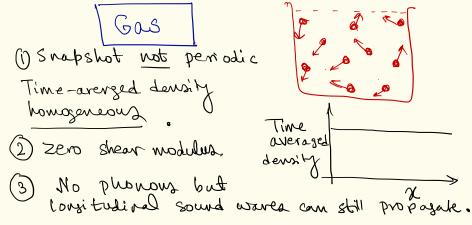
Thases of Matter

Naire notion of phases of matter: Solid Openiodic arrangement of


atoms => density not homogeneous.

- Non-zero shear modulus (6 rigidity). 2 (3) Presence of Phonous.

| hi quid | () Snapshot not periodic

Time-arenged density homogeneous

(2) zero shear modulus. 3) No phonous but to propa

- 1 Less dense than liquid 1
- highid and god seem quite similar. Are they really distinct phonon of matter?
- If the answer to the above question is No, then are solid and liquid the only phases of matter?
 - What is the precise definition of phase of matter anyway ?

het's discuss there questions one at a time.

- Liquid and god seem quite similar. Are they really distinct phases of matter? water, or, for that water, Phase diagram of Problem Solid Continuous path from gas to round Point Point Point Point Point Point Proposition Tryle most objects: The most striking thing in the above phase

diagram is that one can convert water to gas without boiling?!

The refere it is very suggestive that liquid

Therefore, it is very suggestive that liquid water and water rapor (gas) are the same phase of matter.

This is a consequence of the fact that the symmetries of the liquid water are exactly same as that of the water valor.

This leads us to ask, Are solid and liquid (= gas) the only two Phases of matter for a given material? The answer is an embhatic NO. In principle, there can exist an infinite number of phases of matter for a given system depending on how the symmetries are broken. For example, there are 230 kinds of solids in three di nensions which are all distinct from each other in the sense that one cam't go from one to another without encountering a phase transition (to be made precize below). Even more, there can exist other Thank of matter which do not fall into the label solid/liquid at all. We already encountered one such phane -Bose-Einstein Condensate for bosonic systems. The BEC is a distinct phane of

watter from a high-temperature box gas as signalled by the presence of

Singularity in its free energy at Tc. We won't derive this (see Dan Anoras leature notes in Additional Resources), but the Specific heat Jooks like: der 13 <u>discontinuous</u> at T=Tc.

 $\frac{d^3F}{d+3}$ is discontinuous at $T=T_c$.

Thus, free energy is not an analytic function of temperature.

This example leads up to a sharker definition of a phone:

Consider a system whose free energy is a function of serveral variables: K1. K2.

-- KD. Some of the Ki's could be thermodynamic variables e.s. T, Petc. and they can also be parameters in the underlying Hamiltonian. Let's define free energy density in the thermodynamic limit:

Two points $K(=K_1, K_2, -K_D)$ and $K'(=K_1, K_2, -K_D)$ are in the same phase if there exists a path from K to K' along which free energy is analytic i.e. does not develop any singularity in itself or its derivatives.

definition of phobe boundaries between Potentially different phoses. Phase boundaries: Consider the regions in this D-dimensional Space (K1, K2, -- KD) where the free every is singular. If such a given region has dimensionality Ds ((D), then the co-dimension of singular region is: $C = \mathcal{D} - \mathcal{D}_{S} .$ C denotes number of directions which are not singular. The regions with C=1 are called phase boundaries. Why C=1 required? => Need to Separate two regions (e.s. need a two-dimensional Plane (Ds=2) to separate a three-dimensional room into two regions).

This definition also leads to a sharp

How are more than <u>one</u> phase even possible?

As discussed above, existence of more than one phase requires that the free every be gingular as a for of paremeters 2kg.

Singular as a 5th of parameters 2kg.

The expression for See energy is:

mether care 15 p = 0, and the number of Particles/Hilbert space dimension is <u>finite</u> then, F cannot be singular.

Therefore there are only two ways that F can be singular:

(1) Thermodynamic limit: As the number of Particles 80 to infinity, the number of terms in the sum corresponding to the panishon IN Z direrge -> This allows F to be singular Cout doesn't enforce Singularity of course). (2) $\beta \rightarrow \infty$ (Zero temperature): If the number of particles are finite, then F can 'still be singular if $\beta \rightarrow \infty$ since the function $e^{kE[[v]]}$ is Potentially singular at \$= 00. e.g consider the $f(x) = e^{\beta x}$ consider the $f(x) = e^{\beta x}$ f(x) = 0when x > y as $\beta > \infty$ $f(x) = \infty$ $\chi < y$ as $\beta > \infty$ $f(x) = \infty$ Cleanly this is singular behavior.