
Simple
Models with Singular

Free
Energy

( and more than

one phase of matter )

Now
we begin our

study
of Phases and Phase

transitions in earnest
.

One of the most useful model we will

encounter
to develop our

understanding
is

the Tsing
model

.
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We will first restrict ourselves to
gables

which form a lattices Even move

,
we

will restrict ourselves to cubic lattice
in

various dimensions
.



Ising
Model on

d- dimensional cubic lattice

with nearest neighbour
interactions .
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what are the analog of parameters {[k } ?
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But this is

slightly misleading
.

Better to define a model

solely using

symmetries .
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what are
the

symmetries of
Tsing

model ?
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Noting
this

.

one can write down a

general Tsing
model with

symmetry
s→→
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Since magnetic field
is

generally
fixed from

the outset
,

the

symmetry

that requires

h→ - h is
a

bit unphysical .

when h= 0
,

S→
- S a more physical

symmetry
is

Hamiltonian restricted
to

terms that contains an
even number of

product of

'

S 's
.

H=
ITS:S,

+

3225
;§S£e + -

-
-

Impossibility
of Phase Transition

in Tsing
Model

? ?

Recall that  in the presence of a

magnetic field
,

the free
energy

is
given

by

dff  
=

-

SDT -

Math

where M is the magnetization :
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Due
to the

symmetry
just discussed

,
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This

seemingly implies that in zero

magnetic field the
Issing model can

not have

ay
magnetization

.

This conclusion is

manifestly wrong
!

We
assumed that the free

energy
is

not
singular !
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Spontaneous symmetry breaking

"

is the phenomena

where
the solution to a problem

has
tower

symmetry
than the problem

itself .

In the context of phases of matter
,

it

means
that a phase of matter has

lower
symmetry

than
the

underlying

Hamiltonian . Singularity
of free

energy
is

a

necessary

condition
for SSB .

e.
g

in the

Ising
model at he - O

,

a non
-

zero magnetization
M will

imply

SSB
.



Ising
Model in One Dimension

-

Consider Id

Ising
model :

H
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Chose
Periodic

boundary

conditions for

convenience
C doesn't

really
matter for

the

discussion )

When he 0
, ground

state
energy

C
=

free
energy

at
T

-

o ) is minimized

by

two
distinct configurations :

E
= - NJ

a) A A on
-  - - at All

up

b) d tr I - - -

I I All down
.

Therefore there are
too

ground States

and neither of them have the

symmetry

s → - S of the Hamiltonian H .

Infant
,

under S→ - S
g

the two
ground States

interchange .



what happens
at a

non-zero
h

?

whey

,

the
sound state Is
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Recall
.

this is allowed because B→D→

and 26dBallowed to be
singular
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Magnetization

=IdI
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This is
an example of

first-ordertransition since ddtfn
is not continuous .

what happens
at finite Temperature ?

Somewhat
surprisingly ,

at finite T
,

the singular features
of the free

energy goaway_
for Id

Ising
model

.

This is because the thermal
fluetvakay

are

toostnng.in
Id

. In Hishen

dimensions ( d > 1)
g Tsing model

continues
to bare a singular behavior

at a function
of h( at h=O ) eren for T > 0

.



Simple
argument for analytical

free energy
and absence of

any

phase
transition

at T > 0 intue

Tsing
model in d=1_ ;

The free energy
is F  = E - Ts

At T > O
,

the
E and S compete

to minimize F •

Consider small T ,
so that the fluctuations

around the ground
stale are expected to

be small •

Also define the ground

state to be the zero of
energy

for

convenience
.

The simplest fluctuation

consist of a domain wall :
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However .

the entropy
associated with

the domain wall
is huge :

Soham

by
CN ) since N placed

wall

to put the domain wall .

=) F
 

= XJ -

Tloycn
)

domain
wall

as N → a
, entropy

dominates Oren

the

energy
and the system prefers

to have

proliferation of domain walls at

am#
T > 0

•

⇒ No magnetization

at T > 0

Thus
.

exted "

NF
+ > 0
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What would take for Tsing
model to

have SSB 3

we want°M =

-ZIh|↳oto
be

non . Zero .

We also know that Fch ) is an

even fn of h
.

So the

only way
for SSB to

take place is :
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Ising
Model in

Two Dimensions

-

In two dimensions the counting
of

energy
and

especially entropy
Is quite

different .

For concreteness
,

consider d=2 Tsing
model

on square
lattice without magnetic field .

H
=

J<,?>
Sis ;

At Zero temperature
,

there are again

two
ground States

→

t J t

d d t
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In the presence
of magnetic field

C i.e. the term
- h

?
si

in the Hamiltonian )

the T=o free
energy

( =

ground state

energy ) again looks like

DE*
The main difference between Id and

2dB
at T # 0 .

At T > 0
,

thermal fluctuations allow the

existence of did .

As In Id
,

the question
is : do the domain walls

completely
kill the

ordering
at

any

T > 0 ?



Domain wall looks like :
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If the coordination # of the lattice

is z ,
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of
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.
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If Domain
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large

i. e
.
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#
TN ) .

then the system can't

sustain ordering
.
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when T > I

iogcz
. , ,

' entropy
dominates

and system
wants

to form
domain walls

.

On the other
hand ,

for TTC
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9
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order CSSB )

.

⇒ Phase transition at To ~ I
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This argument
works in

any

dimension
.
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Side Remarks :

-

There
are Several interesting examples of

symmetry breaking
In finite systems

at T=0 .

These are all
energy

minimization problems
like the Ising

model at
T=O

•

O:s±¥sEE;
Minimize Coulomb

every
#

tzE¥Pn
Naive guess

'

-

Hishstsymvwerhysolution .

-

= A cube ?

Correct
answer : Square Anti prism .

Top view :

ftp.M#gly soeases


