Identical Bosona without Boson number conservation

There exist identical bosons whose total number is not constrained by any laws of nature. The most prominent example is photons— for example on atom in an excited state can undergo a

transition to a state of lower energy and emit a photon in the process (to conserve energy).

Since the photon number is not conserved, the concept of commical ensemble is

meaningless — the only conserved quantity is the total energy (whose conjugate "chemical potential" is β-1) and there is no chemical potential conjugate to the total photon number, which is allowed to be anything. One has to summer all possible photon occupation numbers. A photon with momentum P carries an energy

CIPI. In addition, Photon carrier a polarization which can take two values (3 ay, ± 1).

Assuming that the photons are non-intersecting (this is a good apporoximation), the single partial energies are: Ep = CIPI where 7=±11 denotes polarization.

Recall that the grand partition f'' is given by $\begin{array}{rcl}
\mathbb{Z} &=& \mathbb{T}r & e \\
&=& \mathbb{Z} & e & \mathbb{F}_{\mathcal{F}} \\
&=& \mathbb{Z} & e & \mathbb{F}_{\mathcal{F}}
\end{array}$ $= \sum_{\{n,p_{\mathcal{F}}\}} e^{\beta \sum_{i} n_{\mathcal{F}}} e^{\beta \sum_{i} n_{\mathcal$

where npo is the occupation of the single particle level with momentum P and polarization of. We already did this exercise earlier when we discussed identical bosons in general. The result is:

 $Z = \frac{1}{P} \left[\frac{1}{1 - e^{\beta c P}} \right]^2$ where the square stems due to two allowed Polarizations,

both of which have some single particle energy.

The grand potential D is tund given by

 $\Omega = -\frac{1}{B} \log Z$ $= +\frac{1}{B} \sum_{P} 2 \log [1 - e^{RCP}]$

In the thermodynamic limit, the single particle levels are closely spaced and use can convert the sum into an integral.

Assuming that the photons are localized in a box of size V, $\sum_{k} \rightarrow \frac{V}{(2\pi)^3} \int d^3k$ with $P = t \cdot k$. P= tk. $\Omega = \frac{2}{\beta} \frac{V}{(2\pi)^3} \int d^3k \log L 1 - e^{-\beta c \pi k}$ $= \frac{2}{\beta} \frac{\sqrt{4\pi}}{(2\pi)^3} \int_0^{\infty} dk \ k^2 \log \left[1 - e^{-\beta c \pi k}\right]$

Define $\chi = \beta ctrk$ $Q = \frac{2}{\beta} \frac{V}{(2\pi)^3} \frac{4\pi}{[\beta c + \zeta]^3} \int_0^{\infty} dx x^2 \log[1 - e^{x}]$

Doing integration by parts,

 $\mathcal{D} = \frac{-2}{\beta} \frac{V}{(2\pi)^3} \frac{4\pi}{(\beta ch)^3} \frac{1}{3} \frac{\ln x^3}{1-e} x$

 $= -\frac{2}{\beta} \frac{1}{(2\pi)^3} \frac{4\pi}{[\beta c + 1]^3} \frac{1}{3} \int_{-\infty}^{\infty} \frac{\chi^3}{e^{\chi} - 1}$ The integral $\int_{0}^{\infty} dx \frac{x^{\alpha}}{e^{x}-1} = 5(\alpha+1) \Gamma(\alpha+1)$ where Mats) is the bamma In (= al for integer a2)

and $\zeta(\alpha+1) = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha+1}}$ is the famous Riemann-Zetas!

For the case of hand,
$${}^{\infty}\int \frac{\Lambda^3}{e^{\times}-1} = \Im(4) \Gamma(4)$$

$$= \frac{\pi^4}{40} \times 3!$$

$$= \frac{\pi^4}{15}$$

$$\Rightarrow \mathcal{L} = -\frac{2}{\beta} \frac{V}{(2\pi)^3} \frac{4\pi}{[\beta c + 1]^3} \frac{1}{3} \times \frac{\pi^4}{15}$$

$$\Rightarrow \mathcal{L} = -\frac{8}{45} \pi^5 \frac{T^4}{h^3 c^3}$$

Recall
$$\Omega = -PV$$

$$\Rightarrow \qquad \boxed{P = \frac{8\pi^5}{45} \frac{7^4}{\sqrt{3}c^3}}$$

Since
$$d\Omega = -SdT - PdV$$

$$\Rightarrow S = -\frac{\partial \Omega}{\partial T}$$

further,
$$E = TS - PV = TS + \Omega$$

$$= -T \frac{\partial \mathcal{L}}{\partial T} + \Omega$$

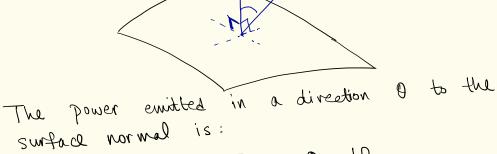
$$= \frac{8\pi^5}{\sqrt{15}} = 3P$$

Black Body Radiation

A black body emits the same amount as it absorbs.

This is equivalent to the statement that it absorbs all of the radiation impirged on it.

het's calculate the energy emitted by a black body at temperature I



surface normal is:
$$\frac{dP}{dA} = \frac{C}{V} = \frac{E}{V} = \frac{d\Omega}{4\pi}$$

where de is the solid angle and E is the

energy calculated above. $\theta z \alpha \theta \gamma \delta \theta = \frac{dP}{dA} = \frac{cE}{4D}$ (=

$$\frac{cE}{4V} = \frac{2\pi^5}{15} \frac{T^4}{\sqrt{3}c^2} = \sigma T^4$$

T = 5.67 × 10 8 W m2 K-4

Alternative way to calculate Photon energy: $E = 2 \times \sum_{k} \text{tock} \times \frac{1}{e^{k \text{tock}} - 1}$ Two polarizations Energy of Bose occupation factor a to notary for photon at R momentum & $= \frac{2}{(2\pi)^3} \text{ the } \int \frac{k \cdot 4\pi k^2 dk}{e^{\beta c \cdot \tau k} - 1}$ Cleanly scales as T4. $= \frac{2}{(2\pi)^3} \frac{\hbar c \times 4\pi}{[\beta c \hbar]^4} \vee \underbrace{\int \frac{\chi^3 d\chi}{e^{\chi} - 1}}_{= \pi}$ $= \frac{8\pi^5}{15} \frac{7^4 V}{k^3 c^3}$ surface Question: Estimate the / temperature of Earth knowing the surface temperature of sun and geometrical details (radius of conth & sun, distance between earth and sun). See Pan Arovar decture notes. Tearth = Tsun × [Radius of Sun 2x Radius of Earth's orbit]

High Temperature expansion for free bosons and fermions.

The grand free energy is given by By = -BPV $=-\eta \sum_{k} \log \left[\frac{1}{1-\eta \cdot e^{\beta \left[\frac{k^{2}}{2m}-\mu\right]}}\right]$

where N = +1 for bosons and -1 for fermions.

$$\Rightarrow \beta P = -\frac{\eta}{8\pi^3} \int d^3k \log [1 - \eta e^{\frac{\beta k^2}{2m}} z]$$

The value of Z is determined by requiring that

the total number of particles is

$$\beta = \frac{1}{k} = \frac{1}{8 \pi^3} \int_{\frac{R}{2}} \frac{1}{2^{k} - 1} - \eta$$

$$\Rightarrow \beta = \frac{1}{k} = \frac{1}{8 \pi^3} \int_{\frac{R}{2}} \frac{1}{2^{k} - 1} - \eta$$

In the high-temperature dimit, from classical statistical mechanica, we expect that
$$\mu$$
 will be statistical mechanica, we expect that μ will be very small. This materials one to do the above integrals by tayor expanding in powers of χ . But let's first non-dimensionalize? The above integral.

$$P = \frac{1}{2\pi^2} \int_0^\infty \frac{k^2 dk}{e^{k^2/2m} z^{-1} - m} \qquad [by substituting] = \frac{1}{\Lambda^3} \frac{2}{\sqrt{K}} \int_0^\infty \frac{d\chi}{e^{\chi}} \frac{\sqrt{\chi}}{2^{-1} - m} \qquad [by substituting] = \frac{1}{\Lambda^3} \frac{2}{\sqrt{K}} \int_0^\infty \frac{d\chi}{e^{\chi}} \frac{\sqrt{\chi}}{2^{-1} - m} \qquad [by substituting] = \int_0^\infty \frac{d\chi}{\sqrt{\chi}} \frac{\sqrt{\chi}}{e^{\chi}} \frac{2\chi}{2^{-1} - m} \qquad [engine] = \int_0^\infty d\chi \sqrt{\chi} e^{\chi} \chi \sqrt{\chi} = \chi \chi \sqrt{\chi} = \frac{1}{2\pi} \frac{2\pi}{2m} = \chi$$

$$= \int_{0}^{\infty} dx \sqrt{x} e^{x} \sum_{m=0}^{\infty} \left[\sqrt{e^{x}} \sum_{m=0}^{\infty} \sqrt{m} \sqrt{m} \right]^{m}$$

$$= \int_{0}^{\infty} dx \sqrt{x} \sum_{m=1}^{\infty} \left(e^{-x} \sum_{m=1}^{\infty} \sqrt{m} \sqrt{m} \right)^{m}$$

$$= \sum_{m=1}^{\infty} \int_{0}^{\infty} dx \sqrt{x} e^{x} \sum_{m=1}^{\infty} \sqrt{m} \sqrt{m}$$

$$= \sum_{m=1}^{\infty} \sqrt{m-1} \frac{\sum_{m}^{m}}{m^{3/2}} \Gamma(3/2)$$

$$= \frac{\sqrt{k}}{2} \left[2 + \frac{\sqrt{2}}{2^{3/2}} + \frac{z^{3}}{3^{3/2}} + \cdots \right]$$

$$\Rightarrow p \sqrt{3} = 2 + \frac{\sqrt{2}}{2^{3/2}} + \frac{z^{3}}{3^{3/2}} + \cdots$$

1 (3/2)= 1x

This equation can be solved recursively.

For example, to the buest order,
$$Z = \beta \lambda^3$$

At next order
$$Z^{(2)} = g \lambda^3 - \frac{\eta [Z^{(1)}]^2}{2^{3/2}}$$

= $g \lambda^3 - \frac{\eta [Z^{(1)}]^2}{2^{3/2}}$

... No 08 brito het's beep terms to order (Ph3)2 so that

 $\int \lambda^3 - \frac{\eta}{2^3} \int_2 \int \lambda^3 \int_2$.

Let's use this value of $2 (=e^{\beta \mu})$ to calculate the pressure at high temperatures.

The equation for pressure is,
$$-\frac{Rk^2}{3}$$

$$BP = -\frac{1}{8\pi^3} \int_{0}^{3} \frac{1}{3} \frac{\log 1 - \ln 2 e^{2m}}{1 - \ln 2 e^{2m}} \int_{0}^{2m} \frac{1}{3} \frac{1}{1 - \ln 2 e^{2m}} \frac{1}{2m} \frac{1}{m}$$

$$= \frac{1}{\Lambda^3} \frac{4}{3\sqrt{\pi}} \int_{0}^{3} \frac{dx}{2} \frac{x^{3/2}}{e^{1} z^{-1} - m} \frac{1}{2m} \frac{1}{2m} \frac{1}{2m} \frac{1}{2m} \frac{1}{2m} \frac{1}{2m}$$

The equation for pressure is.

Again Taylor expanding in \mathbb{Z}_1 : $\frac{1}{2}$ $\frac{1}{2}$

 $= \sum_{m=1}^{\infty} \sqrt{m-1} \frac{Z^m}{\sqrt{5/2}} r(5/2)$

Since $\Gamma(5/2) = \frac{3\sqrt{\kappa}}{4}$ $\Rightarrow \beta P \Lambda^{3} = \nabla + \frac{\eta \nabla^{2}}{2^{5/2}} + \frac{\Sigma^{3}}{2^{5/2}} + \cdots$

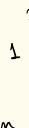
Sub stituting $Z \simeq \beta \lambda^3 - \frac{\eta}{2^3/2} [\beta \lambda^3]^2$

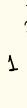
$$\Rightarrow \beta P \lambda^3 = \beta \lambda^3 - \frac{N}{2^3} [\beta \lambda^3]^2 + \frac{N}{2^5} [\beta \lambda^3]^2$$

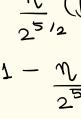
Since
$$\left(\frac{1}{2^{3}}\right)_{2} - \frac{1}{2^{5}}\right)_{2} = \frac{1}{\sqrt{2}} \left[\frac{1}{2} - \frac{1}{4}\right]$$

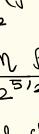
$$= \frac{1}{2^{5}}$$

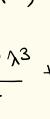
$$\Rightarrow \beta P \lambda^{3} = P \lambda^{3} - \frac{\eta}{2^{5}}\left(P \lambda^{3}\right)^{2} + \cdots$$

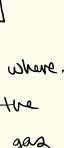












$$P = \int T \left[1 - \frac{\eta}{2^{5/2}}\right]^{3/2} + \dots$$
Compare this with an ideal classical gas where.
$$P = \int T \implies \text{for bosons} (\eta = +1) \text{, the}$$

$$Pressure is \underline{less} \text{ compares to an ideal gas}$$
in this high-temperature regime, while for

pressure is less compared to an ideal god in this high-temperature regime, while for fermions (n=-1), the pressure exceeds that of a classical gas. This makes

intuitive sense.