
As discussed
wereblender

parameter

in a SC is of the form (CRC-RN7,

where IEI* RF, isitinvolves
a bound

state between two e's close to the

Fermi surface. One can get a hintof

this incipientinstability ofthe

Fermi surface by considering the

quantum mechanical problem ofjust

two is outside the Fermi surface

-

thatare forced to live outside the

Fermi surface
due to Pauli

exclusion

call states inside the
Fermi surface are

occupied). In thecenter
of mass

frame, theSchrodinger's equ.
is



Veft par
=E pl.+ I

where M
=

M
is the reduced mass in

the center ofman frame
and leftis

the inter-particle potential.
Fourier

transforming,

2 p 4(P) + I VIK-R1 PCRY
= EPCR).

eff

We choose Vetf(k-k1 =- vo if

RR < R.K'< KF + 8K where SkERE

and Vest (K-R1)
=0 otherwise.

Corresponding to the cutoffsk, one

may define
an every

scale up

CER)2- =wa



The schrodinger's eque becomes,

- vo 4(p) = (E-25p(4(p)
u
-

=>I - (2sp) N
=N

EF+WD

-3 - Vo IN
=1

EF

where, as mentioned above, p <SEF.

I -CEF+wp) =1+NEEfloy ( I
2 E- REF

- 2/VoNCEF)
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ne
Binding every

of

cooper pair.
- 1/NCEF)IUI forCompare withIA1=e

attractive-u Hubbard model man-field.



Itheory

BCs mean-field theory is quite
similar

to the mean-field theory for
the attractive

U Hubbard model we earlier
studied.

Our starting pointisthefollowing

interacting
Hamiltonian?

ER
e

H =[(RM) ctprcpr-Vorrctat?_bih
R

where theprime() on thesun

in the interaction term
indicates that

we are restricting theinteraction
to

momenta close to theFermi energy,

with 1521 - EF wp-

Nextwe solve this problem using

mean-field approximation:



Ctpx Ct-kA c-b'd CK'4

= 4*-b'ck'*+pk/crctk
- 4p4*k

where 4* = <c+ R4 ct-RX) ·

Let'sdefine Vo 4*K=D*.

=) HME

I = mctkcm -(**ctmact-kythe]
R

+2AR.N where N is the

total system size. Upto simple

re-definition of variables.
This is

identical to themean-field
for the

attractive a Hubbard model.

14 A -> D).



Therefore the mean-field
solu, is

- 2/NCEF)VoIA)= 2ND e
r

It'sinstructive to understand the

ground state haverfu,
within the

mean-field.

Claim:the
mean-field ground state is

given by:
147mr =4(c() + sin() ctract-nN]107

where tan(OR) = - where A is

ER

defined above, and istobe determined

by minimizing the ground state energy.

Let's derive this result.



HMF

I = mctkcm -(**ctmact-kythe]
R

+2R.N
let's choose the phase ofA so thatit isreal

=) HMF=

I [etpa e-b1] m Inee

ptp ↳Iwant
Pr

Pt hp4* I court.

One may now diagonalize the 2x2

matrixup using a unitary transformation

Utm hp Up=Dp= diasonal
matrix.

so that



I kHMF=PtR 4 UphkUpUE4R
Run
n+R DR Uk

=UtrDrN

The explicit form of UK and DR

may be obtained by writing,

ur= ER E. where Ek=-

n =- t is a unit vector
-

Ek

and E =(1, 21,TY are
Pauli matrices

thatacton theHilbertspace spanned by

the recois R
A

Therefore,

Uk = ER SCOK) -Sincok)

L I- SinOk)-cos(0k)

where sincOR)=, wsCOR)=



One can cheek that thefollowing unitary
diagonalizes Uk,

Up =SinPkz) Cos(OR/2)L Icor (OR12) -sin(01)

and the eigenvalues are

Dat [-ER am].
while the eisentators are

UK =Uk PK

=

Tanfa) won)(eemi)
=Sin) CRa+ cIO) CTRICo) cra-sin(Q) ct-nd]*4e



In terms of new fermion operators YK,

MMA=[c-RH xtra]fEmet
- I Ep [etra una tet kt rnw].

Note thatER: S+$2 >0,

so thatcreating an excitation ofthe

y operabis always costs eversy.

Therefore, the ground state with must

satisfy,
URAIBCSL =0

YRNIBCST
=0 ·



One may verify
thatthe following

state satisfies this condition:

IBCs)
=T(cos(-) + sin) cancer)10)

R

This state is automatically normalized,

<BCSIBCS)=1. It iscustomary
to devote cos(02) =UK, SinRT

=VR.

Explicitly, UK=wS(ORK2)=

Up =sin(PR12)
=imn"(Entaee

Self-consistency:
we still need to find A self-consistently

Vo I <ctpact-ax)
=ACT)

Using the relation between C and U.

this become,



Yo UbVR [1-[[Ytonr>]

= No - Um vm[1-2 UF (ER)]

=ACTI

where IF istheFermi-Dirac fro

substituting theexpression for UK, VR,

No (R =1

This is the famous BCs gab equ.

Note thatE= 112, and

1-2NF(E)
=1- -

IteBE

=tanh (b).



Let's consider vanbus limits ofthe gap Egn.

T =0 =

ro( =1

WD

=>

oNCEF) /*
-WD

2x2 NIEE = 1

A
- 1 /No NLEA)

=> ACT=d* Wo e

/One may do the integral exactly as
well.

WD Cp/A

I
·

a2*ab
(ee

->> ACT
=0) -

Assuming VoNCEF) 41, Sink(noter)ens



=) A(T = 0) * 2WD etNoNCEF)
T =Te :

At Tc,A
=0 =

⑩ Natm) ae2

Again, this integral can be done

approximately.

Stassel de Bernale
I dog/**]

WD /NONCEr?=>To e



A more accurate treatment of the

integral yieldle.
- 1/NONCEF)

To * 1.14 WD &

Comparing the expressions for ACT=6)

and Tc

Ed =***3052.

Thisratio serves as a signature of

the validity oftheBCs mean-field,

and therefore, if violated, indicates

thatfluctuations beyond mean-field

may be important.



waterfulin Real Space

Recall,

IBCs>= i[UR +VmctRa ct-R+] NY

Iwhere Ur=Etak
Up:ER, Er=+

In a fermi gas (D=0),
so that,

UK =0 for k<RF, 3
=1 for k> RF

vp
=

0 for RSS IURBs

Fines



Upto normalization,

IBCs) =I( 2
+wetraet-mx]1

-(*caCR]
=e 107

(Since (tR* et-RH =0].

One may now consider IBCs) in

6 where the no. ofcanonical ensemble

particles isfixed. Devoting the Mt.

with a particles as PNIBCS) where

CM denotes the projection onto the

Hilbertspace corresponding to
N

particles, PN IBCS)=

N12

I 107tanct-Ru



= (, gcrepes etractic
N2

I 10)

where gar=Imet
One may interpret

the expression

for PNIBCS) as a condenstate of

cooper pains where the
wareth.

profile for a pain is given by g(r).

One may now approximately evaluate

gart Bing

whatan ener
->gert

5k =EPF =

(kR+kA
N VF CK-RF). WhereR=IE1



gar-III (eeee
N re

is thecoherencewhere 3 = length,

which devoted the length scall over

which cooper pairs are entangled.


