
Applications of linear Response :

Screening ,
Plasmons and Instabilities

The density- density response fu Xnn

encodes a lot of
'physics :(it

•

Non - collective

modes
'
( = particle -hole excitations) and

6 collective modes
' ( = plasmons) .

Cii ) Dielectric screening of
charged

fermions Liii) Instabilities of an interacting
system with Fermi surface .

¥És-
Despite long range Coulomb repulsion ,

ecdeetrouy in a system with Fermi surface

have effectively short-range interactions .
The physical picture is that due to



free movement of charge (which is a

consequence of system being a metal) ,

attest electron' rebels electrons close to

it
.
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of nuclei G- frozen I

e- = mobile conduction elections
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Quantitatively ,
Utotlr)= Uocrlt eY{sncri)> dr

'

¥

where < finery> B the charge in the

density due to introduction of the test

charge and Wolof = c÷ is the bare

Coulomb potential . Fourier transforming ,

Utotck.io) = Uock) 1- 4¥24uckwi.

The key point is that , from linear response .

{Suck.wi= Xunckewl Uock )

⇒ Utotckiw) = Y;£?÷, where

•
1- = It 4÷Y ✗ nnck.io)
C-Cknw)



Here ✗ nnck.io) is the density-density
response of the interacting electrons

which we havent determined yet .
It is

not Xonnckiw) ==INKg)-nCEktg)-
9 wtis + Eq-Ektq

that we derived for non-interacting és .

One can approximately relate ✗ nnckiw) to

X°nn Ckew) in two equivalent ways .

first method : let us imagine that we

turn on the charge for all the és ,

including the test charge , slowly at
b- = - •

.

Gentle do a linear response in the coupling

strength e? Now we are perturbing around

a non-interacting limit , and therefore
,

we can write



Utotckiw) = Uock) + 4÷f {srnckewi

where ☒8nck.ws> = XOnnck.io) Utotckew)

Nole the difference with above equation , where

we wrote < srnckewi = Xunckew) Uock)

⇒ Utotckiw) = UoCk7__
1- 4÷fX°nnCkiw)

⇒ |=éx°nnck
K2-1

runner .÷ñ÷]
⇒ ✗ nuclear = ←_÷IY¥→ñ
where Uock) = 4¥22 .



Note that this is just an approximate

relation obtained within the above self -

consistent approach .

Another way
to arrive at the same answer

is to obtain Utotckewl by summing
an infinite number of terms within a

perturbation theory in e?

Ueffckiw) = Uock) t Uock) ✗Truck,w)0Ek)
+ clock)(Xounckew) )2U°Ck)
1-

. . .

Diagrammatically :

thot = 7- - -4 + 7- - -4

+7--0-eft -
- -



The bubble precisely corresponds

to xonnck.co) as one may readily verify .

Sunning the geometric series .

Utotcbew) = UoCk7_
1- U°Ck7X°nnCk#

Which is precisely the equation we derived

above using a self - consistent approach .

Short-range interactions between e- s :

✗Truck 20 ,
w=o) = Eg nkql-hcsktgyeq-EK.iq
If 2h NCE) de

→
Jet

density of
-SCE-EF) states

I - NCEF)
in
fermi energy



⇒ at small K

Utotckiw#⇒ y%→Ñee
Clearly as k→o Utotck ,w=o) doesnt

diverge ⇒ short range interactions
.

Fourier transforming , 2.718 -

-
"

4¥ ) ~¥É-r#
charge n

where Ñ~÷f)eT
Thus . as Neef)→o

,

the interaction

becomes long - raised leg . in a system with

Fermi points such as graphene at neutrality.



Friedel oscillations :
-

The only singularity of XOnnck.ws
=D is at

k=2kf due to absence of any particle

- hole excitations at K ↳ 2kt for W=0 .

In particular . ECR) ~ It nIogR
Where NAE q-2k☒_ •

This singularity
2KF

'dears its imprint in Hot Ck 22kt . wait

and reladely.in the screening charge .

Fourier transforming . one can show that

Utotcr ) ~ cos c2kfr)

→

To obtain the screening charge, Clint
.



Did Uocp) z 4palest

P2 Utotcr ) = 4ñ[aksttceindy

=) D2 [ Utot - Uo] = 4ñ Clinton,
d

⇒ t2[¥ - Uo] = Got aindcrs

⇒ divider , = a flask 1¥57 .

eiknn

Again , by using the fact that eck)
has R Iogze singularity where R=k-2kt,
one can show that

girders ~
wg%k .



Excitations and ✗Truck .io) :

particle - hole excitation spectrum and

plasmons .

The imaginary part of ✗Ouucbew) encodes

real particle - hole excitations :

Ion Xonnckew) ¥ Enceql - ncektq]
81W + Eg- Ektq)

let's consider various limits :

Ci ) W KO , k IO .

?⃝• ktq
w is maximized when bi

is perpendicular to the Fermi

surface .
W = Ektg- Ear I→br I Vfk

where up is the Fermi velocity .
⇒ If W>Vfk

, particle -hole excitation is
impossible .



( Ii) W Ko
,
k I 2kt

For knew 2kt , W k+•is minimized if q and

ktq are close to Fermi surface and

antipodal . w = Etetg- Ear Tuck- 2kp)vp

⇒ If w < Up CK-2k.pl , particle-hole

excitation is impossible

Allowed ravgle of particle - hole excitations :

co

t¥⇐→



Plasmons :
-

Recall that plasmons are collective oscillations .

of a charged system . Classically , a density
fluctuation Gncql generates electrostatic

potential QQ =
-

4ñqe_ Sncq) which

generates an electric field - iTQq=4ñqie_8nvq
The force due to two electric field generates

current j→= - Po ev→ whose time

derivative is casing Newton's law] ,

d¥→ = - po e¥= =peoeemt-Eontimu.lyequation
Ñ . I = e.2¥ combined

with Gauss's law D. E = - 4rem implies

dq(Ñ.j→ ) = poet -4rem
Tn

⇒ DIF, + 4ñméIn =0



These the system oscillates at a frequency
Rp = tempo ,

which is called
'Plasma

frequency .
From a linear - response perspective . when

w ~ Dp .

instead of screening , the

response to an external potential is

infinitely enhanced
.
similar to a resonance

.

That is why , at w= Rp , system oscillates

by itself , without any external input .

That is , the plasma oscillations are a

collective excitation of the system
.

This

suggests that when co a Dp , dielectric

constant Eckew) → 0
.
so that Utot

= V0 / Eckew) diverges
.

To find Rp .
we therefore need to find

Zero Of Ebbw] .



Ecq neo , co large)

= is - ¢÷÷E%÷÷÷¥-
Ctaglor expanding in 11W)

0

I - 4n 1-

K2 (a)
3)d%[M%qtk

+14T€
(a)3h2 coz

/ [MKE) -Nkqtk7][Eq- Eq,→]
a-
I bf at smallk→

e s - a

;I÷
⇒ e = 0 at w = Rp =(4ñm%_)"



Linear Response and Instabilities
-

Above we derived ,

✗ nnckcw) = -X°nnCkew)-
1- Uock) X°nuCkÑ

Where ✗
°
is the linear - response lie . .

linear susceptibility) for a non- interacting
system and Xun is that for an interacting
system .

Within a mean - field / self - consistent

approximation , such an expression works

for more general settings .

As a toy example, consider the Tsing
model : H = - JE si Sj - h Fsi

i

within mean- field approximation .



whist
Hµp = I - (Jrzmth) si

i

where m = <sit and 2 is the coordination

number .

⇒ m = Xoheff

Where hey = ht Jzm and Xo is

the susceptibility in the absence of

interactions ci.e.at 3=0) . Explicity , when

5--0 . M = tanh (Bh) ⇒ Xo ~¥ .

Solving m = Xo CJzmth)

⇒ m=E÷-I
compare ten with ✗

m
=

j?÷uÑ



The above argument for the Ising model

works for any model , within mean- field

approximation .

For example , consider

H= -ZCticjth.ci +

M.EC?-cicij7#tVIninjsijY
where ni = ctici

The density response for Ho is Xo i. e.

{NCKiwi = peck . v07 Xockiw) .

Again . within mean - field ,

Hmp = - E@ticjth.c .)tZ(Vz<ni> + µ)n ;
cij ) i

⇒ < n> = Xo (vz <n> + µ )
⇒ any = XoM_

1- niovz



⇒ ✗ = ✗
interning ÷x-ovz_

The expressions such as these encode

potential instabilities (similar to plasmon

Vhesonanee )
,
when ✗ interacting

= do , i
- e .

when the denominator vanishes . For

example . in the Ising model , ✗ diverges

when I - ✗ • 52=-0 . Using Xo ~¥
⇒ it diverges at T=Tc=Jz ,

which

precisely corresponds to the mean- field

critical temperature.

Now consider interacting models at TIO

e.g. in the above example where

✗ = ✗
interning ÷x-ovz-



✗ interacting diverges when V > ¥z-= Ve .

This expression illustrates two qualitatively

different scenarios :(a) If Xo is finite . then

Vc > 0 i. e. there is a non-zero threshold

for instability i.e. spontaneous symmetry

(b) It Xo is
infinite , then

breaking .

He -_ 0.ie. the system B unstable .

To give an example of (a) ,
consider

✗ ohhck ,w→o) for a non- nested fermi surface

is non- divergent for any k .

As an example of (b)
,
let's consider the

nested rerwisswrrtf-a.ee in D= 2 .

Ho = - It {[eosckal tcoscky)] .



1-¥o¥☒→*
.

consider xoor.%FfIEEEI.IE#-a.-f
Let's consider Xo Ck = Q , w)

¥¥4÷:÷-÷÷÷+•t
The dominant contribution comes from

µ
the following terms , where both

•
qto →q and of to are very close

¥- to the Fermi surface .

% xiik-o.mn#-i-p.dqY..~IoylE-)-



Thus ,
✗ ( k =D , eo=o) = & .

Therefore turning on density - density
interactions for a nested Fermi surface is

expected to lead to an instability
( charge -ordered spontaneous symmetry
breaking state. . i. e. if

H= Ho t v Eninj .

then
in
free - fermion

cij>

nested Fermi surface

one expects Vc ~ ¥Ek=aÑ °

-


