and therefore, in the presence of an electromagnetic field,

$$F_S = \frac{B^2}{8\pi} + \int d4x \left[-\ln \ln \ln^2 + \mu \ln 4 \right] + \left[(i\nabla - 2e\Lambda)^2 \right]^2 \int dx$$
where $\vec{B} = \vec{R} \times \vec{R}$.

Deep in the ordered phase,
$$|2p|^2 = \frac{|m|}{2u}$$
.
Let's rescale, $2p \Rightarrow \frac{2p}{\sqrt{\frac{|m|}{2u}}}$, so that

Let's rescale, $2p \rightarrow \frac{2p}{\sqrt{\frac{1r_1}{2V}}}$, so that

Let's rescale,
$$2P \rightarrow \frac{2P}{\sqrt{\frac{1r_1}{2V}}}$$
, so that
$$F_S = \frac{B^2 + \mu_c^2 \int d^d x}{8\pi} \left[-\frac{12\nu^2 + \frac{12\nu^4}{2}}{4\pi} \right]$$

 $F_{S} = \frac{B^{2}}{8\pi} + \frac{H_{c}}{4\pi} \int d^{d}x \left[-12\mu I^{2} + \frac{12\mu I^{4}}{2} + \frac{12\mu I^{4}}{4\pi} + \frac{3^{2}}{2} \right] \left[\overrightarrow{r} - 2eR \right] \left[2\mu I^{2} \right]$

where $\frac{H_c^2}{4\pi} = \frac{171^2}{2u}$.

Let's choose
$$B 112$$
 with $A = (0, A(n), 0)$.
 $2)F_S = \frac{B^2}{8\pi} + \frac{He^2}{4\pi} \int d^dx \left[-12p^2 + \frac{12p^4}{2} +$

Minimizing
$$F_5$$
 writ \vec{A} and p^* :

 $-\frac{1}{5^2} \frac{\partial^2}{\partial^2} + 4\frac{\partial^2}{\partial^2} e^2 + \frac{\partial^2}{\partial^2} (x) + \frac{\partial^2}{\partial^2} + \frac{\partial^2}{\partial^2} (x) + \frac{\partial^2}{\partial^2} = 0$

$$-\frac{1}{4\pi} \frac{d^2 A(x)}{dx^2} + \frac{H_c^2 \xi^2 4 e^2}{4\pi} \times 2 A(x) |2 \varphi(x)|^2 = 0$$

$$\Rightarrow \frac{d^2 A(x)}{dx^2} = 8e^2 \frac{3^2}{3^2} H_0^2 / 2p(x) / 2 A(x)$$

Deep inside the SC,
$$2p \sim 1$$
, \Rightarrow
 $A(R) \sim e^{-\chi/\chi}$ (Meissner effect). Where

 $\frac{1}{\Lambda^2}$ = 8e² $\frac{3^2}{3^2}$ Hc² defined the penetration death.

Recall that $\frac{3}{3} \sim \frac{1}{\sqrt{T_c-T}}$, and $\frac{1}{\sqrt{T_c-T}}$, $\frac{1}{3} = 0$ CI). Surface Eversy of an N-S interface. and type-I is type-IT sc Schematic : 1>>> & CType-II) 1 <> > (Type-I) Over length scall Over length scale 3, y, no tens expression flux expulsion but no but gain in condensation gain in condensation energy energy =) negative surface tension. =) Positive surfact tension Cire interface energetically unbroazbie)

Let's consider applying
$$H = Hc$$
 and Study the free energy difference between the problem of actual interest and

an auxiliary problem where for 2<0, 2p=0, B=Hc, and for

The free energy density $g = f - \frac{B \cdot H}{4\pi}$

in this auxiliary problem is
$$-\frac{Hc^2}{8\pi}$$

independent of the location: for

$$1<0$$
, $g = \frac{H_c^2}{8\pi} - \frac{H_c^2}{4\pi} = -\frac{H_c^2}{8\pi}$
for $1<0$, $g = \frac{H_c^2}{4\pi} \left[\frac{1-1}{2} \right] = -\frac{H_c^2}{8\pi}$.

The advantage of coundaring the difference 6-6 aux 15 that this contribution comes solely from the interface and therefore can be Considered the interface every per unit cross-section. Einterface = G-Gaux $= \frac{8^{2}}{8\pi} + \frac{He^{2}}{4\pi} \int dx \left[-12\rho^{2} + 12\rho^{4} \right]$ + 32 [12x212 + 4 e2 A(n) hours $-\frac{8H_c}{4\pi} + \frac{H_c^2}{8\pi}$ = Hc Jdx [- 42 + 44 + 32 [(0x4)2 $+4e^{2}A^{2}(x)2p^{2}(x)] + (B-Hc)^{2}$ where we have further assumed that 2) is

29 satisfies Landon-Ginzburg $- \xi^{2} \partial_{x}^{2} \psi + 4\xi^{2} e^{2} A^{2}(x) \psi - \psi + \psi^{3}$ One may write Einterface = Einterface — Hc² Sdx 24 [LHS of above Eqn.] which cancels out the derivative term. =) Einterface $= \frac{Hc^2}{2\pi} \int dx \left[\left(1 - \frac{B}{Hc} \right)^2 - \psi^4 \right].$ Lets consider the two simits. $\frac{\lambda}{\frac{3}{2}} \ll 1$ and $\frac{\lambda}{\frac{3}{2}} \gg 1$. (type-II).

 $\frac{\lambda}{3}$ \ll 1:

In two limit, A rabidly goes to zero, hence $-3^2 3^2_{224} - 24 + 24^3 \approx 0$,

Whose Soln, is 29 = tanh (3/2).

 $\Rightarrow \text{ Einterface } \approx \frac{H_c^2}{8\pi} \int [1-244] dx$

 $\approx \frac{\mathcal{H}_c^2}{8\pi} \stackrel{?}{>} .$

Therefore, the N-S interface costs energy in this case.

In this case, Aer)
$$\sim e^{-\chi/\chi}$$
.

Ond $24 \sim 1 - e^{-\chi/\chi}$.

 $\Rightarrow Cinterface \approx \frac{H_c^2}{8\pi} \times -1 \times \chi$

Therefore, as a first $\frac{\Lambda}{3}$, Einserbase Changes Sign, One can show that Einserbase $\Rightarrow 0$ at $\frac{\Lambda}{3} = \frac{1}{\sqrt{2}}$, which therefore serves as the boundary between the type-I is tappe-II between the type-I is tappe-II