
Non . interacting Identical Fermions

(
' Fermi Gas ' )

Zero Temperature :

.

We first study non . interacting non . relativistic

fermions in three spatial dimensions at -1=0 .

The single particle levels one siren by

Ep→ = Is .

Recall that  in the

2in

ground canonical ensemble ,
the average

occupation of these deals is given by ,

< rip ) = np  = 1eBc¥uiM +1

Nominally ,
fermions also carry a half odd -

integer spin e. of electron spin is 1/2 .
Thus for

electrons one can write →

Np→o =

1- T = 112 , -112
@BC¥m-M+1 C = Sr component

of spin )



Let's look at the fermi function closely to

understand this system •
At zero temperature ,

B→ a ⇒ npr → OC µ
- Ep )

%
- T= 0N*|#|o€

;Pam
0

µ

This means that all levels with energy

Ep < µ are filled .
One can determine

µ in terms of the total number of fermions

N
. factor of two due to spin

d

N = 2 §→
Ocr - EF )

= 2 Y JDK Ocr - EI )
(E) 3

3
= 2 V 4Ikf3IEn→3 Where kf  = ftp.

=y÷¥±em÷Iw372



Total energy
E at T=o :

E = 2 §tegky
Ocr -

End
)

kf

= 2 I f tzhz k2 4Tk2 dk

(G) 3
o

= 2 V 2

Fas z±m × 4T KI
5

=ez÷I÷r¥
Using kzf÷z = N from above ,

one obtains
,

NE 
=§µ÷tmF ] =

3g EF where ef  =tzm2p2

= peCT= 07
66

is called Fermi
99

Energy .

Basic cheek :

Recall dE= - Pdv + plan at Teo

⇒ µ
= de

TN|v
'

from above
,

E  
= § N Er =§Nh=zm[3nf2N_]"

3



= § [3*2] 43 £2 N5' 3

⇒ atf =

§ (3¥55 hen ¥ N
"3

2

= tT2kf
-

= µ ,
as expected !

2in

Now
.

let's look at pressure .

p =  
-

E±r|n

.

= § (3a-2)
"

3

ztfn
N5' 3

× }
j5' 3

=

5¥
Thus ,

a fermi gas has a non . zero pressure

even at the zero temperature
.

This is

completely
different than a classical ideal

gas where Pz P T = 0 at T  = 0
.

The won - zero pressure Is responsible for the

stability of white dwarf stars .

Pressure

balances against gravity . We will study the Later
.



( .

The above relation between pressure and energy

is actually more several and holds at

any temperature T C Pavel
.

)
.

Some numbers :

.

In metals
→

Ef can be estimated using

the fact that 1 ~ a3 where a is the

N

radius of the atom
.

For example ,
for

- io Mass insodium , a ~~ 4×10 M .

= Meieehovn ~~ 1530 kg .

Thus
,

EF =

HIM [ 3nj2N]
"3

= 104 K
.

This is much larger than the room temperature

Thus
, ordinary metals are highly

quantum objects at room temperature

ie . one needs quantum mechanics to understand

even their basic properties egr conduction ,

reflection ,
heat capacity etc

.



Metals at low but Non-zero

temperature :

The important thing too note B that

at T # 0 , µ # et .

Intact
, µ will depart on

temperature T so that the number of

particles N does not change ••

Let's first do an abbroxiwale calculation

and after that .
we will return to an

exact one .

Recall that the Fermi - Dirirae distribution
,

which tells the average occupation of a level

at energy
C- is :

feel = eB¥m+T
5-

%•
Tt °

-

#→ to

" I ,¥÷¥t⇐÷
µH¥o7

fce ) = 21 at e = µ , always_
•



At low temperatures , µ will deviate from

Ef only slightly and fee ) will deviate

from its -1=0 value C = Oct - Ef ) ) only

for IE- µ1~T ⇐ µ .

Thus
,

one expects ,

Ectto ) - E ( to ) a T × F  =T
2

-

FF
EF

NN fraction  of
↳

energy
particles where Ste ) carried bydiffers from its T=o value those

particles .

Let's convert this intuition into an

actual
. abbroximate calculation :

At Tto
, we abbroxiwate fce ) by a

niftiest.tt#iEEEeEt.*.
.

1-

8E a T

we will take 88 = 3T
.



The total number of fermions

ACT )

N ⇐

JDCE
) de C = Area of

o yellow rectangle )

-

DCM
-

SEE ) SE C = Area of
4 red triangle )

+ DCpt8€ ) sq C = Area of

green triangle )

where Dce ) B the density of states
.

"""""¥⇒÷"÷÷"
Change of variables : the ⇐ e

2in€⇒÷÷÷÷÷
= Dee ) defe+j ⇒ Dce ) ate

.

-



Also .

at

Toe:pNLT#D= S DCE ) de

O

Subtracting , µ

NYT ) - ACT = o ) t SDC de

EF

+ ¥ Get DIED

er ( µ EF ) DCEF )

+ ¥ Cse72 DKEF )

Since number of particles is fixed ,
⇒

µ Tu EF - ¥ Dicer Cse 72
Deaf )

Since DCE ) x TE ⇒ Deers

⇒
⇐I

2 EF

If we take SE

23T
,

⇒

/peCt7zEF-I¥
-

The exact answer C we will calculate it soon )
is MCT ) ⇐ Et - III II ' sodiffttoot

.



Since I at room temperature is

Tf

of the order of 10-2 ⇒ /MfpEf_In to 4

at the room temperature ⇒ rather small .

why is the sign negative ?

why B the dependence quadratic int ?

Let's calculate the change in total energy

within this
'

ramp
'

abbroxi nation:

d SE

- §⇐¥i¥¥
.

µ Ef

ECT ) - ECHO ) I - LEE- µ ) DCE f) EF

C = contribution from green
shaded area )

+ ¥ (HSE )D4uts⇐ ) se EBlue D)

¥ du- E) DCM - Sze) see E redid )



=

gtsI.DK#ttfC8E5LEDk35le=er---&EgIDcei=)tIC8E5DkEe tf,
@ TD #

Since Dicer ) '=DzCEq ⇒ ECT )  - Eco ) =L
,

&s5DCE⇒

= ¥ T2 DEF )

⇒ Cr = IET
H = 9- T D&D

2

The exact answer B Cr = AI TD Cerf

Note that Crn T for the Fermi

gas in all space dimensions Cshow this ! )
.



Exact calculation for the

Specific Heat of the Fermi Gas

The total number of Particles ,
N

,
is given by,

N = ¥2
.

mfr

= 2 V 4T k2 dk-2a) 3 ) eBth2Imh - µ7+T

= 4T (2nm=]
"

2 V § Tde=e
BCE - N

+ 1

⇒ EI 's
= T.tk#+T

similarly ,
the total energy

E is :

E = §g npr EPR = ¥ nPr¥m

= ⇐ ⇐ jhv IEEE



Both of the above expressions are of the form

a

I= f gce7d=o @-MB
+1e

Since we are
interested in the properties of

the system only
at temperatures TKEF ,

one can do a Taylor's expansion for the

Integral I
.

Let's see how it goes ;

( see appendix A. 13 of Garrod 's book for

similar discussion ,

although our discussion

will be self-contained anyway ) .

First we note that at to Ci . e . B=a )

I becomes Io = § gce ) O(µ¥-) de

M

( =

So gce ) de )
Let's consider the difference DI=I- Io .

a

at - HH.
 

-oCr÷)]gc ;;



This is a bit messy .
To make it look

nicer ,
let's consider change of rarities to

the Ines parameter R = ( E- µ )/t .

X

AI = T Sfees -o←m]
- MT

gCµtTx ) dn

The function 1- - OGX ) looks like
eUt1

^
- OC - x )

#
- 11 ext 1

-*=p:###..Thus the difference approaches zero exponentially
fast when 1×15>1

.

since the lower limit

of  integration = - M ,+ ← 0 at low

temperatures C the regime ofoar interest )
,

one can safely extend the limits of  integration
to  - a •

The error incurred under this



ahhroxiwation would be of the order of

INT which is ready small e . g . when

µ 't ~~ 100 , then error =£100 .

Having made the abbroxiwation ,
one can now

taylor exband :

a

AI =

*
S ( e÷+g -otxifgcrttx )

- a

x. Tnt '

adngdey.mg?.xnl*+soexfn=q

E E

The

functions=L
- a- × ) is an odd

exts

th of K as may
be obvious from the figure

on the previous page .
But let's cheek this

exblicitly :

It n > o

fed

= 1-
ex +1

ftx ) =←1×-+
,

-1 =  I = - sex )

Similarly , one can check x< o
.

* +1



⇒ sen [ ext - otxy is an

Tenfn of n when n is odd and

an o_ddfnof U when n is every .

since the limits of integration in DI are

from - A to  to
,

this implies thatonly
Odd values of n contribute .

AIIED
"+1fdn9d4=µ×2×§en÷+iane-

11=22Tnttdngce ) [ 1- In ]n!5Cn+1 )
n odd d=n| -

a

7How to do the integral fen¥gdx .

o



A

%÷ix= ax

O

A

=m§o§ se
" e-

* EMIT dx

A

MTL
= E Int C- I

m

=LTmnt
I

This looks a bit like Riemann - zeta Sn but

has the oscillating terms due to ← 7M
.

fret nott.tk

a
Mt 's

-

Note
that E C- ) - tents )

Me I
-

mints
A A

= z←It - E I
m = I went I M = I went I

-
-22t

.

-

EE.
E. I

miss 4,6
,=

m Mnt I

A

⇒ z C-THEEnts
) Is - In ]

M =L
-

N mint I

⇒ feta dx = n !
Sente

) Ls - In ]



Using
the known valves of Riemann . zetasn

for integers n
,

one thus find ,

I = fthgce ) de +

¥2
g "CMT2

+ 744 + - . .

370
of"cµ÷

Let's abbly the above formula to the problem at

hand , namely specific heat of fermions at low

temperatures.

µ= anyway"w§ IFIE

=

4tfny=]3kV
[ ↳ Te de

+ nFz÷pt2 + . .  . ]

⇒←nNjµfn]"2×12 = µ% + It
8TH

- &

{ f3k can rehlaeetlby
Ep at this order

.



⇒ E f3' 2
= µ312 + T2=

8 Tee

µ
= Ef3' 2

- A- 2+2
2/3

⇒ [ # ]
= Ef [ 1 - A

2 T2

as
"

⇒ µu = Ep - It
12 EF

Recall that  in the ramp approximation ,

µ
= Ef - ¥ DKEFI (8E)

2

DCEF )

a er - g- I÷ it &e=ft
a bit

arbitrary .

Let 's next ululate the total energy exactly
:

a

E
 

= at [mq]%v ftp.t#=
µ

0

⇒ Infer)(Izm53k⇐ Sande +

0

A¥ x { VF T2



=

2g µ5k + q÷ µ
'

'2T2

= ¥ [ er .  
- q÷¥rg5

's
+ TI let - MITE

= ¥
eris "

[ 1- FLIP × Iz ]

infer '2t2 11 - t÷I×÷ ]

= of EE
'

'
+ EE '2T2[ IT - TI ]

Now note that

⇐ ⇒ eaj%=÷×§er3a
⇒ men

= 2g EEK x {_ EE 312

+ T÷A2 Ep"2x3z EE 312

⇒ hg
=

of qf
+ A=t2

4 EF

⇒ Caread¥÷/r.ir#nFhBETE*ass



Reformulation in terms of density of Staley :

DCEF ) ~ V m3k zrtk
=3

~

NEF

since Ny ~ m3k=3k
h3

⇒ Cv
.

N
~ T DCEF )

Putting exact pre . factors :

can = AsTDCEF )


