In the Landon theory, we let order-parameter to be uniform in space, which is a rather drastic assumption. To improve upon it, let the order-parameter be a function of space, $m(\vec{r})$, and consider the Landon free energy as a functional of $m(\vec{r})$:

 $F = \int d^dr \left[(\nabla m)^2 + t m^2 + u m^4 - h m \right]$ where $F = \int V$ is the extensive Landon free energy, $t = a (T - T_c)$, and here is the magnetic field. Which we also allow to be inhomogeneous.

The partition tenedion is given by

- \begin{align*}
& \begin{align*}
& - \beta \begin{align*}
& \delta \delta \left(\begin{align*}
& \text{Tm}^2 + \text{tm}^2 + \text{tm}^4 - \text{hm} \right] \\
& \begin{align*}
& \begin{ali

integral exactly is quite hard, but one evaluate it within Gaussian approximation.

for too i.e. ToTc. <m>=0, therefore. $(\nabla m)^2 + t m^2 + u m^4 \simeq (\nabla m)^2 + t m^2$ For t<0, <m> ±0 and one can again expand around <m> to obtain a gaussian Within Landon theory, $\langle m \rangle^2 = -\frac{t}{2u}$ write. $w = \langle m \rangle + 8m$ \cong $t < m^2 + u < m^4$ $+ [2t + 12u < m)^{2}] (8m)^{2}$ $-\frac{t^2}{2u} + \frac{ut^2}{4u^2} + \left[2t + 12u - \frac{t}{2u}\right] (sm)^2$ $-\frac{t^2}{4u} + 41t1(8m)^2$. Let's use tus Gaussian approx. To colculate

Let's use this Gaussian approx. To collulate correlation firs above and below T_c ; at h=0. $\langle m(\vec{r}) m(\vec{r},r) \rangle = \frac{1}{\sqrt{|m_k|^2}} e^{ik \cdot (r-r)}$ Where m_k is the Fourier transform of $m(\vec{r})$

Within Coussian approximation, the partition to is -8/32, [(DM)2+ + m2] センロ ! Z = Soma e = SDMR 6 - Black IMR/2 [++k2] $\Rightarrow \langle |m_k|^2 \rangle \sim \frac{T}{t+k^2}$ $\Rightarrow \langle m(r) m(r) \rangle \sim \frac{1}{\sqrt{\frac{t+k^2}{t+k^2}}} \sqrt{\frac{k^2 + k^2}{t^2 + k^2}}$ $\frac{\sqrt{1+\frac{1}{2}}}{\sqrt{1+\frac{1}{2}}} \cdot \frac{\sqrt{1+\frac{1}{2}}}{\sqrt{1+\frac{1}{2}}} \cdot \frac{\sqrt{1+\frac{1}{2}}}{\sqrt{1+\frac{1+\frac{1}{2}}}} \cdot \frac{\sqrt{1+\frac{1}{2}}}{\sqrt{1+\frac{1+\frac{1}{2}}}} \cdot \frac{\sqrt{1+\frac{1}{2}}}{\sqrt{$ of roo (i.e. or To), the correlation largeth diverges. This is a hallwork of a second-order transition.

-B Sddr [[V 8m]

t<0: Here Z= 10 swcn e + 41t1(sm2]

Thus using the above result

(Sm(r) 8m(r)) ~ Te (1-1/1/3

17-r/d-2

$$= \langle m(r) m(r) \rangle - \langle m \rangle^{2}$$

$$- \langle r - r / 1 \rangle^{2}$$
where $\frac{3}{\sqrt{1+1}}$

$$= \sqrt{r} - \frac{1}{\sqrt{r} - r} / \frac{1}{\sqrt{r} - r}$$
where $\frac{3}{\sqrt{1+1}}$

$$= \sqrt{r} - \frac{1}{\sqrt{r} - r} / \frac{1}{\sqrt{r} - r}$$
Thus again. os $\frac{1}{\sqrt{r} - r} - \frac{1}{\sqrt{r} - r}$
the correlation length directly.

Critical exponents η , ν :

Coing beyond mean-field, the actual correlation functions behave as:
$$- \frac{1}{\sqrt{r} - \frac{r}{r}} / \frac{1}{\sqrt{3}}$$

1. e. < [mm - <m>][m(1) - <m>] >

(mcn) m(n)) ~ e 17-7-1 d-2+n

 $\frac{2}{5} \sim \frac{1}{1+1^{2}} \sim \frac{1}{(T-T_{c})^{2}}$

Thus, within mean-field, N=D and D= 1/2.

Quantum Phase Transitions

Quantum fluctuations provide an afternative route to go from one phase to another. This is most manifest at zero kelvin when there are no thermal fluctuations. Interestingly, as earlier discussed in brief, one can make a quantum system in d-space dimensions at zero temperature to a classical system in d+1-space dimensions at non-zero temporatures. This mapping therefore translates quantum fluctuations in d-dimensions to darrical fluctuations in d+1 - dimensions. One of the simplest example of a quantum phase transition is provided by on Ising model in d=1 in the presence of a transverse magnetic field, to which we now turn our attention.

Transerve Field Ising Model in d=1 The Hamiltonian is given by $H = -J\Sigma\sigma_{i}^{2}\sigma_{i+1}^{2} - \kappa \sum_{i}\sigma_{i}^{2}$ Ising Coupling Transverse field When N=0, this is identical to 12 classical Ising model, which, as you recall, can be solved using Transfer watrix method. Also, it's crucial to note that the

above model is very different from the "longitudinal field Ising model", $\hat{H} = -J \sum_{i} z_{i} z_{i+1} - h \sum_{i} z_{i} z_{i}$ which doesn't have the $z_{i}^{2} - z_{i}^{2} z_{i}$ symmetry (we will refer to this symmetry of 5 Ising symmetry) as is conventional).

Symmetry of H: The Ising symmetry of the transverse field Ising model is a consequence of the fact that. 0 + tio = tiwhere 0 = TT 0;x Note that $0^{+}0 = 1$ and $0^{2} = 1$ - 0; and = U; T + U oclA therefore if we add a longitudinal field E, o; to H, it will lose the Ising symmetry. Since symmetries can be spontaneously broken, we next ask; does the ground state(s) of H have the Ising Symmetry or not?

Sportaneous Symmetry Breaking in the Ground state? To address this question, we consider the two limits: J>>h and J«h. This is the familiar limit because in this limit the ground stakes) essentially behave like the clarical 1d Ising model at T=0 (h=0). At h=0, there are two ground states.

the ground stated.

(4) = T(1);

Therefore at h=0, the speakoun boks

like:

 $\frac{1 \varphi_3 }{1 \varphi_2 }$

The two ground states 1417, 1427 break the Ising symmetry spontaneously the Hamiltonian H, because unlike not unchanged by (437, (427 ave unitary 0= TTO: the action of Speak aley, $O(\theta_1) = (\theta_2)$ U1 42> = 167> i.e. the two ground states interchanse under the action of H. Therefore, the Ising symmetry is sportaneously broken at h=0. What halpbers when h =0 but shipe h < J? The two ground states will wix with each other at N'th order in ove has to flip all sping to go from

yield the following two eigenstates, $|\phi_1\rangle = \overline{7} [|\phi_1\rangle + |\phi_5\rangle]$ $|\psi_2\rangle = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \psi_1 \right] - \frac{1}{2} \psi_2 \right]$ with the eigen-energ Lifterence $E_2' - E_1' = \frac{h}{JL-1} \propto he^{-\alpha L}$ where & ~ log (J/h). Thus, the Spectrum looks like モューモイルー 女し In the thermodynamic Shuit, L> 2, the boo eigenstate, are again deservate.

 $|\psi_1\rangle$ to $|\psi_2\rangle$. There fore, the

degenerate perturbation theory will now