Simple Models with Singular free Enersy (and more than one phase of matter)

Now we begin our study of photos and Phone transitions in correct.

One of the most useful model we will encounter to develop our understanding is the Ising model.

$$H = \sum_{ij=1}^{N} J_{ij} S_i S_j + \sum_{i} h_i S_i$$

Total number of microstates = 2^N
We will first restrict ourselves to graphs which form a lattice. Even more, we will restrict ourselves to cubic lattice in various dimensions.

Ising Model on d-dimensional cubic lattice

with recrest neighbour interactions.

$$\frac{1d}{d} : H = \frac{1}{2} \sum_{i=1}^{2} S_{i} S_{i+1} + h \sum_{i=1}^{2} S_{i}$$

$$\frac{1}{2} \sum_{i=1}^{2} S_{i} S_{i+1} + h \sum_{i=1}^{2} S_{i}$$

$$\frac{1}{2} \sum_{i=1}^{2} S_{i} S_{i+1} + h \sum_{i=1}^{2} S_{i}$$

2d square:
$$H = J \begin{bmatrix} \sum S \neq S \neq 1 \\ 1 \end{bmatrix}$$

to the square of the square of

H = J = S7 S7+6; d-dimensional hyperoubic lattice: + N = S7 one the analos of parameters EK ?? $Z = \sum_{\{i,j\}} - \beta H$ = \(\sigma \) \(\begin{array}{cccc} -\beta \) \(\beta \) \(\be $K_1 \geq \beta J_2 + K_2 = \beta h$. Two- Linersonal space. But this is slightly misleading. Better to define a model solely using

sy wmetrica.

what are the symmetries of Ising wodel? $H = J \geq S_{7} \leq S_{7} + \delta_{1} + h \geq S_{7}$ $S_{7} = 1 - d$ $S_{7} = S_{7} + h$

Noting this, one can write down a general Ising model with symmetry $S \rightarrow S$. $H = \sum_{r_1} T_{r_2} S \vec{r}_1 S \vec{r}_2 + \sum_{r_2} k_r S \vec{r}_r$ $+ \sum_{r_3} T_{r_3} T_{r_3} T_{r_4} S \vec{r}_r S \vec{r}_s S \vec{r$

Since magnetic field is generally fixed from the outset, the symmetry that requires $h \rightarrow -h$ is a bit unphysical. when h=0, S--S a more physical symmetry is Hamiltonian restricted to terms that contains an even number of product of S's. H= \(\frac{1}{5}, \frac{1}{5}, \frac{1}{5} \) + \(\frac{1}{2} \frac{1}{5}, \frac{1}{5} \ Impossibility of Phase Transition in Ising Model ?? Recall that in the presence of a magnetic field, the Gree every is given by dF = -SdT - Mah where M is the magnetization:

where M is the magnesization: $M = \langle \Sigma_i \rangle = \frac{\Sigma_i}{\Sigma_i \Sigma_i} \frac{E^{H}(\Sigma_i S_i)}{E^{H}(\Sigma_i S_i)}$

Due to the symmetry just discussed, F(h, T, T) = F(-h, T, T)= (H) 6 M(h, 7,T) = -M(h, 7,T)M(0, 7, T) = 0This seemingly implies that in zero magnetic field the Ising model can not have any magnetization. This condusion is manifestly wrong! We assumed that the free energy is not singular.

Sportaneous Symmetry Breaking Singularity of free enersy Spontaneous symmetry breaking is the phenomena where the solution to a problem has Jowen Symmetry than the problem itself. In the context of phases of matter, it means that a phase of matter has lower symmetry than the undersying Hamiltonian. Singularity of free energy is a necessary condition for SSB.

e.g. in the Ising wodel at N=0, a non-zero magnetization M will imply SSB.

Ising Model in One Dimension

Consider 1d Ising model: $H = -J \sum_{i} S_{i}, S_{i+1} - h \sum_{i} S_{i}$

Chose Periodic boundary conditions for two convenience Choesn't really matter for two

discussion)
When N=0, ground state every C=Therefore the state every C=Therefore the state every C=The state every C=The

-) A A - - - A All up

b) I I I -- I I All down.

Therefore there are two ground states and reither of them have the symmetry $S \rightarrow -S$ of the Hamiltonian H.

Infact, under $S \rightarrow -S$, the two ground states

interchange.

What happens at a non-zero W? when h >0, the ground state is 1 1 1 - - - 11 ('All up) Ez= -NJ - Nh the ground state is When h<0 (narob 214) UU. - - U U MIN - ZN - = MN + ZN -= FCT=0) is a singular => Eq.s. fr of h, even for finite N. Pecall this is allowed becouse \$ > 00, and 200, is allowed to be singular.

jumps ; Magnetization = -1 de M dh T / N an example of first-order This is transition since de is not continuant. What happens at finite Temperature? Somewhat surprisingly, at sinte T, the singular features of the Bree energy go away for 1d Ising model. This is because the thermal fluetration are too strong in Id. In Hisher dimensors (d>1), Ising model continues to have a singular behavior as a function of h(at h=0) even for T>0.

Simple argument for analytical free energy and absence of any phase transition at T70 in the Long model in d=1: The free energy BF=E-TS At T>0, the E and S compete to minimize F. Consider Small T, so that the Sheetrahon around the snowd state are expected to be small. Also define the ground State to be the zero of energy for convenience. The simplest fluctuation : llow nismob a to terno Copen boundary Condition) 1 2 3 1 1 1 1 1 1 1 1 1 (benodic b-c.) DE = 27 (Open) & J donnain wall 47 (periodic) In either care

However, the entropy associated with the Lowain wall is hugh: S = log(N) since N places , llow nismob sut try of (a) gal T — T by (b)

downable

would ad N -> 00 , entropy dominated over the energy and the system presens to have proliferation of domain walls at T > 0. =) No magnetization at T>0 Thus, expect: Analytical fr.
(No Singularity)

of lebow grist or take for Ising wodel to have SSB ? trow Won-zeno. We also know that FCh) is an eren 5º 05 h. So the only way for SSB to take place is: / Slope at h = ot Slope at h=0 = -Msee that this is indeed the Ur will in all 2 at T=D and at T = 0

Toing Model in Two Dimensions

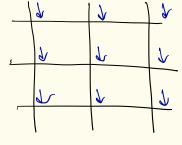
In two dimensions the counting of energy and especially entropy is quite different.

for concreteres, consider d=2 Ising model on Square lattice without magnetic field.

$$H = J \sum_{\langle ij \rangle} S_i S_j$$

At Zens temperature, there are again two ground states,

_	9	1	<u>^</u>
	1	↑	A
	^	^	1
_			



In the presence of magnetic field

Ci.e. the term — h \(\sigma\); in the Hamiltonian

The T=0 free energy (= ground state

energy) again looks like

h

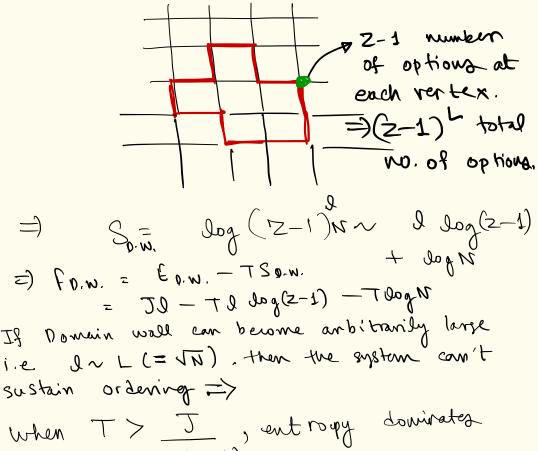
The main difference between 1d and 2d is at 7 ± 0 .

At T>0, thermal fluctuations allow the existence of domain walls. As in 1d, the question is: do the domain walls completely kill the ordering at any T>0?

all looks like: Domain Energy with of domain wall · X ilength of the Lowain wall Entropy of a Lorrain wall ~ log (# of ways of drawing a (llow viewob

domain wall)

If the coordination # of the lattice is \mathbb{Z} , # of ways of drawing a domain wall $\sim (\mathbb{Z}-1)^d$ No original D.W.



When $T > \frac{T}{\log(z-1)}$, entropy dominated

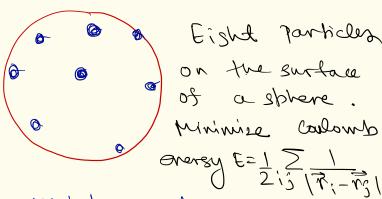
and system wants to form domain walls. On the other hand, for T< Jog(z-1)

system will Spontanionsly order (SSB). =) Phone transition at Tc ~ J log(z-1)(Note tuis argument requires

This argument works in any dimension. En JZL d-1 $S \sim h^{d-1} \log (Z-1)$ Tc ~ Jag (2-1) lattice in a dimension, culàc log (2d-1) N= 0+ <M>>0 (M>=0>T & Chitical points = 2nd orden phase transits on

Side Remarks:

There are several interesting examples of Symmetry breaking in finite systems at T=0. These are all every minimization problems like the Ising model at T=0.



Naire gress: Hishert symmetry solution.

Correct answer: Square Antiprism.

Top view:

