This is called a Kramers-kroning relation. By definition, X(a) = X(a) + 1 X/(a) where X'(w) and X"(w) are tre real and imaginary parts of X(B). Since $\frac{1}{x-i\epsilon} = P\left(\frac{1}{x}\right) + i\pi S(x)$ where P denotes the principal part, $(\omega)^{n} \times i + (\omega - \omega)^{n} \times i + (\omega)^{n} \times i = (\omega) \times (\omega - \omega)^{n} \times i = (\omega) \times (\omega)^{n} \times i = (\omega) \times (\omega)^{n} \times i = (\omega) \times (\omega)^{n} \times i = (\omega)^$ Therefore, $\chi'(\omega) = \frac{1}{\pi} P \int \frac{\chi''(\omega') d\omega'}{\omega - \omega}$ which is another way to write the Kramers-Kronig relation. This relation is experimentally quite useful it one has access only to clay) the imaginary port of a response tunction of a function of frequency. Then, one may be able to obtain the real part using above relation.

Linear Response to density perturbations for non-interacting electrons.

Courider the following setup:

We tark on ver.t) smoothly at $t = t_0(z_1 - \omega)$

and we are interested in change in local density (=88) at arbitrary times due to this

Change in the Hamiltonian.
To linear order in V, we know the

answer from our discussion above, $\begin{cases}
S(t,t) = \int_{-\infty}^{\infty} X(t-t',t-t')V(t',t')
\end{cases}$

where $X(r,t) = -i \theta(t) \times [g(r,t), g(s,o)]$ Fourier transforming, $S_{\theta}(k,\omega) = X(k,\omega) V(k,\omega)$

Where XCK, W) $= -i \int \theta(t) \langle [f_{k}(t), f_{-k}(0)] \rangle e^{i\omega t}$ Assuming that initially lie before V is turned on). the system is in the ground state of Ho= Z S& C+ kCk, one can now explicitly calculate the above expedition value using Wick's theorem. Using Jk = [cta] cla) e'k.a = 1 2 ct or Cath After a bit of algebra, one finds. $X(k, w) = -\frac{i}{V} \int \theta(t) e^{i\omega t} + i (\epsilon_q - \epsilon_k + q)t$ $\sqrt{V} \int \frac{1}{V} \left[N(\epsilon_q) - N(\epsilon_k + q) \right]$ Using $\theta(t) = \frac{1}{2\pi i} \int \frac{e^{i\omega't}}{\omega'-i\epsilon} d\omega'$, this becomes $\chi(k,\omega) = \frac{1}{V} \sum_{q} \frac{m(\epsilon_q) - n(\epsilon_k + q)}{\omega + i\eta + \epsilon_q - \epsilon_q + k} (n=0^+)$