
Non .

interacting
Identical Fermions

(

'

Fermi Gas
'

)

Zero Temperature :

.

We first
study

non
.

interacting
non .

relativistic

fermions
in three spatial dimensions

at -1=0
.

The single particle
levels one siren by

Ep→
=

Is .

Recall that  in the

2in

ground
canonical ensemble

,

the
average

occupation of these
deals is given by

,
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Nominally ,

fermions
also

carry
a half odd -

integer spin
e.

of
electron spin is 1/2 .

Thus for

electrons one can write
→

Np→o
=

1-
T

= 112 , -112

@BC¥m-M+1 C = Sr component

of spin )



Let's
look at the fermi function

closely
to

understand
this system

•

At zero temperature ,

B→
a ⇒

npr
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-
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%
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µ

This means
that all

levels with
energy

Ep
< µ

are filled .

One can
determine

µ
in terms of

the
total number of fermions

N
.

factor of two due to spin
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Total
energy

E at T=o :
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Using kzf÷z
= N from above

,

one obtains
,

NE
 

=

§µ÷tmF ]
=

3g
EF

where
ef

 

=tzm2p2

=

peCT= 07
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is called Fermi

99

Energy .

Basic cheek
:

Recall
dE=

-

Pdv + plan at Teo

⇒
µ

= de

TN|v

'

from above
,
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as expected !
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Now
.

let's look at pressure .

p =  

-

E±r|n

.
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Thus
,

a fermi
gas

has a non
.

zero
pressure

even at the zero temperature
.

This is

completely

different than a classical ideal

gas
where Pz P T =

0
at T

 

= 0
.

The won
-

zero pressure Is responsible
for the

stability
of

white dwarf stars .

Pressure

balances against gravity
.

We will
study

the Later
.



(
.

The
above

relation between pressure
and

energy

is

actually
more several

and
holds at

any
temperature

T C Pavel
.

)
.

Some numbers :

.

In metals
→

Ef can be estimated
using

the fact that 1 ~ a3 where a is the

N

radius of the atom
.

For example
,

for

-

io

Mass in

sodium
,

a ~~
4×10 M

.

=

Meieehovn ~~
1530

kg
.

Thus
,

EF
=

HIM [ 3nj2N]

"3

= 104 K
.

This is much larger than the room temperature

Thus
, ordinary

metals are

highly

quantum objects
at room temperature

ie . one needs
quantum

mechanics
to understand

even their basic
properties egr

conduction
,

reflection
,

heat
capacity etc

.



Metals at low but Non-zero

temperature
:

The important thing
too note B that

at T # 0
, µ

#
et .

Intact
,

µ
will depart on

temperature T so
that the number of

particles N does not change ••

Let's
first do an abbroxiwale calculation

and after
that .

we will return to an

exact one .

Recall that the
Fermi - Dirirae distribution

,

which tells
the average

occupation of a level

at
energy

C- is :
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=
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%
•
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fce ) =

21
at e =

µ , always_
•



At low temperatures
,

µ
will deviate from

Ef
only slightly

and fee )
will deviate

from
its -1=0 value C

= Oct
-

Ef ) )
only

for IE- µ1~T ⇐ µ
.

Thus
,

one expects
,

Ectto )
- E ( to ) a

T × F
 

=T

2

-
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EF

NN
fraction  of

↳

energy
particles where Ste ) carried

by
differs from its T=o value those

particles
.

Let's convert this intuition into an

actual
.

abbroximate calculation :

At Tto
,

we
abbroxiwate fce )

by
a

niftiest.tt#iEEEeEt.*.
.

1-

8E a T

we will take 88 = 3T
.



The total number of fermions

ACT )
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where Dce ) B the

density
of states

.
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Also
.

at

Toe:pNLT#
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Subtracting , µ
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Since number of particles
is fixed

,
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The exact answer C we will calculate it soon
)
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-

III II
'

sodiffttoot
.



Since I at room temperature
is

Tf

of the order of
10-2 ⇒

/MfpEf_In
to

4

at the room temperature ⇒ rather small
.

why
is the sign negative ?

why
B the dependence quadratic

int
?

Let's calculate the change in total

energy

within this
'

ramp

'

abbroxi nation:
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The exact answer
B Cr

=

AI
TD Cerf

Note that Crn T for the
Fermi

gas
in all space dimensions Cshow this

! )
.


