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A Single Quantum HarmonicOscillator
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Grand Canonical Ensemble for a single
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One can therefore go ahead and study the quantum
oscillator in the two limits : TX hw caaesical limit )
and T ⇐ hw C ' '

quantum
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Lattice Vibrations ( 6 Phonons
'

j
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Specific Heat of Solids

As briefly alluded to in the first lecture ,
a solid

Crystal breaks the WCs translation symmetry of space

to discrete translation symmetry .
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There is a general result which States that

whenever a continuous symmetry
Is spontaneously

broken ( we will discuss in detail later what does

•

spontaneous
'

means here ) ,
it results  in excitations

whose energy
momentum relation is of the

form ' 
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Integer ( typically x= 1 or x= 2) •
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an

excitation is called a Goldstone mode
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Let as study
a simple

eiample

which illustrates

this .

Consider a system of coupled Harmonic oscillators :
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Having decomposed the modes into sum of

decoupled harmonic oscillators .

we can now

use our standard technology of a
,

at

operators .
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Since each harmonic oscillator mode can

have an arbitrary number of  excitations ,

the system is equivalent to a bosonic

System with single - particle dispersion :

-
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Thermodynamics :
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for simplicity ,
let's restrict ourselves to

temperatures .

IT ← two , so that one

may
work with the abbvoxinahou .
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( C = sound velocity ) .
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Generalization to
•

d
'

space dimensions ;

-

Naively in d- space

dimensional
cubic lattice :
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But this misses something important .

since

sound modes ⇐Goldstone modes ) have a direction

of Propagation ,
there are de independent

ways
to vibrate for a given k→ rector ;

- I way
to oscillate along the direction of

propagation .

( longitudinal sound mode )

- d- I ways to oscillate perpendicular to the

direction of propagation . C transverse sound

modes )

Contrast this with the case of light

C photon ) where only transverse modes exist

- the trio polarization choices In the Previous

lecture were exactly to account for that
.

Even more ,
there is no symmetry reason

for the longitudinal sound velocity Cd

to he same as the transverse sound velocity Ct .
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In particular ,
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a fact that is routinely observed

in solids .
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Again .
note the similarity between a

Sound mode C 6 phonon , ) and a light

mode ( b photon 9)
•


