Non-interacting Identical Fermions ('Fermi Bas')

Zero Temperature:

We first study non-interacting non-relativistic fermions in three spatial dimensions at T=0.

The single particle levels are given by $E \Rightarrow = \frac{1}{2}$. Recall that in the

grand canonical ensemble, the average occupation of these develor is given by,
$$\langle \hat{n}_{\vec{p}} \rangle = n_{\vec{p}} = \frac{1}{e^{\beta (\frac{p^2}{2m} - \mu)} + 1}$$

Nominally, fermions also carry a half oddinteger spin e.g. electron spin is 1/2. Thus for electrons one can write,

 $\mathcal{N}_{p}^{+} \sigma = \frac{1}{e^{\beta \left(\frac{\gamma^{2}}{2m} - \mu\right)} + 1} \qquad \mathcal{T} = \frac{1}{2}, -\frac{1}{2}$ $\mathcal{C}_{p}^{+} \left(\frac{\gamma^{2}}{2m} - \mu\right) + 1 \qquad \mathcal{C}_{p}^{+} \left(\frac{\gamma^{2}}{2m} - \mu\right) + 1$ $\mathcal{C}_{p}^{+} \left(\frac{\gamma^{2}}{2m} - \mu\right) + 1 \qquad \mathcal{C}_{p}^{+} \left(\frac{\gamma^{2}}{2m} - \mu\right) + 1$

Let's look at the fermi function closely to understand this system. At zero temperature, $\beta \rightarrow \infty \implies n \not \mid \sigma \rightarrow \theta \in \mu - \epsilon \not \mid \rho$

$$\begin{array}{c|c}
 & T = 0 \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

This means that all levels with energy

Ep < \mu are filled. One can determine

\mu in terms of the total number of fermions

\mu .

Subs of two due to soin

N. Sachor of two due to spin

$$N = 2 \quad \frac{5}{7} \quad \theta \left(\mu - \varepsilon^{\frac{3}{7}} \right)$$

$$= 2 \quad \frac{\sqrt{3}}{2\pi} \quad \frac{\sqrt{3}}{3} \quad \frac{\sqrt{3}}{2\pi} \quad \frac{$$

Total energy
$$\varepsilon$$
 at $\tau = 0$:

$$E = 2 \sum_{P} \frac{t^{2} k^{2}}{2m} \quad \theta \left(\mu - \frac{h^{2} k^{2}}{2m} \right)$$

$$= 2 \frac{V}{(2\pi)^{3}} \int_{0}^{k_{F}} \frac{h^{2}}{2m} k^{2} 4\pi k^{2} dk$$

$$= 2 V + 2 ... 4 - 6$$

$$= \frac{2}{8\pi^{3}} \frac{1}{2m} \times 4\pi \frac{k_{F}^{5}}{5}$$

$$= \left[\frac{1}{2m} \frac{k_{F}^{2}}{2m}\right] \frac{1}{\pi^{2}} \frac{k_{F}^{3}}{5}$$

Using
$$\frac{k_F^3 V}{3\pi^2} = N$$
 from above, one obtains,

Using
$$\frac{k_F^2 V}{3\pi^2} = N$$
 from above, one obtains
$$\frac{E}{2} = \frac{3}{5} \left(\frac{h^2 k_F^2}{2m} \right) = \frac{3}{5} \mathcal{E}_F$$
 where $\mathcal{E}_F = \frac{h^2 k_F^2}{2m}$

$$\frac{E}{N} = \frac{3}{5} \left[\frac{h^2 k_F^2}{2m} \right] = \frac{3}{5} E_F \quad \text{where } E_F = \frac{h^2 k_F^2}{2m}$$

$$= \mu C T = 0$$

$$= \mu C T = 0$$

Recall
$$dE = -PdV + \mu dN$$
 at $T=0$

$$= \frac{dE}{dN} \Big|_{V}$$
From above, $E = \frac{3}{5} N \mathcal{E}_{F} = \frac{3}{5} N \frac{\hbar^{2}}{2m} \Big[\frac{3\pi^{2} N}{V} \Big]^{3}$

$$=\frac{t^2 k_f^2}{2m} = \mu \text{ , as expected !}$$

$$Now , let's look at pressure.$$

$$P = -\frac{dE}{dV}|_{V}$$

$$= \frac{3}{5} \left(3\pi^2\right)^{2/3} \frac{t^2}{2m} N^{5/3} \times \frac{2}{3} V^{-5/3}$$

$$= \frac{2}{3} \frac{E}{V}$$
Thus , a fermi gas has a non-zero pressure even at the zero temp erature. This is completely different than a classical ideal gas where $P = |T| = 0$ at $T = 0$.

The non-zero pressure is responsible for the

Stability of white I want stors. Pressure balances against gravity. We will study this later.

 $= \frac{3}{5} \left(\frac{3\pi^2}{V} \right)^{2/3} \frac{\pi^2}{2m} N^{5/3}$

 $=) \frac{dE}{dN} = \frac{3}{5} \left(\frac{3\pi^2}{V} \right)^{2/3} \frac{\pi^2}{2m} \frac{5}{3} N^{2/3}$

The above relation between pressure and energy is actually more general and holds at any temperature T (prove!).

Some numbers:

In metals, EF can be estimated using the fact that $\frac{V}{N} \sim a^3$ where a is the

the fact that $\frac{V}{N} \sim a^3$ where a 13 the radius of the atom. For example, for sodium, a $\approx 4 \times 10^{-10}$ m. Mass m

 \geq Melectrom $\gtrsim 10^{-30}$ kg. Thus,

 $\mathcal{E}_{F} = \frac{h^{2}}{2m} \left[\frac{3\pi^{2}N}{N} \right]^{2/3}$ $\simeq 10^{4} \text{ K}.$

This is much larger than the room temperature.

Thus, ordinary metals are highly quantum objects at room temperature i.e. one needs quantum mechanics to undurstand even their busic properties e.g. conduction, reflection, heat capacity etc.

Metals at low but Non-zero temperature:

The important thing to note is that at $T \neq 0$, $\mu \neq \epsilon_{\pm}$. Infact, μ will depend on temperature T so that the number of particles N does not change.

het's first do an approximate coloulation and after that, we will return to an exact one.

Recall that the Fermi-Dirac distribution, which tells the average occupation of a level at energy E is:

At low temperatures, µ will deviate from only slightly and fle) will deriate from its T=0 value (= B(H-EF)) only for $|\varepsilon - \mu| \sim T \ll \mu$. Thus, one expects, $E(T\neq 0) - E(T=0) \ll \frac{1}{16}$ particles where f(2) Carried by differs from its T=0 value those particles. het's convert this intuition into an actual, approximate calculation: At T to, we approximate fles by a 4-88 h 86 h+88 we will take && = 3T.

The total number of fermions

$$\mathcal{N} \approx \int D(\varepsilon) d\varepsilon \quad (= Area of yellow rectangle)$$

$$- D(H-\frac{8E}{2}) \frac{8E}{4}$$
 (= Area of red triangle)

where DCE) is the density of states.

Reminder:
$$N = \frac{V}{8\pi 3} 4\pi \int \frac{k^2 dk}{e^{\frac{k^2}{2m}} + 1}$$

Change of variables: $\frac{k^2 k^2}{2m} = \epsilon$
 $N = \frac{V}{2\pi 2} \int \frac{m}{\pi^2} \left(\frac{2m\epsilon}{k^2} \right)^{1/2} d\epsilon$
 $= \int \frac{D(\epsilon)}{e^{\frac{k^2}{2m}} + 1} \Rightarrow D(\epsilon) \propto \sqrt{\epsilon}$.

Also, at
$$T = 0$$
:
$$N(T = 0) = \int_{0}^{EF} N(E) dE$$

Subtracting,
$$\mu$$
 $M(T) - M(T=0) \simeq 0$

tracting,
$$\mu$$
 $N(T) - N(T=0) \simeq \int_{\mathcal{E}_F} \mathcal{D}(\mathcal{E}) d\mathcal{E}$
 $+ 1 (88)^2 \mathcal{D}(\mathcal{E})$

$$+ \frac{1}{4} (88)^2 D(8F)$$

$$- \frac{1}{4} (88)^2 D(8F)$$

$$+ \frac{1}{4} (88)^2 D(8F)$$

Since number of particles is fixed, =>

$$V \approx \varepsilon_F - \frac{1}{4} \frac{D'(\varepsilon_F)}{D(\varepsilon_F)} (8\varepsilon)^2$$

Since $D(\varepsilon) \approx \sqrt{\varepsilon} \Rightarrow \frac{D'(\varepsilon_F)}{D(\varepsilon_F)} = \frac{1}{2\varepsilon_F}$

If we take
$$88 \approx 3T$$
,
$$\Rightarrow \frac{1}{4} \text{ (T)} \approx 8F - \frac{9}{8} \frac{T^2}{8F}$$

The exact answer (we will calculate it soon) is $\mu(T) = \varepsilon_F - \frac{T^2}{12} \frac{T^2}{\varepsilon_F}$, so not too different.

Since T at room temperature is of the order of $10^{-2} \Rightarrow |\mu - \varepsilon_F| \sim 10^{-4}$ at the room temperature => rother small. Why is the sign regative? Why B the dependence quadratic in T? Let's calculate the change in total energy within this "ramp" approximation: € (T) - ECT=0) 0 - (EF-H) D (EF) EF C= contribution from green shaded area) + 1 (p+ 8) D(p+ 8 E) 8 2 (=Blue D) $-\frac{1}{4}\left(\mu-\frac{\delta \varepsilon}{2}\right)D(\mu-\frac{\delta \varepsilon}{2})8\varepsilon$ (= red 1)

$$= -\frac{(8 \, \epsilon)^2 \, D(\epsilon_F)}{8} + \frac{1}{4} (8 \, \epsilon)^2 \, D(\epsilon_F)^2 + \frac{1}{4} (8 \, \epsilon)^2 \, D(\epsilon_F)$$

$$= -\frac{(8 \, \epsilon)^2 \, D(\epsilon_F)}{8} + \frac{1}{4} (8 \, \epsilon)^2 \, D(\epsilon_F)$$
Since $D'(\epsilon_F) = \frac{D(\epsilon_F)}{2 \, \epsilon_F} \Rightarrow E(T) - E(0) = \frac{1}{4} (8 \, \epsilon)^2 \, D(\epsilon_F)$

$$= \frac{q}{4} T^2 \, D(\epsilon_F)$$

 $= -\frac{(8\varepsilon)^2 D(\varepsilon_F)}{2} + \frac{1}{4} (8\varepsilon)^2 \left[\varepsilon D(\varepsilon) \right] / \varepsilon = \varepsilon_F$

The exact answer is $C_V = \frac{\pi^2}{3} TD(E_F)$

Note that Con T for the Fermi

gas in all space dimensiona (show this!).