$$H = - \int ZS; S; H - hZS; \begin{cases} Perrodic \\ boundary \\ conditions \end{cases}$$

$$Z = \begin{cases} S; S; S; H + Bh S; S; \\ S; S; H + Bh S; J \end{cases}$$

$$= \begin{cases} S; S; H + Bh S; J \end{cases}$$

$$= \begin{cases} S; S; H + Bh S; J \end{cases}$$

There is a swart way to do the above discrete sum: $(\beta J S; S; + \frac{\beta h}{2} (S; + S; + i))$ $Z = \sum_{3} \frac{1}{3}$

Think of (i, i+1) as the row and column Jabell for a 2x2 watrx.

$$08 \text{ N} \rightarrow 08 \quad \left(\frac{\Lambda_2}{\Lambda_1}\right)^N \rightarrow 0 \quad \text{since } \frac{\Lambda_2}{\Lambda_1} < 1$$

$$\Rightarrow \quad -\beta F = \Lambda_1$$

$$\Rightarrow \quad f = -T \text{Nlog}(\Lambda_1)$$

$$\Rightarrow \quad f = F = -T \text{ log } [\text{ Wsh}(\beta h))$$

$$-\frac{T.J}{T}$$

$$= \frac{T.J}{T}$$

$$= \frac{T.J}{T}$$

$$\Rightarrow \quad f = -J - T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

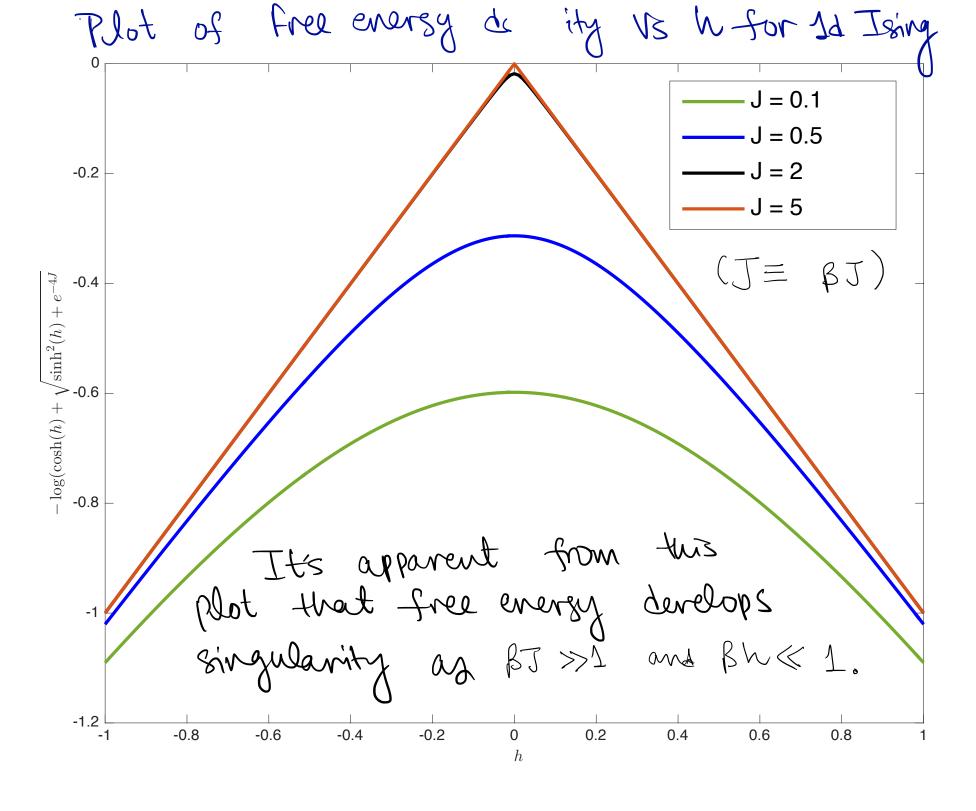
$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

$$= \frac{T}{T} + T \text{ log } [1 + T] h^2$$

 $Z = \frac{\lambda_1}{\lambda_1} \left[1 + \left(\frac{\lambda_1}{\lambda_1} \right)^n \right]$

S 12 orsznar twode borl => f is completely analytic as one may see from the exact expression: f = -T log [cosh(Rh)

+ Vsink(Rh)+ears] Why is the above 5" analytic? V sinh2 (Bh) + E 4BJ is analytic in Bh as long ~ <u>e</u>487 ≠0 be cause the 5ⁿ U g(x) > 0 and analytic. Both there conditions are satisfied above as long as BJ is not too longe or Bh not too small.



Physical Properties of 1d Ising Model

Above we showed that the free energy density of the 1d Ising model is given by:

$$f = -T \log \left[\cos h(\beta h) + \sqrt{\sinh^2(\beta h) + e^{4\beta T}} \right]$$

het's check some limits.

$$T \rightarrow 0 : f \rightarrow -J = \frac{E}{N} (T = 0)$$

$$T \rightarrow \infty : f \rightarrow -T \log(2) = -T \log 2$$

or expected.

$$\langle E \rangle = F + TS$$

$$= F - T \frac{\partial F}{\partial T}$$

$$= -T^2 \frac{\partial}{\partial T} \left[\frac{F}{T} \right] = -\frac{\partial}{\partial B} \log Z$$

hets restrict ourselves to N=0. Recall. $\lambda_1 = e^{\beta J} \left[\cosh(\beta h) + \sqrt{\sinh^2(\beta h) + e^{-4\beta J}} \right]$ $\lambda_2 = e^{\beta J} \left[\cosh(\beta h) - \sqrt{\sinh^2(\beta h) + e^{-4\beta J}} \right]$ $log[Z] = W log \lambda_1$ At k=0, $\lambda_{1,2} = e^{\beta J} \left[1 \pm e^{2\beta J} \right]$ $= e^{\beta J} \pm e^{\beta J}$ $=) \lambda_1 = 2 \omega sh(\beta J), \lambda_2 = 2 sinh(\beta J)$ → At h≥0, $E = -\frac{\partial}{\partial B} \left[\log Z(N=0) \right]$ $-M \frac{3}{3B} \log (2 wsh(BJ))$ = -NJ + tanh(BJ)C= LE/LT Specific heat $= + \frac{N}{7} J^2 \operatorname{Seoh}^2(\beta J)$

This is completely analytical for at 7 + 0. As T-0 As Recall: e BJ is not analytic at $\beta = \infty$. Too to municipan (0=T) M $M(T \neq \delta)$

X=dM/ h=0 \ as expected.