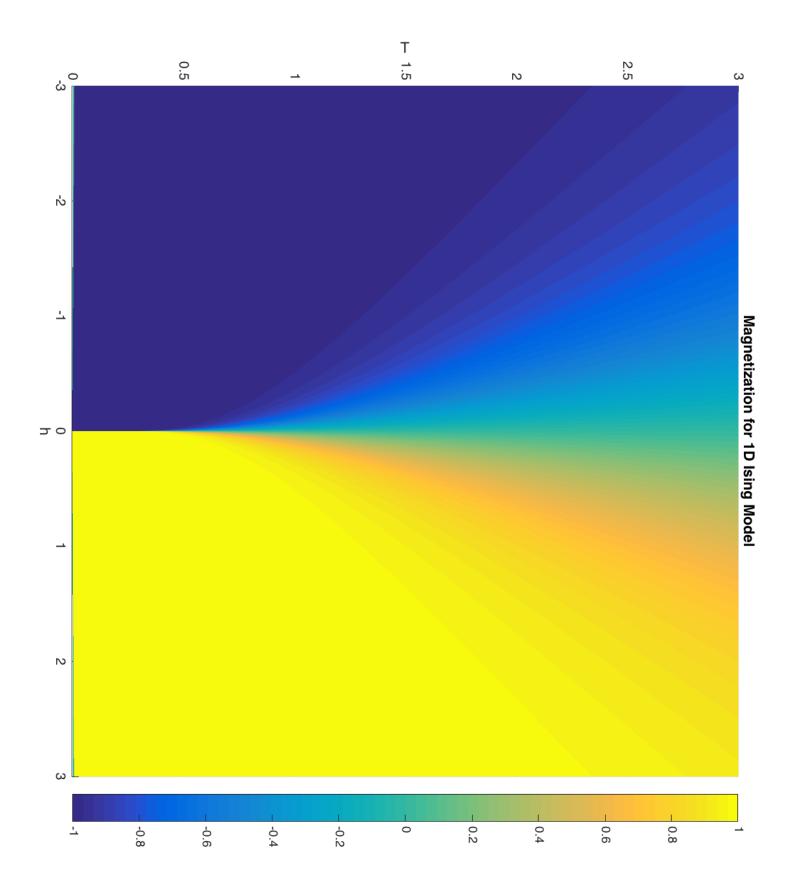

Summary so far:

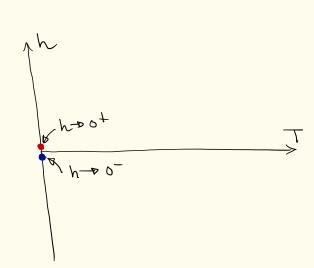
1 d Ising Model:

Non-zero magnetization at T=0 og h>0.

 $\frac{\text{Zero}}{\text{Zero}},, \qquad ,, \qquad \uparrow \neq 0 \quad \text{as } k \Rightarrow 0$



How can things look so different at zi T fi tank $90 \neq T$ & 0 = T10 K? which of the above two plots will be the correct one. Let's analyze tus in detail. $f = -T \quad log \left[cosh(Rh) + \sqrt{sink^2(Rh) + e^4RJ} \right]$ $-\frac{\partial f}{\partial h} = \beta T \left[\sinh(\beta h) + \frac{2 \sinh(\beta h) \cosh(\beta h)}{2 \sqrt{\sinh^2(\beta h)} + e^{-4kJ}} \right]$ wsh(Bh) + J sinh2(Bh)+ E4BJ sinh (Bh) 1 sinh2 (Bh) +e-4BJ ht ht m β-00 h-0 = $h + h + \frac{\sinh(\beta h)}{\sinh(\beta h)} = h + \frac{\sinh(h)}{\sinh(\beta h)}$ Nt H m = sign(h) i-e, +1 if h-> ot -1 if h-> o Thus, limits don't commute.


further as already discussed, if B/D as, then in the limit hoo, moduleys go to zero. Cheek: ht m(h) = ht sinh(βh)

http://sinh2/Rh71=4 hard Jsink2(Bh)+e4BJ So if $T = 10^{-10} \, \text{K}$ and $h = 10^{-20} \, \text{K}$, while J = 1k, then $m \approx 0$ Since Bh << 1. On the other hand, if $T = 10^{-20} \text{ K}$ and $h = 10^{10} \, \text{K}$ and $J = 1 \, \text{K}$, then $m \simeq 1$ since $\beta h \gg 1$. With this understanding, lett plot m in the h-T plane.

One really needs a 32 maye to plat mcT, w but lets draw at a given (N,T) as an arrow whose direction depotes the sign of m and length the magnitude, Path-3 Path-1 Path-2 Path-3

The singularity exists only at (h, T) = 0Thus, the Phane diagram looks like

The two dots at the origin signify that the magnetization in the limit hot is not same as in the limit hot.

These Diagram of 1d Ising Model

All spins up

Zero temperature

Phase transition

T

All spins down

How many phases at T>0?

Only one! Parking on singular only at the origin = can so from any point on the (h, t) plane to any other point without encountering singularity.

Smooth path (i.e. encounters no singularity). How many phases at h = 0? That is, while maintaining 5 - S symmetry) Only one. How many phases at T = 0?

(a bit unphysical)

All spins up

The Let order

he phase transition

He All spins down

Singularity at the origin.

2d Ising Model: magnetization at T=0 as h>0. Non-zero ", T<Tc on hoo Non-zero ,, >> T>Tc ag T→O 22 Zem Tc = 0 M = <u>9 k</u> / m=g 0 = T How to see this ? Mean-field Theory (see below)

Finally, when h = 0 (and not infinitesima) magnetization is always non-zero. How can singular behaviour exist in the limit how at finite T Answer: Due to Thermodynamic Limit $N \rightarrow \infty$. Recall the domain enert where DF domain wall $\sim \sqrt{M} \left[J - T \log(2-j) \right]$ This is qualitative different for $J > T \log(2-j)$ V3 J < Tlag(2-1) only when N-D & More explicitly, ht ht m(T, N, h) = 0 for all $N \rightarrow \infty$ $h \rightarrow 0$ ht ht mct, N, W \$0 for T<Tc. Thus, compared to 12 Ising, N plays the role of B to cause signlar behavior.

het's again plot m in Toh Plane assuming that we first take the limit · B C U & Path-5 2 Posh-2 ppath-3 Path-1 m Path-1 Path-2 path-3

 $M \neq 0$ at all T for $h \neq 0$. Phase Diagram: The limit N-D as taken first. > h= 0 We will soon derive the qualitative features of the 20 Ising Model using Mean field theory Phase Diagram of 2d Ising Model

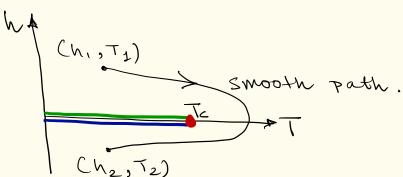
h=0+

(M>>0

(M>=0)

(M>=0)

(M>=0)


Critical point

(2nd order phase

transition)

How many phases now?

At 7 + 6, if h + 0:

Only one phase when h \$0 at 770.

At $T \neq 0$, at h = 0 (i.e. while maintaining $S \Rightarrow -S$ symmetry of +1) $T = 0 \quad T_{1} < T_{c} \qquad T_{2} > T_{c} \qquad T_{2}$

T=0 T1<Tc Tc T2>Tc T2>Tc T2>Tc M=0 > T Singularity at Tc.

Always encounter singularity when going from T<Tc to T>Tc.

Two phases!

The low-T phose is called 66 Ordered? Since M ± O. (= ferro magnetic magnetic

The high-T phone is called

(1 disordered" Since M=0. (= paramagnetic phane).

phorse)