Neutron Scattering and Structure Factor

Here we will relate the scattering cross-seeling in neutron scattering to unequal time density-

density correlation function.

Pinaming Mass of newton reutron Sample By every, momentum conservation, 7,-3 momentum

and $\frac{p^2}{2M_N} - \frac{p'^2}{2M_N}$ energy B damped into the sample

We assume that initially the system is an eigenstate It; > and afterwards in eigenstate $|\mathcal{E}_{5}\rangle$. Energy conservation \geq) $\mathcal{E}_{5}-\mathcal{E}_{7}=\frac{p^{2}}{2M_{n}}-\frac{p^{2}}{2M_{n}}$

The scattering rate is given by, 136, = (\sigma - ke; Lit) \ \sigma - ke;

where Pig = 2x & (Eg - Ei - w) Kpg |Hintle;>12 where Kint is the interaction Hamiltonian between the newton and the sample and 10,), 145) one the Initial and final states of the total system (= neutron + sample). We assume that the total Hamiltonian is $H = H_s + \sum_{p} \frac{p^2}{2M_n} \alpha_n^{\dagger}(p) \alpha_n(p) \sum_{r} \alpha_n^{\dagger}(r) \alpha_n(r)$ = (nci) (sci) where an is the creation operator for newtron and bt(1) is that for sample's constituents (could be bosons or fernious). He is sample

Hamiltonian (e.g., Bose-Hubbard Hamiltonian).

By assumption, $|\psi_i\rangle = |E_i\rangle |P\rangle_n$ $|\psi_g\rangle = |E_f\rangle |P\rangle_n$

$$\Rightarrow T_{ij}$$

$$= 2\pi \left. 8(E_{t} - E_{i} - \omega) \right| \geq \langle E_{t} | f_{s}(r) | E_{i} \rangle \langle P'(P_{n}(r)|P) |$$

$$= 2\pi \left. 8(E_{t} - E_{i} - \omega) \right| \geq \langle E_{t} | f_{s}(r) | E_{i} \rangle \langle P'(P_{n}(r)|P) |$$

$$= (P - P') \cdot r$$

$$= P' - P$$

$$\Rightarrow T_{ij} = 2\pi \left. 8(E_{t} - E_{i} - \omega) \right| \langle E_{t} | f_{s} (-P_{i}) | E_{i} \rangle |^{2}$$

$$= P' \cdot f_{ij} = P' \cdot f_{s} (P_{s} - P_{i}) | P'_{s} |$$

$$= \begin{cases} \frac{1}{2} e^{-\beta E_i} & \langle E_i | \beta_s(a_i) | E_f \rangle \langle E_f | \beta_s(-a_i) | E_i \rangle \\ & \langle E_i | \beta_s(a_i) | E_f \rangle \langle E_f | \beta_s(-a_i) | E_i \rangle \end{cases}$$

$$= \frac{1}{2} \left\{ \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) - \frac{1}{2} \right\}$$

$$= \frac{1}{2} \left\{ \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) - \frac{1}{2} \right\}$$

$$= \frac{1}{2} \left\{ \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) - \frac{1}{2} \right\}$$

$$= \langle \mathcal{E}_{\beta} | \mathcal{J}_{S}(-\varphi) | \mathcal{E}_{i} \rangle e$$

$$= \langle \mathcal{E}_{\beta} | \mathcal{J}_{S}(-\varphi, +) | \mathcal{E}_{i} \rangle$$

= \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2 $= \int \langle \langle g_s(q) | g_s(-q, t) \rangle \rangle = i\omega t dt$ $\frac{def}{def} = c c c c c$ det Scq, ws where & >> denotes thermal averaging Therefore, the newtron's scattering rate is propor boral to dynamical doneity-density correlation en (66 Structure factor"). The static structure factor is just the equal-time correlation for <<pre>fs(q) ls(q))>> $=\int S(q,\omega) d\omega$ Scaro may be interpreted on the spectral density of excitations that

are generated when the system is perturbed by density operator.

Lets consider the following quantity. called 6 oscillator strength?, f (q2) =) w S(w, 7) dw. This is heuristically the average energy of excitations generated due to density perturbation. ONE can show that $f(\vec{p}) = \frac{p^2}{2M}$ where M B the mass of the sample constituents. See Girrin-Yours for the derivation. Let = define $\Delta(q) = \frac{f(q)}{q^2} = \frac{q^2}{q^2}$ S(7) 2M S(7) which heuristically is the average energy of excitations. To make this a bit of excitations. more precise, let consider & single mode oup proximation.

Single Mode Approximation: Recall our discussion of Goldstone thm, constructed a low energy where we eigenstate of the form;

1R> = Jddx e 70(2) 19.5.> where Jo(x) is the denity of the conserred quantity Q i. -. Q = & JoCx). . If the conserved growthy B [g(r) Where g(r) is local density. then the states of the above form One said to be obtained via & Single mode apposination. i.e. 12> = 8 k 19.5.>. If this state is the only one that Contributes to the dynamical Structure tacks, then

excitation thus senerated.

[facell
$$S(3, \omega)$$
 at $T = 0$ is

$$= \frac{Z}{(E_0)} \frac{1}{9} \frac{1}{1} \frac{1}{9} \frac{1}{9}$$

and here we are assuming that oney

one term in this sum, namely that

corresponding to $E_S = E(3)$ contributed

 $S(\vec{q}, \omega) = S(\vec{q}) \delta(\omega - E(\vec{q}))$

Where ECZ) B the energy of the

one $\int \omega s(\vec{q}, \omega) d\omega = E(\vec{q}), s(\vec{q})$ Using Swscq, wide = 92 Using $S = \frac{q^2}{2M S(7)}$ See Expt. See Expt. Convos that use this

=) { SCq, w) dw = SCq)