
Exact
calculation for the

Specific
Heat of the Fermi Gas

The total number
of Particles ,

N
,

is

given
by

,

N
=

¥2
.

mfr

= 2 V 4T k2 dk

-2
a)

3
)

eBth2Imh
-

µ7+T

=

4T

(2nm=]

"
2

V

§

Tde=
e

BCE
-

N

+ 1

⇒ EI
's

= T.tk#+T

similarly
,

the
total

energy
E is :

E =

§g npr
EPR

=

¥ nPr¥m

= ⇐

⇐ jhv IEEE



Both of the above expressions are of the form
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Since
we

are

interested
in the properties

of

the system only

at temperatures
TKEF

,

one
can

do a Taylor
's expansion for the
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This is a bit

messy
.

To make it look

nicer
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Using

the known valves of
Riemann

. zetasn

for
integers n

,

one thus find ,
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to
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Reformulation
in terms of

density
of Staley :
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