Applications of Linear Response: Screening, Plasmons and Instabilities

The density-density response for X non encoded a lot of physics: (i) Non-collective modes' (= particle-hole excitations) and 6 collective modes' (= plasmous).

(ii) Dielectric screening of charsed fermions (iii) Instabilities of an interacting system with Fermi surface.

Dielectric Screening

edectrony in a system with Fermi surface have effectively short-range interactions.

Despite long rouse Coulomb repulsion,

The physical picture is that due to

free movement of charge Cubich is a consequence of system being a metal), a test electron' repela electrona close to it. t = background positive change of nuclei (= frozen) $e^- = mobile conduction electrons$ + + + + + e + + + + + + test charge

Quantitatively,

$$U_{tot}(r) = U_{0}(r) + e^{2} \int \frac{\langle 8n(r) \rangle}{|r-r'|} dr'$$

where $\langle 8n(r) \rangle B$ the change in the density due to introduction of the test change and $U_{0}(r) = \frac{e^{2}}{r} B$ the bane Coulomb potential. Fourier transforming,

 $U_{tot}(k, \omega) = U_{0}(k) + \frac{4\pi e^{2}}{k^{2}} \langle 8n(k, \omega) \rangle$,

$$\frac{1}{\text{ECk}(\omega)} = 1 + \frac{4\pi e^2}{k^2} \chi_{NN}(k, \omega)$$

Here Xnn (krb) is the density-density response of the interacting electrons which we haven't determined yet. It is $\frac{not}{N_N(k,\omega)} = \frac{N(2q) - N(2ktq)}{\omega + iz + 2q - 2ktq}$ that we derived for non-interacting es. ON can approximately relate Xnn (k,10) to 20 mm (levo) in two equivalent ways. first method: Let up imagine that we turn on the charge for all the es, including the test charge, slowly at $t = -\infty$, and do a linear response in the coupling Streveth e. Now we are perturbing around a non-interacting limit, and therefore, we can write

where
$$\langle 8n(k,\omega) \rangle = \chi^0_{nn}(k,\omega) \cup tot(k,\omega)$$

Note the difference with above equation, where
we wrote $\langle 8n(k,\omega) \rangle = \chi_{nn}(k,\omega) \cup \zeta(k)$

 $V_{\text{tot}}(k,\omega) = V_0(k) + \frac{4\pi e^2}{b^2} \langle 8n(k,\omega) \rangle$

$$= \frac{1 - \frac{4\pi e^2}{k^2} \chi^0_{NN}(k_1\omega)}{1 - \frac{4\pi e^2}{k^2} \chi^0_{NN}(k_1\omega)}$$

$$= \frac{1 - \frac{4\pi e^2}{k^2} \chi^0_{\text{nn}}(k,\omega)}{1 + \frac{4\pi e^2}{k^2} \chi^0_{\text{nn}}(k,\omega)} = \frac{1}{1 - \frac{4\pi e^2}{k^2} \chi^0_{\text{nn}}(k,\omega)}$$

$$= \frac{1 - 4\pi e^2}{k^2} \chi_{\text{m}}^{\text{o}}(k)$$

where $Vo(k) = \frac{4\pi e^2}{k^2}$.

Note that this is just an approximate relation obtained within the above self-Consistent approach. Another way to arrive at the same answer is to obtain Utot Ckra) by summing on infinite number of terms within a perturbation theory in 62. Uest (King) = nock) + nucking Ofte) + vock)(xoncha)2 vock) Diagramatically :

The bubble precisely corresponds to 20 mCk, wo are one may readily verify. Suming the seametric series, 1) tot (kew) = 10 (k) 7- nock) Xunckin) which is precisely the equation we derived above using a self-consistent approach. Short-range interactions between es: $\chi_{NN}^{0}(k \approx 0, \omega=0) = \frac{\sum_{q} N(\xi_{q}) - N(\xi_{q})}{\xi_{q} - \xi_{q} + \xi_{q}}$ $\frac{3n}{708} \text{ M(E) de}$ -8(E-EF) density of states $\sim -N(EF)$ fermi enersy

Vock) U tot (k, w=0) ~ 1+ VOCK) N(EF) Clearly as k > 0 U tot (k, w=0) does not diverse 2) short range interactions. Fourier transforming, 2.718. ...

UCr) ~ e2 e 7 / 3

Charse r

=) at small k

where $\xi^2 \sim 1$ N(EE) 65

Thus, as NCEP) >0, the interaction becomes long-ranged leg- in a system with

Fermi points such as graphere at newtrality)

Friedd Oscillations:

The only singularity of $X^{o}_{nn}(k, \omega=0)$ is at $k\approx 2k t$ due to observe of any purticle -hole excitations at $k\gg 2k t$ for $\omega=0$.

In particular, $\mathcal{E}(x) \sim 1 + x \log x$ Where x = 9 - 2kF . This singularity 2kFLeaves its imprint in V_{bd} $Ck \approx 2kF$, $\omega \approx \omega$

and reladely, in the screening charge,
Fourier transforming, one can show that

$$V_{tot}(r) \sim \frac{(5.2k+1)}{r^3}$$

To obtain the screening charge, aind.

V2 ∪0 (1) ≥ 4π Qtest

ove can show that

can show that
$$0^{ind}(r) \sim \cos(2k_F r)$$

Oing (L) ~

cos (2ler r)

r3

Excitations and X'nn(k, w):

purticle-hole excitation exaction and

Plasmons.

The imaginary part of X'nu(k, w) encodes

real particle-hole excitations:

In Xnn(kio) = 1 = Enceq) - ncerta)]

8(w+Eq-Exter)

Lets consider various Dimits:

w is mostimized when R of ktop
is perpendicular to the Fermi

surface. w = Extq-Eq & R.q. & VFR

where Up 3 the Fermi relacity.

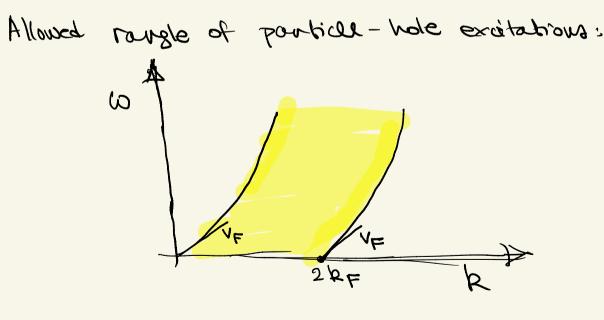
The world the excitation is

impossible.

(ii) $\omega \approx 0$, $k \approx 2kF$ For $k \approx 2kF$, ω ktg. φ is minimized if φ and φ k+q are close to Fermi surface and antipodal. $\omega = E_{k+q} - E_{q} \approx (k-2kF)V_{F}$

=) If w < VF (k-2kF), particle-tide

excitation is impossible



Plasmons:

Recall that plasmons

of a charsed system

thetrotion & N(q) a

potential qq = -

Recall that plasmons are collective oscillations. Of a charsed system. Classically, a density

of a charsed system. Classically, a density function ϵ N(q) generates electrostation potential $q_q = -\frac{4\pi e}{q^2}$ ϵ N(q) which

generates an electric field $-i\vec{q} \cdot q = 4\pi i e s_{nq}$ The force due to two electric field severates current $\vec{j} = -\beta_0 e \vec{r}$ whose time

derivative is larry Newbork law), $\frac{d\vec{i}}{dt} = -10 \, e \, \frac{d\vec{i}}{dt} = 10 \, e \, \frac{e \, \vec{E}}{m}$

Continuity equation $\overrightarrow{R} \cdot \overrightarrow{J} = e \frac{\partial n}{\partial t}$ combined with Gauss's law $\nabla \cdot E = -4\pi e n$ implied $\frac{\partial}{\partial t}(\overrightarrow{R} \cdot \overrightarrow{J}) = \frac{\partial e^2}{\partial t} - 4\pi e n$

 $\frac{\partial^2 n}{\partial t^2} + \frac{4\pi e^2 l}{m} = 0$

Thus, the system oscillates at a frequency $\Omega_p = \sqrt{4\pi e^2 P_0}$, which is called Plasma frequency. From a linear-response perspective, usen war Ip. Justcad of screening, the response to an external potential is Infinitely enhanced, similar to a resonance That is why, at w= lp, system oscillates by itself, without any external input. That is, the plasma osicilations are a Collective excitation of the system. This suggests that when w & Sp, dielectric constant ECRIB) -> 0. So that Utol = 00/Eckew) diverses,

To find Ip, we therefore need to find 2000 of Ele, w).

=
$$1 - \frac{4\pi e^2}{k^2} \frac{1}{V} = \frac{\sum [N(\epsilon_q) - N(\epsilon_q + k)]}{\omega + \epsilon_q - \epsilon_q + k}$$

CTaylor expanding in $1/\omega$

ECq 20, w large)

$$+\frac{1}{(2\pi)^3}\frac{4\pi e^2}{k^2}\int_{0}^{2}\left[N(\epsilon_q)-N(\epsilon_q+k)\right][\epsilon_q-\epsilon_q+k]$$

$$\approx k^2 \text{ of small } k$$

$$\leq 1 - 4 \pi e^2 P_0$$

$$= \frac{1 - 4\pi e^2 \beta_0}{m \omega^2}$$

$$= \frac{4\pi e^2 \beta_0}{m \omega^2}$$

$$= \frac{4\pi e^2 \beta_0}{m \omega^2}$$

Linear Response and Instabilities

Above we derived,

 $(\chi_{NN}(k\omega)) = \frac{-\chi_{NN}(k\omega)}{-\chi_{NN}(k\omega)}$

Where X° is the linear-response (ie. linear susceptibility) for a non-interacting system and Xnn is that for an interacting system. Within a mean-field / self-consistent of proximation, such an expression works for more general settings.

As a toy example, consider the Things model: $H = -J \geq s_i \leq s_i - k \geq s_i$

Within mean-field approximation.

HHP =
$$Z - (Jzm + N) S$$
;
Where $M = \langle Si \rangle$ and Z is the coordination
number.
=) $M = X_0 \log S$
where $\log Z = N + Jzm$ and N_0 is
the susceptibility in the obsence of

interactions (i.e. at 7=0). Explicity, when

$$J=0$$
. $M = \tanh(\beta h) \Rightarrow \chi_0 \sim \frac{1}{T}$.
Solving $m = \chi_0 \in Jzm + h$.
 $= \chi_0 = \chi_0 =$

7=0.

Compare this with
$$\chi_m = -\frac{\chi_o}{1 - \chi_o U_o(k)}$$

1- X, Jz

The above organism for the Isty wodel works for any model, within mean-field Approximation. For example, counider $H = -\sum(c+; c_{3}+h\cdot c_{1}) + \mu \sum c+; c_{1}$ $\hat{i} N : N \subseteq V$ where N; = ct; C; The density response for the is to i.e. < n (kim) = h(kim) xo(kim).

 $\langle n (k_1 \omega) \rangle = \mu(k_1 \omega) \chi_0(k_1 \omega),$ Again, within mean-field, $H\mu = -\sum (ct_1 c_1 + h.c.) + \sum (Vz < n_1 > + \mu) n_1;$ $\Rightarrow \langle n \rangle = \chi_0 (Vz < n > + \mu)$ $\Rightarrow \langle n \rangle = \chi_0 \mu$

1- NoVZ

$$=) \quad \chi_{\text{interacting}} = \frac{\chi_0}{1 - \chi_0 VZ}$$

The expressions such as these eneade potential instabilities (Similar to plasmon Newmen), when Vinteracting = 00, i.e. when the devominator vanishes, for example, in the Ising model. X direrses when $1 - \chi_0 Jz = 0$, Using $\chi_0 \sim \frac{1}{T}$ \Rightarrow it diverges at $T = T_c = J_z$, which precisely corresponds to the mean-field critical temperature.

Now consider interacting models at T=0 e.g. in the above example where

$$\chi_{\text{interacting}} = \frac{\chi_0}{1 - \chi_0 VZ}$$

Winteracting diverses when $V > \frac{1}{\chi_{oZ}} = V_c$.

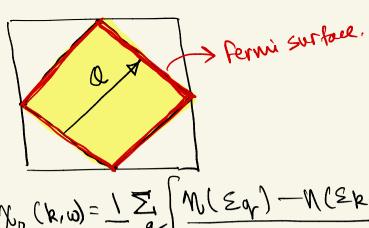
This expression illustrates two qualitatively different scenarios: (a) If No is finite, then Vc>0 i.e. there is a non-zero threshold for instability i.e spontaneous symmetry

breaking. (b) If Xo is infinite, then Ve = 0 i.e. the system is unstable.

To give an example of (a), consider No (k,w=0) for a non-nested fermi surface is non-diversent for any k.

As an example of (b), dets consider the nested Fermi surface in d=2.

 $H_0 = -2t \sum_{k} [\cos(kx) + \cos(ky)]$.



$$N_{0}(k,\omega) = \frac{1}{V} \sum_{q} \left[\frac{N(\xi_{q}) - N(\xi_{k+q})}{\omega + i\xi + \xi_{q} - \xi_{k+q}} \right]$$

Let's consider
$$K_0$$
 $Ck = Q, \omega$)
$$= \frac{1}{V} \sum_{q} \left[\frac{N(\xi_q) - N(\xi_q + Q)}{\omega + i\xi} + \xi_q - \xi_q + Q \right]$$

The dominant contribution comes from
the following terms, where both parte à and à + D ave very close en to tre Fermi surface.

Therefore turning on density-density interactions for a vested fermi surface is Expected to lead to an instability (Charge-ordered spontaneous symmetry breaking state). i.e.

Nested Fermi surface

one expects Vc ~

Ho + V ZN; N; , tren free-learmon H =

= 0. XCk=0,w=0)

 $\chi(k=0,\omega=0) = \infty.$