Classical Harmoniz oscillator:

first, recall canonical the result from canonical

ensemble:

 $(2 \text{ CN}) = \left[\frac{T}{t\omega}\right]^{dN} \Rightarrow \text{Specific heat}$ Crand Canonical: $C = \frac{1}{N} \frac{dG}{dT} = \frac{1}{N} \frac$

 $Q = \sum_{n} Z(n) \in \mathbb{R}^{n}$ $Q = \sum_{n} Z(n) \in \mathbb{R}^{n}$ $Q = \sum_{n} Z(n) = \sum_{n} Q(n) = \sum_{n} Q($

 $= \frac{1}{1 - \frac{1}{2} e^{\beta \mu}} = e^{\beta \psi}$

 $\Rightarrow N = -\frac{3\mu}{3\mu} = -\frac{3\mu}{3} + \log \left[1 - \frac{\mu\omega}{2}e^{\beta\mu}\right]$

 $= \frac{3h}{\sqrt{3h}} = \frac{3h}{\sqrt{3h}} + \frac{4pn}{\sqrt{3h}} = \frac{3h}{\sqrt{3h}}$

= T 1-Tekh × Too Note that N has T/twekh volling to do with the

T/tw e k rothing to do with the Bose-Elustein distribution 1 - T/tw e μ in the classical limit.

Here μ corresponds to the μ of district SHO's while μ = μ in the μ in the μ in μ in μ = μ in μ in μ = μ in μ in μ = μ in μ = μ in μ = μ in μ = μ in μ in μ = μ in μ in μ in μ = μ in μ in μ in μ = μ in μ in

A Single Overteem Harmonic Oscillator

$$\hat{H} = \omega(\alpha^{\dagger} \alpha + \frac{1}{2}) \qquad \alpha = \sqrt{\frac{m\omega}{2}} \hat{x} + \frac{i\hat{p}}{m\omega}$$
Hilbert space: countably infinite.

 $= \sum_{n=0}^{\infty} \frac{-\beta \omega}{1 - e^{\beta \omega}}$

 $\langle n \rangle = \sum_{n} m e^{-\beta \omega n} / \sum_{e} \epsilon^{\beta \omega n}$

 $= \frac{\partial \log \left[1 - e^{\beta \omega}\right]}{1 - e^{\beta \omega}} = \frac{-\beta \omega}{1 - e^{\beta \omega}} = \frac{1 - e^{\beta \omega}}{1 - e^{\beta \omega}}$

9 (Bm) - 9 pod Z1

$$H = \omega(\omega \omega \cdot \overline{2})$$

$$H = \omega(\alpha, \alpha^{\frac{1}{2}})$$

8/20

Crecall:

 $Z = Tr e^{\beta \hat{H}}$ (note ling zero point = $Z < nle \beta \omega d a ln > \frac{\text{evensy}}{\text{evensy}}$

$$(0,+\frac{1}{2})$$

(Eq. 29)

66 Bose - Einsteln

distribution.

eigenstates:
$$H \ln > = \omega n \ln >$$

$$H | n \rangle = \omega m | n \rangle$$

$$\alpha^{+} | n \rangle = \sqrt{m+1} | n+1 \rangle \begin{cases} \text{hadden} \\ \text{operators} \end{cases}$$

$$\alpha | n \rangle = \sqrt{m} | n-1 \rangle \begin{cases} \text{operators} \end{cases}$$

correspond to ## of distinct oscillators cure one working with a single oscillator). $-\beta[\alpha t \wedge \omega - \mu \alpha t \alpha]$

 $= \frac{1}{2} \quad \frac{$

(again neglecting zero point every)
$$= \sum_{n} \frac{1}{e^{n}} \frac{1}{e^{$$

Correspondence with classical harmonic oscillator

Consider a single classical SHO in canonical ens.: $\frac{\sum_{cl} = \frac{1}{t_{clo}}}{\frac{1}{t_{clo}}} \text{ as discussed above (in d = 1).}$

while $Z_{\alpha} = \frac{1}{1 - e^{\beta t \omega}} \longrightarrow \frac{T}{t \omega} \quad \text{when } T \gg t \omega$ quantum $\frac{T}{1 - e^{\beta t \omega}} \longrightarrow \frac{T}{t \omega}$

Therefore, one recovers classical roult when T>> two.

One can therefore go ahead and study the quantum oscillator in the two limits: T>> two causical limit and T < two (" aprentum") I wit): F = -T Jozza free enersy: = T log[1- ekw] for a single quantum osaillator. Entropy S = · out << T consider two shirt. F ~ Toog [w] T >> tw $\Rightarrow s \simeq - \log[\frac{\omega}{\tau}] + 1$ wt >>T $S \simeq \frac{e^{\beta\omega}}{e^{\gamma}} + \frac{e^{\beta\omega}}{e^{\gamma}} = \frac{\omega}{\tau^2}$ $C = T \frac{ds}{dt} \simeq T = \frac{e^{\omega \beta}}{\tau^2}$ C classical = 1 Lactual (= cquartum) - w T e Bw

Specific Heat of Solids

As briefly alluded to in the first teature, a solid crystal breaks the continuous translation symmetry of space to discrete translation symmetry.

Lattice Vibrations ('Phonons')

Liquid Solid Crystal

There is a general result which states that whenever a continuous symmetry is spontaneously broken (we will discurs in detail later what does fortaneous' means here), it results in excitations

whose energy—momentum relation is of the form: $E(\vec{p}) = C[\vec{p}]^{\alpha}$ with $\alpha = \alpha$ positive integer (typically $\alpha = 1$ or $\alpha = 2$). Such an

excitation à called a Goldstone mode.

we model it via the following Hamiltonian: $H = \sum_{i=1}^{\infty} \frac{\hat{p}_{i}^{2}}{2m} + \frac{1}{2} m \omega_{i=0}^{2} (\hat{x}_{i} - \hat{x}_{i+1})^{2}$

with
$$\hat{x}_{n+1} = \hat{x}_1$$
The Heisenberg's equations of motion are:

$$\frac{d\hat{p}_{i}}{dt} = m\omega_{o}^{2} \left(\hat{x}_{i+1} + \hat{x}_{i-1} - 2\hat{x}_{i} \right)$$

$$\Rightarrow m\frac{d^{2}\hat{x}_{i}}{dt} = m\omega_{o}^{2} \left(\hat{x}_{i+1} + \hat{x}_{i-1} - 2\hat{x}_{i} \right)$$

fourier transforming:

$$\begin{array}{ccc}
\lambda & = & \frac{2\pi M}{N}, & m \ge 0 - 1 \\
 & & N - 1
\end{array}$$
fourier transforming:

$$\begin{array}{cccc}
\lambda & = & \frac{1}{N} \hat{\lambda}; & e & (r; z & mean | bcohon \\
 & & of & \hat{\lambda};
\end{array}$$

$$= \frac{d^{2}\hat{x}_{k}}{dt^{2}} = \omega_{o}^{2} \hat{x}_{k} (e^{-ik\cdot\alpha} + e^{ik\alpha} - 2)$$

$$= -4\omega^{2} \sin^{2}(\frac{k\alpha}{2}) \hat{x}_{k}$$

$$= \frac{d^{2}\hat{x}_{k}}{dt^{2}} + 4\omega^{2} \sin^{2}(\frac{k\alpha}{2}) \hat{x}_{k} = 0$$

Thus, the system decomposes into N "normal modes" (= decoupled harmonic oscillators) with frequencies: $\omega_k = 2\omega_0 \sin\left(\frac{ka}{2}\right)$ $k = \frac{2\pi n}{N}$, N = 0, 1, 2, --N-1.Note that k=0 made just corresponds to translating the whole system rigidly (i.e. without any internal mation).

These modes are Goldstone modes! E Sound modes/ vibrational mades. At low frequency. $\omega_k \wedge \omega_0 \quad k\alpha \Rightarrow \omega_k \rightarrow 0 \quad \alpha$ $k \rightarrow 0$ This is a universal fearture of boldstone moder irrespective of details of the Hamiltonian. for example, one way add a next-enearest neighbour interaction between the wasser, or even add anharmonic terms. The modes will continue to rounds as work as R→O. This non-trivial fact goes by the name of Universality. That is, some feartures of a system are insensitive to microscopic details.

Since each hommonic oscillator mode can have an arbitrary number of excitations, the system is equivalent to a bosonic system with single-particle dispersion:

$$E_k = \omega_k$$

Thermodynamics:

- Bwk atkak

Tre [dropping zero-point energy] $= \frac{\pi}{R} \left[\frac{1}{1 - e^{\beta \omega_R}} \right]$ T & log[1-ebwk] 38[BF] $= \frac{3\beta \left[\frac{2}{R} \log L1 - e^{\beta \omega k} \right]}{\frac{e^{\beta \omega k}}{\left[1 - e^{\beta \omega k}\right]}}$ E WE FOR 1] Z WK <NK> where $\langle N_k \rangle = \frac{1}{e^{k\omega_k}} = \text{arerage occupation}$ k? the mode.

for simplicity, let's restrict ourselves to temperatures. T << two, so that one may work with the approximation. Wk = woka = ck (c = sound relocity). $E = \frac{\sum_{k} \frac{\hbar \omega_{k}}{\epsilon^{k} \hbar \omega_{k}}}{e^{k} \hbar \omega_{k}}$

The average energy of the system is given by:

$$E = \frac{\sum_{k} \frac{t_{k} \omega_{k}}{\epsilon^{k} t_{k} \omega_{k}}}{\epsilon^{k} t_{k} \omega_{k}}$$

$$= \frac{N}{2\pi} \int \frac{t_{k} c_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}{\epsilon^{k} t_{k} \omega_{k}} \sim NT^{2}$$

$$= \frac{N}{2\pi} \int \frac{t_{k} c_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}{\epsilon^{k} t_{k} \omega_{k}} \sim NT^{2}$$

$$= \frac{N}{2\pi} \int \frac{t_{k} c_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}{\epsilon^{k} t_{k} \omega_{k}} \sim NT^{2}$$

$$= \frac{N}{2\pi} \int \frac{t_{k} c_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}{\epsilon^{k} t_{k} \omega_{k}} \sim NT^{2}$$

$$= \frac{N}{2\pi} \int \frac{t_{k} c_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}{\epsilon^{k} t_{k} \omega_{k}} \sim NT^{2}$$

$$= \frac{N}{2\pi} \int \frac{t_{k} c_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}{\epsilon^{k} t_{k} \omega_{k}} \sim NT^{2}$$

$$= \frac{N}{2\pi} \int \frac{t_{k} c_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}{\epsilon^{k} t_{k} \omega_{k}} \sim NT^{2}$$

$$= \frac{N}{2\pi} \int \frac{t_{k} c_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}{\epsilon^{k} t_{k} \omega_{k}} \sim NT^{2}$$

$$= \frac{N}{2\pi} \int \frac{t_{k} c_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}{\epsilon^{k} t_{k} \omega_{k}} \sim NT^{2}$$

$$= \frac{N}{2\pi} \int \frac{t_{k} c_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}{\epsilon^{k} t_{k} \omega_{k}} \sim NT^{2}$$

$$= \frac{N}{2\pi} \int \frac{t_{k} c_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}{\epsilon^{k} t_{k} \omega_{k}} \sim NT^{2}$$

$$= \frac{N}{2\pi} \int \frac{t_{k} c_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}{\epsilon^{k} t_{k} \omega_{k}} \sim NT^{2}$$

$$= \frac{N}{2\pi} \int \frac{t_{k} c_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}{\epsilon^{k} t_{k} \omega_{k}} \sim NT^{2}$$

$$= \frac{N}{2\pi} \int \frac{t_{k} c_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}{\epsilon^{k} t_{k} \omega_{k}} \frac{d_{k}}$$

Generalization to 'd' space dimensions: Mairely in d-space dimensional cubic lattice: $E \stackrel{?}{=} \frac{V}{(2\pi)^d} \int \frac{d^d k}{e^{\beta \pi c k}} .$ But this misses something important. Since Sound modes (=6014stone modes) have a direction of propagation, there are a independent ways to vibrate for a given to rector: - 1 way to oscillate along the direction of propagation. (longitudinal sound mode) - d-1 ways to oscillate perpendicular to the direction of propagation. Chansverse sound Contrast this with the case of light (photon) where only transverse modes exist - the two polarization choices in the premous tecture were exactly to account for that. fren mare, there is no symmetry reason for the longitudinal sound relocity Co

for the dong, tudinal sound relocity Co. to be some as the transverse sound relocity Ct.

Thus,
$$E = E + Ea \qquad (T \ll t \omega_0)$$

$$= \frac{V(d-1) \int \frac{d^d k}{e^{B c + t c + k}} \frac{t c + k}{1}$$

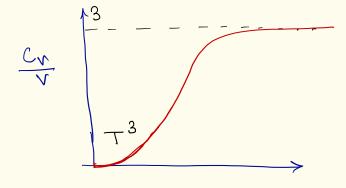
$$+ \frac{V}{(2\pi)^3} \int \frac{d^d k}{e^{B c + t c + k}} \frac{t c + k}{1}$$

$$\Rightarrow \frac{E}{V} \sim \left[\frac{c^{\frac{1}{q}}}{c^{\frac{1}{q}}} + \frac{1}{c^{\frac{1}{q}}}\right] + \frac{1}{c^{\frac{1}{q}}}$$

In particular, when d=3, $cr \sim T^3$, a fact that is routively observed in solider.

in solider.

As one way expect, when T >> two $\frac{Cv}{V} \rightarrow 3$



Again, note the similarity between a sound mode (6 phonon?) and a light made (6 photon?).