Non-interacting Identical Fermions ('Fermi Bas')

Zero Temperature:

We first study non-interacting non-relativistic fermions in three spatial dimensions at T=0.

The single particle levels are given by $E \Rightarrow = \frac{1}{2}$. Recall that in the

grand canonical ensemble, the average occupation of these develor is given by,
$$\langle \hat{n}_{\vec{p}} \rangle = n_{\vec{p}} = \frac{1}{e^{\beta (\frac{p^2}{2m} - \mu)} + 1}$$

Nominally, fermions also carry a half oddinteger spin e.g. electron spin is 1/2. Thus for electrons one can write,

 $\mathcal{N}_{p}^{+} \sigma = \frac{1}{e^{\beta \left(\frac{\gamma^{2}}{2m} - \mu\right)} + 1} \qquad \mathcal{T} = \frac{1}{2}, -\frac{1}{2}$ $\mathcal{C}_{p}^{+} \left(\frac{\gamma^{2}}{2m} - \mu\right) + 1 \qquad \mathcal{C}_{p}^{+} \left(\frac{\gamma^{2}}{2m} - \mu\right) + 1$ $\mathcal{C}_{p}^{+} \left(\frac{\gamma^{2}}{2m} - \mu\right) + 1 \qquad \mathcal{C}_{p}^{+} \left(\frac{\gamma^{2}}{2m} - \mu\right) + 1$

Let's look at the fermi function closely to understand this system. At zero temperature, $\beta \rightarrow \infty \implies n \not \mid \sigma \rightarrow \theta \in \mu - \epsilon \not \mid \rho$

$$\begin{array}{c|c}
 & T = 0 \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

This means that all levels with energy

Ep < \mu are filled. One can determine

\mu in terms of the total number of fermions

\mu .

Subs of two due to soin

N. Sachor of two due to spin

$$N = 2 \quad \frac{5}{7} \quad \theta \left(\mu - \varepsilon^{\frac{3}{7}} \right)$$

$$= 2 \quad \frac{\sqrt{3}}{2\pi} \quad \frac{\sqrt{3}}{3} \quad \frac{\sqrt{3}}{2\pi} \quad \frac{$$

Total energy
$$\varepsilon$$
 at $\tau = 0$:

$$E = 2 \sum_{P} \frac{t^{2} k^{2}}{2m} \quad \theta \left(\mu - \frac{h^{2} k^{2}}{2m} \right)$$

$$= 2 \frac{V}{(2\pi)^{3}} \int_{0}^{k_{F}} \frac{h^{2}}{2m} k^{2} 4\pi k^{2} dk$$

$$= 2 V + 2 ... 4 - 6$$

$$= \frac{2}{8\pi^{3}} \frac{1}{2m} \times 4\pi \frac{k_{F}^{5}}{5}$$

$$= \left[\frac{1}{2m} \frac{k_{F}^{2}}{2m}\right] \frac{1}{\pi^{2}} \frac{k_{F}^{3}}{5}$$

Using
$$\frac{83}{372} = N$$
 from above, one obtains,

Using
$$\frac{k_F^2 V}{3\pi^2} = N$$
 from above, one obtains
$$\frac{E}{2} = \frac{3}{5} \left(\frac{h^2 k_F^2}{2m} \right) = \frac{3}{5} \mathcal{E}_F$$
 where $\mathcal{E}_F = \frac{h^2 k_F^2}{2m}$

$$\frac{E}{N} = \frac{3}{5} \left[\frac{h^2 k_F^2}{2m} \right] = \frac{3}{5} E_F \quad \text{where } E_F = \frac{h^2 k_F^2}{2m}$$

$$= \mu C T = 0$$

$$= \mu C T = 0$$

Recall
$$dE = -PdV + \mu dN$$
 at $T=0$

$$= \frac{dE}{dN} \Big|_{V}$$
From above, $E = \frac{3}{5} N \mathcal{E}_{F} = \frac{3}{5} N \frac{\hbar^{2}}{2m} \Big[\frac{3\pi^{2} N}{V} \Big]^{3}$

$$=\frac{t^2 k_f^2}{2m} = \mu \text{ , as expected !}$$

$$Now , let's look at pressure.$$

$$P = -\frac{dE}{dV}|_{V}$$

$$= \frac{3}{5} \left(3\pi^2\right)^{2/3} \frac{t^2}{2m} N^{5/3} \times \frac{2}{3} V^{-5/3}$$

$$= \frac{2}{3} \frac{E}{V}$$
Thus , a fermi gas has a non-zero pressure even at the zero temp erature. This is completely different than a classical ideal gas where $P = |T| = 0$ at $T = 0$.

The non-zero pressure is responsible for the

Stability of white I want stors. Pressure balances against gravity. We will study this later.

 $= \frac{3}{5} \left(\frac{3\pi^2}{V} \right)^{2/3} \frac{\pi^2}{2m} N^{5/3}$

 $=) \frac{dE}{dN} = \frac{3}{5} \left(\frac{3\pi^2}{V} \right)^{2/3} \frac{\pi^2}{2m} \frac{5}{3} N^{2/3}$

The above relation between pressure and energy is actually more general and holds at any temperature T (prove!).

Some numbers:

In metals, EF can be estimated using the fact that $\frac{V}{N} \sim a^3$ where a is the

the fact that $\frac{V}{N} \sim a^3$ where a 13 the radius of the atom. For example, for sodium, a $\approx 4 \times 10^{-10}$ m. Mass m

 \geq Melectrom $\gtrsim 10^{-30}$ kg. Thus,

 $\mathcal{E}_{F} = \frac{h^{2}}{2m} \left[\frac{3\pi^{2}N}{N} \right]^{2/3}$ $\simeq 10^{4} \text{ K}.$

This is much larger than the room temperature.

Thus, ordinary metals are highly quantum objects at room temperature i.e. one needs quantum mechanics to undurstand even their busic properties e.g. conduction, reflection, heat capacity etc.

Metals at low but Non-zero temperature:

The important thing to note is that at $T \neq 0$, $\mu \neq \epsilon_{\pm}$. Infact, μ will depend on temperature T so that the number of particles N does not change.

het's first do an approximate coloulation and after that, we will return to an exact one.

Recall that the Fermi-Dirac distribution, which tells the average occupation of a level at energy E is:

every
$$\xi$$
 (s:
$$\frac{1}{e^{\beta(\epsilon-\mu)}+1}$$

$$\frac{1}{e^{\beta(\epsilon-$$

At low temperatures, µ will deviate from only slightly and fle) will deriate from its T=0 value (= B(H-EF)) only for $|\varepsilon - \mu| \sim T \ll \mu$. Thus, one expects, $E(T\neq 0) - E(T=0) \ll \frac{1}{10}$ particles where f(2) Carried by differs from its T=0 value those particles. het's convert this intuition into an actual, approximate calculation: At T=0, we approximate fle) by a 4-88 h 86 h+88 we will take && = 3T.

The total number of fermions

$$\mathcal{N} \approx \int D(\varepsilon) d\varepsilon \quad (= Area of yellow rectangle)$$

$$- D(H-\frac{8E}{2}) \frac{8E}{4}$$
 (= Area of red triangle)

where DCE) is the density of states.

Reminder:
$$N = \frac{V}{8\pi 3} 4\pi \int \frac{k^2 dk}{e^{\frac{k^2}{2m}} + 1}$$

Change of variables: $\frac{k^2 k^2}{2m} = \epsilon$
 $N = \frac{V}{2\pi 2} \int \frac{m}{\pi^2} \left(\frac{2m\epsilon}{k^2} \right)^{1/2} d\epsilon$
 $= \int \frac{D(\epsilon)}{e^{\frac{k^2}{2m}} + 1} \Rightarrow D(\epsilon) \propto \sqrt{\epsilon}$.

Also, at
$$T = 0$$
:
$$N(T = 0) = \int_{0}^{EF} N(E) dE$$

Subtracting,
$$\mu$$
 $M(T) - M(T=0) \simeq 0$

tracting,
$$\mu$$
 $N(T) - N(T=0) \simeq \int_{\mathcal{E}_F} \mathcal{D}(\mathcal{E}) d\mathcal{E}$
 $+ 1 (88)^2 \mathcal{D}(\mathcal{E})$

$$+ \frac{1}{4} (88)^2 D(8F)$$

$$- \frac{1}{4} (88)^2 D(8F)$$

$$+ \frac{1}{4} (88)^2 D(8F)$$

Since number of particles is fixed, =>

$$V \approx \varepsilon_F - \frac{1}{4} \frac{D'(\varepsilon_F)}{D(\varepsilon_F)} (8\varepsilon)^2$$

Since $D(\varepsilon) \propto \sqrt{\varepsilon} \Rightarrow \frac{D'(\varepsilon_F)}{D(\varepsilon_F)} = \frac{1}{2\varepsilon_F}$

If we take
$$88 \approx 3T$$
,
$$\Rightarrow \frac{1}{4} \text{ (T)} \approx 8F - \frac{9}{8} \frac{T^2}{8F}$$

The exact answer (we will calculate it soon) is $\mu(T) = \varepsilon_F - \frac{T^2}{12} \frac{T^2}{\varepsilon_F}$, so not too different.

Since T at room temperature is of the order of $10^{-2} \Rightarrow |\mu - \varepsilon_F| \sim 10^{-4}$ at the room temperature => rother small. Why is the sign regative? Why B the dependence quadratic in T? Let's calculate the change in total energy within this "ramp" approximation: € (T) - ECT=0) 0 - (EF-H) D (EF) EF C= contribution from green shaded area) + 1 (p+82) D(p+82) 82 (=Blue D) $-\frac{1}{4}\left(\mu-\frac{\delta \varepsilon}{2}\right)D(\mu-\frac{\delta \varepsilon}{2})8\varepsilon$ (= red 1)

$$= -\frac{(8 \, \epsilon)^2 \, D(\epsilon_F)}{8} + \frac{1}{4} (8 \, \epsilon)^2 \, D(\epsilon_F)^2 + \frac{1}{4} (8 \, \epsilon)^2 \, D(\epsilon_F)$$

$$= -\frac{(8 \, \epsilon)^2 \, D(\epsilon_F)}{8} + \frac{1}{4} (8 \, \epsilon)^2 \, D(\epsilon_F)$$
Since $D'(\epsilon_F) = \frac{D(\epsilon_F)}{2 \, \epsilon_F} \Rightarrow E(T) - E(0) = \frac{1}{4} (8 \, \epsilon)^2 \, D(\epsilon_F)$

$$= \frac{q}{4} T^2 \, D(\epsilon_F)$$

 $= -\frac{(8\varepsilon)^2 D(\varepsilon_F)}{2} + \frac{1}{4} (8\varepsilon)^2 \left[\varepsilon D(\varepsilon) \right] / \varepsilon = \varepsilon_F$

The exact answer is $C_V = \frac{\pi^2}{3} TD(E_F)$

Note that Con T for the Fermi

gas in all space dimensiona (show this!).

Exact Calculation for the Specific Keat of the Fermi Gas

The total number of particles, N, is given by,

$$N = \sum_{\vec{p} \in \pi} n_{\vec{p}} = \frac{1}{2 \pi^{3}} \int \frac{4\pi k^{2} dk}{e^{\beta (\frac{1}{2} k^{2} - \mu)} + 1}$$

$$= 4\pi \left[\frac{2m}{h^2}\right]^{3/2} \vee \int_{0}^{\infty} \frac{\sqrt{\epsilon} d\epsilon}{e^{\beta(\epsilon-\mu)}+1}$$

$$=) \xi_F^{3/2} = \int_{0}^{\infty} \frac{\sqrt{\epsilon} d\epsilon}{e^{\beta(\epsilon-\mu)}+1}$$
Similarly, the total energy E is:

$$E = \sum_{k=0}^{k} w^{k} e^{k} = \sum_{k=0}^{k} w^{k} e^{k} \frac{5w}{k^{2}}$$

$$= 4\pi \left[\frac{2m}{N^2}\right]^{3/2} \vee \int_{\delta}^{\infty} \frac{\varepsilon^{3/2} d\varepsilon}{e^{\beta (\varepsilon - \mu)} + 1}$$

Both of the above expressions are of the Sorm

$$T = \int_{0}^{\infty} \frac{g(\epsilon) d\epsilon}{g(\epsilon - \mu)\beta + 1}$$

Since we are interested in the properties of the system only at temperatures $T \ll \epsilon_F$, one can do a Taylor's expansion for the integral I. Let's see how it goes:

(see abbendix A.13 of Garrod's book for Similar discussion, although our discussion will be self-contained anyway).

First we note that at T=0 cire. $\beta=\infty$) I becomes $I_0 = \int_0^\infty g(\epsilon) \Theta(\frac{\mu - \epsilon}{T}) d\epsilon$

$$\left(= \int_{\mathbf{r}}^{2} d \cos q \mathbf{r} \right)$$

Let's consider the difference
$$M=T-T_0$$
.

$$\Delta T = \int_{0}^{\infty} \frac{1}{(\epsilon - \mu)^2 + 1} - \Theta\left(\frac{\mu - \epsilon}{T}\right) \frac{1}{d\epsilon}$$

This is a bit messy. To make it look ricer, let's worder change of ravibles to the dimensionless parameter $\chi = (\xi - \mu)/T$. $\Delta I = T \int_{-\mu_{A}}^{\infty} \left[\frac{1}{e^{x} + 1} - \theta - x \right]$ g(H+Tx) dx 1 - OCX) looks like — θ(-x)
— 1/e×+1
— difference. Thus the difference approaches zero exponentially fast when 1x1 >> 1. Since the lower limit of integration = - my << 0 at low temperatures (the regime of our interest), the can safety extend the limits of integration to - &. The error incurred under this

thering made this abbreximation, one can now toylor exhand:
$$\Delta I = \int_{-\infty}^{\infty} \left[\frac{1}{e^{x} + 1} - \theta c x \right] g(\mu + \tau x)$$

$$= \sum_{n=0}^{\infty} \tau^{n+1} \frac{d^{n} g(\epsilon)}{d\epsilon^{n}} \Big|_{\epsilon=\mu}^{\infty} \int_{-\infty}^{\infty} x^{n} \left[\frac{1}{e^{x} + 1} - \theta c x \right]$$

to retro set to set bluca notherixorder of

e m/T which is really small e.g. when

The function
$$f = \frac{1}{2} - \Theta(-x)$$
 is an odd
 $e^{x} + 1$

In of x as many be obvious from the figure

on the previous page. But lets check this

explicitly:

If
$$x>0$$
 fix = 1

explicitly:

If
$$x>0$$
 fix $1=\frac{1}{x}$

If x>0 fix $=\frac{1}{e^x+1}$

Similarly, one can check 2<0.

$$\Rightarrow$$
 $x^n \left[\frac{1}{e^{x+1}} - \theta(-x) \right]$ is an $\frac{1}{e^{x+1}}$ of x when n is $\frac{1}{e^{x+1}}$ and $\frac{1}{e^{x+1}}$ of x when $\frac{1}{e^{x+1}}$ of $\frac{1}{e^{x+1}}$ of

Since the limits of integration in the simplies that only odd values of n contribute.

$$\Delta I = \sum_{n \text{ odd}} \frac{d^n g(\epsilon)}{d\epsilon^n} \Big|_{\epsilon = \mu} \times 2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}$$

$$= 2 \sum_{n \text{ odd}} \frac{d^n g(\epsilon)}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon$$

How to do the integral $\int x^n dx$?

$$\int_{0}^{\infty} \frac{x^{n}}{e^{x}+1} dx = \int_{0}^{\infty} \frac{x^{n}}{1+e^{-x}} dx$$

$$= \sum_{m=0}^{\infty} \int_{0}^{\infty} x^{n} e^{x} dx = \sum_{m=1}^{\infty} \frac{1}{m^{n+1}} (-1)^{m+1}$$

$$= \sum_{m=1}^{\infty} \frac{1}{m^{n+1}} (-1)^{m+1}$$
This looks a bit like Riemann-zeta Sn but has the oscillating terms due to $(-1)^{m}$.

Fret not!

Note that
$$\sum_{m=1}^{\infty} \frac{(-)^{m+1}}{m^{n+1}} = \frac{3(n+1)}{3(n+1)}$$

$$= \sum_{\infty}^{M=7} \frac{w_{M+7}}{(-)_{M+7}} - \sum_{\infty}^{M=7} \frac{w_{M+7}}{7}$$

$$\Rightarrow \sum_{m=1}^{\infty} \frac{(-)^{m+1}}{m^{n+1}} = \sum_{n=1}^{\infty} (n+1) \left[1 - \frac{1}{2}^{n}\right]$$

$$\Rightarrow \int_{0}^{\infty} \frac{x^{n}}{e^{x+1}} dx = n \left[\sum_{n=1}^{\infty} (n+1) \left[1 - \frac{1}{2}^{n}\right]\right]$$

Using the known values of Riemann-zetz gn for integers n. one thus find,

$$T = \int_{0}^{\infty} g(\epsilon) d\epsilon + \frac{\pi^{2}}{6} g'(\mu) T^{2}$$

$$+ \frac{7\pi^{4}}{360} g''(\mu) T^{4} + ---$$
Let's aboly the above formula to the problem at hand, namely specific head of fermions at low temperatures.

$$N = 4\pi \left[\frac{2m}{N^{2}} \right]^{3/2} V \int_{0}^{\infty} \frac{\sqrt{\epsilon} d\epsilon}{e^{R(\epsilon - \mu)} + 1}$$

$$= 4\pi \left[\frac{2m}{N^{2}} \right]^{3/2} V \left[\int_{0}^{\infty} \sqrt{\epsilon} d\epsilon \right]$$

$$+ \frac{\pi^{2}}{6} \frac{1}{2\sqrt{\mu}} T^{2} + \cdots \right]$$

 $= \frac{N}{4\pi V} \left(\frac{h^2}{2m}\right)^{\frac{3}{2}} \times \frac{3}{2} = \frac{\mu^{3/2} + \frac{\pi^2 + 2}{8 \sqrt{\mu}}}{8 \sqrt{\mu}}$ $= \frac{3}{2} \times \frac{3}{2} \times$

$$\xi_{F}^{3/2} = \mu^{3/2} + \frac{\chi^{2} + \chi^{2}}{8 \sqrt{\xi_{F}}}$$

$$\mu = \left[\xi_{F}^{3/2} - \frac{\chi^{2} + \chi^{2}}{8 \sqrt{\xi_{F}}} \right]^{2/3}$$

Recall that in the ramp approximation, $\mu = \epsilon_F - \frac{1}{4} \frac{D'(\epsilon_F)}{D(\epsilon_F)} (8\epsilon)^2$

is next calculate the total energy exactly
$$E = 4\pi \left(\frac{2m}{N^2}\right)^{3/2} \vee \int_{\mu}^{\infty} \frac{\epsilon^{3/2} d\epsilon}{e^{b(\epsilon-m)+1}}$$

$$E = 4\pi \left(\frac{2m}{h^2}\right)^{3/2} V \int_{0}^{2} \frac{e^{3/2} de}{e^{6(e-m)+1}}$$

$$= 2 \frac{1}{4\pi} \left(\frac{E}{V}\right) \left(\frac{h^2}{2m}\right)^{3/2} = \int_{0}^{2} e^{3/2} de + \int_{0}^{2} e^{3/2}$$

$$= \frac{2}{5} \left[\frac{\xi_F}{5} - \frac{\chi^2 + 2}{12\xi_F} \right]^{\frac{1}{2}} + \frac{\chi^2}{4} \left[\frac{\xi_F}{5} - \frac{\chi^2 + 2}{12\xi_F} \right]^{\frac{1}{2}}$$

$$= \frac{2}{5} \left[\frac{5}{2} \left[1 - \frac{\chi^2 + 2}{12\xi_F} \right] \times \frac{5}{2} \right]$$

$$+ \frac{\chi^2}{4} \left[\frac{1}{2} \left[\frac{1}{2} + \frac{\chi^2 + 2}{2} \right] \times \frac{1}{2\xi_F} \right]$$

 $= \frac{2}{5} \mu^{5/2} + \frac{\chi^2}{4} \mu^{1/2} T^2$

$$= \frac{2}{5} \mathcal{E}_{F}^{5/2} + \mathcal{E}_{F}^{1/2} + 2 \left[\frac{\pi^{2}}{4} - \frac{\pi^{2}}{12} \right]$$

$$= \frac{2}{5} \mathcal{E}_{F}^{1/2} + \mathcal{E}_{F}^{1/2} + 2 \left[\frac{\pi^{2}}{4} - \frac{\pi^{2}}{12} \right]$$

$$= \frac{1}{4\pi} \left(\frac{\mathcal{E}}{V} \right) \left[\frac{h^{2}}{2m} \right]^{3/2} = \frac{\mathcal{E}}{N} \times \frac{2}{3} \mathcal{E}_{F}^{3/2}$$

$$\frac{1}{100} \left(\frac{1}{100} \right) \left(\frac{1}{100} \right)^{3/2} = \frac{1}{100} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{5} \times \frac{2}{3} \times \frac{2}{5} \times \frac{2}{5} \times \frac{3}{2} \times \frac{3}{2} \times \frac{2}{5} \times \frac{3}{2} \times \frac{3}{2} \times \frac{2}{5} \times \frac{3}{2} \times \frac{2}{5} \times \frac{3}{2} \times \frac{3}{2} \times \frac{2}{5} \times \frac{3}{2} \times \frac$$

$$= \frac{2}{N} = \frac{2}{5} \mathcal{E}_{F}^{5/2} \times \frac{3}{2} \mathcal{E}_{F}^{-3/2} + \frac{2}{5} \mathcal{E}_{F}^{1/2} \times \frac{3}{2} \mathcal{E}_{F}^{-3/2}$$

$$+ \frac{2}{5} \mathcal{E}_{F}^{2} \times \frac{3}{2} \mathcal{E}_{F}^{-3/2}$$

$$+ \frac{2}{6} \mathcal{E}_{F}^{2} \times \frac{3}{2} \mathcal{E}_{F}^{-3/2}$$

$$=) \frac{E}{N} = \frac{3}{5} \mathcal{E}F + \frac{1}{4} \mathcal{E}F$$

$$\Rightarrow C_{VN} = \frac{d\mathcal{E}}{dT}|_{V,N} = \frac{T^2}{2} \frac{TN}{\mathcal{E}F}$$

Reformulation in terms of density of states:

$$D(E_F) \sim V m^{3/2} \frac{2}{8F}$$

$$\sim$$
 N_3

 $\frac{N}{N} \sim \frac{m^3/2}{N^3} \approx \frac{3}{2}$

Putting exact pre-factors:

$$C_{V,N} = \frac{\pi^2}{3} T D(\epsilon_F)$$