Metal-Metal Junction Vs SC-SC Junction (Josephson Effect)

Metal-Metal Tunnel Junction:

The total Hamiltonian, including the tunnelly is $H = \sum_{k} (\sum_{k} e^{-\mu} e^{k}) c^{\dagger}_{k} a c_{k} a$

$$+ \sum_{k} (\xi_{k} - \mu_{r}) c^{\dagger}_{kr} c_{kr}
+ \sum_{k} (c^{\dagger}_{ka} c_{k'r} T_{kk'} + h.c.) \zeta = H - K_{kr}$$

The current operator may be obtained by its definition and using Heisenberge EOM:

$$\hat{J} = -e \frac{d\hat{N}_a}{dt} \text{ where } \hat{N}_a = \sum_{k} c^{\dagger}_{ka} c_{ka}$$

To the first order in T, the ground state is

$$14 \rangle = 140 \rangle + \sum_{m>0} \frac{\langle \psi_m | H^{\perp} | \psi_0 \rangle}{\varepsilon^{\rho} - \varepsilon^{m} + i s}$$

$$\frac{1}{\sqrt{2}} \langle \psi_1 \rangle + \sum_{m>0} \frac{\langle \psi_m | H^{\perp} | \psi_0 \rangle}{\langle \psi_m | H^{\perp} | \psi_0 \rangle} | \psi_m \rangle$$

=) <2>> ≈ ⟨φι ζ ιψ⟩ $= \sum_{m>0} \left[\frac{\langle \psi_m | H_{\tau} | \psi_o \rangle \langle \psi_o | \hat{J} | \psi_m \rangle}{\varepsilon_o - \varepsilon_m + i s} \right]$

After plugging in the expression for J, HT,

the oney terms that survive are:

(J) = e = |Tkk/|

[Kylctka Ck/rlym] - | < \pm | ctka ck/rlym|

× $\left[\frac{1}{E_{o}-E_{m}+i8}-\frac{1}{E_{o}-E_{m}-i8}\right]$ The principalt part cancels and one obtains the fermi Golden rule:

Let's evaluate the matrix elements under $|\langle \psi_0 | C^{\dagger} | ka C k | r | | \psi_0 \rangle|^2 = N ka (1 - N ka)$ $|\langle \psi_m | C^{\dagger} | ka C k | r | | \psi_0 \rangle|^2 = N k r (1 - N ka)$

=) (7) = 2xe \(\frac{2}{kk}\) | \(\frac{2}{k} \cdot \frac{2}{k}\) = \(\frac{2}{k} \cdot \frac{2}{k}\) | \(\frac{2}{k} \cdot \frac{2}{k}\)

Converting sum over le la integral over energy: (J) = 2 Te V, V2 | TEX/2 JEK JEKI [NE (EK)-NE(EKHEN] M(ER) M(ER) ~ 2 Te VIV2 eV ITERI2 NCEF) where NCEF) B the doubity of states of the fermi level, and we have replaced There's by it's average value.

=) the conductance for turnely between the two wetals is $G = 2\pi e^2 |T|^2 N(E_F)$.

For spinful case one would simply gets a factor of two on the RHS.

SC-SC Tunnel Junction & Josephson effect bets first consider SC-SC tunnel junction phenomenologically. 12=1e19 Sc, Insulator. Sc2 The two superconductors have a phose difference of θ between their order parameters =) expect a current evan when no voltage applied (J~ 70) At enersy $\ll \Delta$, the effective Hilbert country of cooper pairs: 1m> = 1N (-m, NR+m> Where INL, NR> 13 some reference state

with NL, NR Number of cooper pours on the left and 1914 and 1m) is the state where m number of cooper pairs have tunneled from left to n'ght, In the absence of tunneling, the states Im> are all degenerate and essentially eigenstates of the tramiltonian. Due to tunneling of cooper poirs trey will mix $H_{T} = -7 \sum_{m} [m\rangle \langle m+1 + h\cdot c.]$ $= -7 \leq m(\phi)(\phi)$ where $|\varphi\rangle = \sum_{m} e^{im\varphi} |m\rangle$ Since m ~ N_ - NR Q~ Q_-OR where OrOR One the phase of the order-parameter on deft and right

A chemical potential difference couples NL-NR 00 2e (N/-NR). The total Hamiltonian in the presence of Voltage B ? H=-3 cos(ϕ) - 2eV \hat{N} where $\hat{n} = \sum_{m} m / m / (s)$ conjugate to $\hat{\phi}$: $[\hat{\phi}, \hat{\eta}] = -i$.

Recall our earlier discussion of representing a boson $b = \sqrt{n} e^{i\varphi}$.

Here $b \sim c \uparrow c \uparrow \downarrow$.

Let's consider consequences of tuis

Hamiltonian.

 $\frac{\partial \hat{n}}{\partial t} = i \Sigma H, \hat{n} I$ $= J \sin(\hat{a})$

$$\frac{\partial \hat{\varphi}}{\partial t} = i \Sigma H, \hat{\varphi} \hat{J}$$

$$= 2eV$$

=) Q(t) = 2eVt + Qo

=) current = $\left\langle \frac{\partial n}{\partial t} \right\rangle = 7 \sin (\Phi_0 + 2eVt)$ where Φ_0 is the phase difference between the deft and right order parameters in

the dettand vision of any voltage difference the absence of any voltage difference.

DC voltage Icada to AC current!

This is very much like Block oscillation of es in the presence of a uniform, static electric field. H=-ts cosce)ct & Ck.

 $\frac{dk}{dt} = -eE$ $V(t) = \frac{\partial ECE}{\partial k} = tsinCR$ $\frac{\partial ECE}{\partial k} = tsin(eEt)$

BCS derivation of Josephson convent: We need to derive an effective Hamiltonian for cooper-pair tunneling.

Heet = Ho + \(\in b^u \) \((-b^u) \) \(b^u \) HO-EN V = (ct bot Ck in RTER! + h.c.)

We are interested in the term ~ ct cpcpthc.

< BOSI TERI C+LRO CREIT TPPICLPTICRPICI 1BCS>

DEREI + DEPPI

DE = every of the state CTE CRRI 18CS> 18CS>R

Conductance
$$G = 2\pi e^2 \overline{171^2} NCE_F)$$
.

$$E_2 \sim e_{\overline{\Delta}}$$