Exact Calculation for the Specific Keat of the Fermi Gas

The total number of particles, N, is given by,

$$N = \sum_{\vec{p} \in \pi} n_{\vec{p}} = \frac{1}{2 \pi^{3}} \int \frac{4\pi k^{2} dk}{e^{\beta (\frac{1}{2} k^{2} - \mu)} + 1}$$

$$= 4\pi \left[\frac{2m}{h^2}\right]^{3/2} \vee \int_{0}^{\infty} \frac{\sqrt{\epsilon} d\epsilon}{e^{\beta(\epsilon-\mu)}+1}$$

$$=) \xi_F^{3/2} = \int_{0}^{\infty} \frac{\sqrt{\epsilon} d\epsilon}{e^{\beta(\epsilon-\mu)}+1}$$
Similarly, the total energy E is:

$$E = \sum_{k=0}^{k} w^{k} e^{k} = \sum_{k=0}^{k} w^{k} e^{k} \frac{5w}{k^{2}}$$

$$= 4\pi \left[\frac{2m}{N^2}\right]^{3/2} \vee \int_{\delta}^{\infty} \frac{\varepsilon^{3/2} d\varepsilon}{e^{\beta (\varepsilon - \mu)} + 1}$$

Both of the above expressions are of the Sorm

$$T = \int_{0}^{\infty} \frac{g(\epsilon) d\epsilon}{g(\epsilon - \mu)\beta + 1}$$

Since we are interested in the properties of the system only at temperatures $T \ll \epsilon_F$, one can do a Taylor's expansion for the integral I. Let's see how it goes:

(see abbendix A.13 of Garrod's book for Similar discussion, although our discussion will be self-contained anyway).

First we note that at T=0 circ. $\beta=\infty$) I becomes $I_0 = \int_0^\infty g(\epsilon) \Theta(\frac{\mu - \epsilon}{T}) d\epsilon$

$$\left(= \int_{\mathbf{r}}^{2} d \cos y \, \mathbf{r} \right)$$

Let's consider the difference
$$M=T-T_0$$
.

$$\Delta T = \int_{0}^{\infty} \frac{1}{(\epsilon - \mu)^2 + 1} - \Theta\left(\frac{\mu - \epsilon}{T}\right) \frac{1}{d\epsilon}$$

This is a bit messy. To make it look ricer, let's worder change of ravibles to the dimensionless parameter $\chi = (\xi - \mu)/T$. $\Delta I = T \int_{-\mu_{A}}^{\infty} \left[\frac{1}{e^{x} + 1} - \theta - x \right]$ g(H+Tx) dx 1 - OCX) looks like — θ(-x)
— 1/e×+1
— difference. Thus the difference approaches zero exponentially fast when 1x1 >> 1. Since the lower limit of integration = - my << 0 at low temperatures (the regime of our interest), the can safety extend the limits of integration to - &. The error incurred under this

thering made this abbreximation, one can now toylor exhand:
$$\Delta I = \int_{-\infty}^{\infty} \left[\frac{1}{e^{x} + 1} - \theta c x \right] g(\mu + \tau x)$$

$$= \sum_{n=0}^{\infty} \tau^{n+1} \frac{d^{n} g(\epsilon)}{d\epsilon^{n}} \Big|_{\epsilon=\mu}^{\infty} \int_{-\infty}^{\infty} x^{n} \left[\frac{1}{e^{x} + 1} - \theta c x \right]$$

to retro set to set bluca notherixorder of

e m/T which is really small e.g. when

The function
$$f = \frac{1}{2} - \Theta(-x)$$
 is an odd
 $e^{x} + 1$

In of x as many be obvious from the figure

on the previous page. But lets check this

explicitly:

If
$$x>0$$
 fix = 1

explicitly:

If
$$x>0$$
 fix $1=\frac{1}{x}$

If x>0 fix $=\frac{1}{e^x+1}$

Similarly, one can check 2<0.

$$\Rightarrow$$
 $x^n \left[\frac{1}{e^{x+1}} - \theta(-x) \right]$ is an $\frac{1}{e^{x+1}}$ of x when n is $\frac{1}{e^{x+1}}$ and $\frac{1}{e^{x+1}}$ of x when $\frac{1}{e^{x+1}}$ of $\frac{1}{e^{x+1}}$ of

Since the limits of integration in the simplies that only odd values of n contribute.

$$\Delta I = \sum_{n \text{ odd}} \frac{d^n g(\epsilon)}{d\epsilon^n} \Big|_{\epsilon = \mu} \times 2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}$$

$$= 2 \sum_{n \text{ odd}} \frac{d^n g(\epsilon)}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon = \mu} \frac{2 \times \int_{0}^{\infty} \frac{x^n dx}{e^x + 1}}{d\epsilon^n} \Big|_{\epsilon = \mu} \Big|_{\epsilon$$

How to do the integral $\int x^n dx$?

$$\int_{0}^{\infty} \frac{x^{n}}{e^{x}+1} dx = \int_{0}^{\infty} \frac{x^{n}}{1+e^{-x}} dx$$

$$= \sum_{m=0}^{\infty} \int_{0}^{\infty} x^{n} e^{x} dx = \sum_{m=1}^{\infty} \frac{1}{m^{n+1}} (-1)^{m+1}$$

$$= \sum_{m=1}^{\infty} \frac{1}{m^{n+1}} (-1)^{m+1}$$
This looks a bit like Riemann-zeta Sn but has the oscillating terms due to $(-1)^{m}$.

Fret not!

Note that
$$\sum_{m=1}^{\infty} \frac{(-)^{m+1}}{m^{n+1}} = \frac{3(n+1)}{3(n+1)}$$

$$= \sum_{\infty}^{M=7} \frac{w_{M+7}}{(-)_{M+7}} - \sum_{\infty}^{M=7} \frac{w_{M+7}}{7}$$

$$\Rightarrow \sum_{m=1}^{\infty} \frac{(-)^{m+1}}{m^{n+1}} = \sum_{n=1}^{\infty} (n+1) \left[1 - \frac{1}{2}^{n}\right]$$

$$\Rightarrow \int_{0}^{\infty} \frac{x^{n}}{e^{x+1}} dx = n \left[\sum_{n=1}^{\infty} (n+1) \left[1 - \frac{1}{2}^{n}\right]\right]$$

Using the known values of Riemann-zetz gn for integers n. one thus find,

$$T = \int_{0}^{\infty} g(\epsilon) d\epsilon + \frac{\pi^{2}}{6} g'(\mu) T^{2}$$

$$+ \frac{7\pi^{4}}{360} g''(\mu) T^{4} + ---$$
Let's aboly the above formula to the problem at hand, namely specific head of fermions at low temperatures.

$$N = 4\pi \left[\frac{2m}{N^{2}} \right]^{3/2} V \int_{0}^{\infty} \frac{\sqrt{\epsilon} d\epsilon}{e^{R(\epsilon - \mu)} + 1}$$

$$= 4\pi \left[\frac{2m}{N^{2}} \right]^{3/2} V \left[\int_{0}^{\infty} \sqrt{\epsilon} d\epsilon \right]$$

$$+ \frac{\pi^{2}}{6} \frac{1}{2\sqrt{\mu}} T^{2} + \cdots \right]$$

 $= \frac{N}{4\pi V} \left(\frac{h^2}{2m}\right)^{\frac{3}{2}} \times \frac{3}{2} = \frac{\mu^{3/2} + \frac{\pi^2 + 2}{8 \sqrt{\mu}}}{8 \sqrt{\mu}}$ $= \frac{3}{2} \times \frac{3}{2} \times$

$$\mathcal{E}_{F}^{3/2} = \mu^{3/2} + \frac{\chi^{2} + \chi^{2}}{8 \sqrt{\epsilon_{F}}}$$

$$\mu = \left[\mathcal{E}_{F}^{3/2} - \frac{\chi^{2} + \chi^{2}}{8 \sqrt{\epsilon_{F}}} \right]^{2/3}$$

$$= \mathcal{E}_{F} \left[1 - \frac{\chi^{2} + \chi^{2}}{8 \varepsilon_{F}^{2}} \right]^{2/3}$$

$$\mu = \varepsilon_F - \frac{\pi^2 T^2}{12 \varepsilon_F}$$

Recall that in the ramp approximation, $\mu = \epsilon_F - \frac{1}{4} \frac{D'(\epsilon_F)}{D(\epsilon_F)} (8\epsilon)^2$

next calculate the total energy exactly: $E = 4\pi \left(\frac{2m}{k^2}\right)^{3/2} \vee \int_{0}^{\infty} \frac{\epsilon^{3/2} d\epsilon}{e^{\kappa(\epsilon-m)+1}}$

$$E = 4\pi \left[\frac{2m}{h^2}\right]^{3/2} V \int_{e^{5/2}} \frac{e^{3/2} de}{e^{5(e^{-m})} + 1}$$

$$= 2 \int_{e^{5/2}} \frac{1}{4\pi} \int_{e^{5/2}} \frac{1}{2m} \int_{e^{5/2}} \frac{e^{3/2} de}{e^{5/2} de} \int_{e^{5/2}} \frac{1}{4\pi} \int_{e^{5/2}} \frac{1}{2m} \int_{e^{5/2}} \frac{$$

$$= \frac{2}{5} \left[\frac{\xi_F}{5} - \frac{\chi^2 + 2}{12\xi_F} \right]^{\frac{1}{2}} + \frac{\chi^2}{4} \left[\frac{\xi_F}{5} - \frac{\chi^2 + 2}{12\xi_F} \right]^{\frac{1}{2}}$$

$$= \frac{2}{5} \left[\frac{5}{2} \left[1 - \frac{\chi^2 + 2}{12\xi_F} \right] \times \frac{5}{2} \right]$$

$$+ \frac{\chi^2}{4} \left[\frac{1}{2} \left[\frac{1}{2} + \frac{\chi^2 + 2}{2} \right] \times \frac{1}{2\xi_F} \right]$$

 $= \frac{2}{5} \mu^{5/2} + \frac{\chi^2}{4} \mu^{1/2} T^2$

$$= \frac{2}{5} \mathcal{E}_{F}^{5/2} + \mathcal{E}_{F}^{1/2} + 2 \left[\frac{\pi^{2}}{4} - \frac{\pi^{2}}{12} \right]$$

$$= \frac{2}{5} \mathcal{E}_{F}^{1/2} + \mathcal{E}_{F}^{1/2} + 2 \left[\frac{\pi^{2}}{4} - \frac{\pi^{2}}{12} \right]$$

$$= \frac{1}{4\pi} \left(\frac{\mathcal{E}}{V} \right) \left[\frac{h^{2}}{2m} \right]^{3/2} = \frac{\mathcal{E}}{N} \times \frac{2}{3} \mathcal{E}_{F}^{3/2}$$

$$\frac{1}{100} \left(\frac{1}{100} \right) \left(\frac{1}{100} \right)^{3/2} = \frac{1}{100} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{5} \times \frac{2}{3} \times \frac{2}{5} \times \frac{2}{5} \times \frac{3}{2} \times \frac{3}{2} \times \frac{2}{5} \times \frac{3}{2} \times \frac{3}{2} \times \frac{2}{5} \times \frac{3}{2} \times \frac{2}{5} \times \frac{3}{2} \times \frac{3}{2} \times \frac{2}{5} \times \frac{3}{2} \times \frac$$

$$= \frac{2}{N} = \frac{2}{5} \mathcal{E}_{F}^{5/2} \times \frac{3}{2} \mathcal{E}_{F}^{-3/2} + \frac{2}{5} \mathcal{E}_{F}^{1/2} \times \frac{3}{2} \mathcal{E}_{F}^{-3/2}$$

$$+ \frac{2}{5} \mathcal{E}_{F}^{2} \times \frac{3}{2} \mathcal{E}_{F}^{-3/2}$$

$$+ \frac{2}{6} \mathcal{E}_{F}^{2} \times \frac{3}{2} \mathcal{E}_{F}^{-3/2}$$

$$=) \frac{E}{N} = \frac{3}{5} \mathcal{E}F + \frac{1}{4} \mathcal{E}F$$

$$\Rightarrow C_{VN} = \frac{d\mathcal{E}}{dT}|_{V,N} = \frac{T^2}{2} \frac{TN}{\mathcal{E}F}$$

Reformulation in terms of density of states:

$$D(E_F) \sim V m^{3/2} \frac{2}{8F}$$

$$\sim$$
 N_3

 $\frac{N}{N} \sim \frac{m^3/2}{N^3} \approx \frac{3}{2}$

Putting exact pre-factors:

$$C_{V,N} = \frac{\pi^2}{3} T D(\epsilon_F)$$