
Neutron scattering and

structure factor

Here we will relate the scattering cross-section

in neutron scattering to unequal time density
-

density correlation function.
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The scattering rate is given by ,
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where Hint B the interaction Hamiltonian between

the neutron and the sample and Iai) , 14£)

are the initial and final states of the

total system ( = neutron 1-sample ) .
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where Ant is the creation operator for neutron

and btcr) B that for samples constituents

( could be bosons or fermions) .
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where 4 4> denotes thermal averaging

Therefore ,

the neutron's scattering rate is

proportional to dynamical density- density

correlation fm ( 66 Structure factor
" )

.

The static structure factor B just the

equal- time correlation tn <<pscg) Pstap>

= fscq.co) dw

Sequel may
be interpreted as the

spectral density of excitations that

are generated when the system is

perturbed by density operator .



Let's consider the following quantity .
called 6 oscillator strength? fCq→ )

= f w scw.gs ) dw
.

This is

heuristically the average energy of

excitations generated dune to density
perturbation .

One can show that fcp→ ) = P2 where
-2M

M is the mass of the sample constituents .

See Girvin- Yang for the derivation .

Let's define dead =

§c§÷,
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which heuristically is the average energy
of excitations

.

To make tub a bit

more precise , let's consider 6 single mode

approximation 1
.



Sinslethodettppnximatn:

Recall our discussion of Goldstone them
,

where we constructed a low energy
eigenstate of the form .
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where Jocx) is the density of the
conserved quantity Q i. - r Q= § Jocx) .
If tithe conserved quantity B
f per ) where per) B local density .

r

then the states of the above form

are said to be obtained via 6 Single

mode approximation
'

.

i.e.IR > = Pk 1g - s .>
.

If this state is the only one that

contributes to the dynamical
structure factor . then
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where ECq→ ) B the energy of
the

excitation thus generated .
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and here we are assuming that only
one term in this sum

. namely that

corresponding to Ef = E- cap ) contributed
⇒ fscaf.io/dw--scar.

and Sw Scap ,w)dw= ECq→ ) .5Cq→)
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