tub
↳ Tirane

frame . there are

£-mu→ excitations ashown
• ✗• Into figure

. → ↳ Hole - like

particle excitations
on the left .

-dine excitations .



The
energy cost of these excitations

can be calculated using Landau's ansatzi

Epl = Ep + ¥, fppi 8 npl

Snp /⇒ Np / + mu - Mps
=

§÷§÷p
'
.
mu→=2n_mp%aI

28ps Mit

⇒ E'
p
= Ep 1- Ep, L÷m→¥*oU→fPP '

As usual , the factor of 2- restricts
the sum to the fermi surface .

Since

→p ' is a vector ( i - e - angular momentum

= 1) , only f£⇒ will contribute .

To find the exact precentor , we use

fdlcoso) f ?e=iPe⇒EoslO- O 'D coscoe )

= Sdx f-£-1 eosco) x2 Cn=wso)
⇐ § 5-sea Costa



⇒ Ef, = Ep - V f£=1WCEf)p→•U→M
3- m-*

= Ep - FI-1 P→ÑJ*3-

where F§= , = V 5-8--1 LKEF)

comparing with the alternate

expression for Esp derived above,

Ñ* - I = - FEI m
3 m_*

M⇒
m*-

= 1-
It F§

⇒ m÷ = It F§


