
foundations of Statistical Physics
-

-
Aim : Given a Hamiltonian H and an initial

condition
. predict long - time behavior of a

large number of  interacting particles .

Examples :

(a) Consider the classical Hamiltonian

H ' Ei IIMt.EE#*T
with the

initial condition ,

Pitt:o) =P andFLED
t t T

E- I :O

Calculate s Fix = ) Ff Ctlduty ,
t

t 37 Ly where r is some
characteristic velocity .

(b) Consider the quantum
Hamiltonian of spin - If spins

Ii ⇐
- ? ri

' rif ,
thx Fix theFri?

where I;
are Pauli matrices and the initial

IR R
-

- - -

t > ( all spins

state 144=017 =

pointing
^

along a

Calculate L Tilt -0N ) ) direction ) .



On the face of  it
. this is a very

hard

Problem because one might think that CRI '
> in

to

(a) on L r
>

Yt → a
depends on the precise

initial conditions .

Since there are infinitely many

possible
initial conditions ,

this seems like a

hopeless problem .

Remarkably .

the actual Cie . experimentally
observed )

behavior seems much more simpler .

With some

exceptions .

one typically finds that all initial

conditions that have identical .
value for

consentedquantitiesdead to identical long-time behavior .

for example
.

if energy
is the only

conserved quantity ,

then OH ) for some Ocp , g) may
look like :

A
.

'
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-
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-
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Quantum mechanically ,
the contrast B even more

dramatic a

freewayhhmwmmm=ae¥¥¥÷t.
⇒ in AM , averaging happens

'

automatically due to quantum
fluctuations .

Why do conservation laws play such an important

role ? The reason  is that sufficiently generic

Systems are #
and over dong time explore

all States accessible to them . C the three

- classical
famous exceptions to this statement are

quantumglasses
, many

- body
localized

, systems .

and

systems that exhibit spontaneous symmetry

breaking)

.
Due to this democratic exploration

of the phase space I Hilbert space ,
conservation

laws aet as the only
constraint on dong - time

expectation valve of observables
.

The
'

memory
'

of the initial state is lost C ' scrambled ' ) by
the chaotic dynamics .

Classically crgoduzitg implies equality of the

following three quantities :



ttt

Cil J Outduty ,
for t > tear .

and T large .

t

Cii ) ( Oct ) > for fixed t > teg .
where l >

is taken over all initial conditions with the

same energy
E as in Ci ) -

( Iii ) to > wheeee s 7 is taken over all

phase - space points with energy
E . Explicitly ,

( o ) = I Ocp , q ) dpdq
E -5 # Cp , g) LET SE

-

S dp day
E S Hep,q ) sEtfE

The section of phase - space with fixed energy

is called Micro canonical Ensemble and the

-

averaging
in Ciii ) is sometimes called micro canonical

averaging . Clearly Ciii ) is much easier to

calculate than i ) or C.i.) .



Quantum mechanically , one analogue of a

micro canonical ensemble  is a single eigenstate
-

at
energy E

,
which we devote by IE >

.

In this cases ergodeicity implies the equality

of following three quantities ÷:

Li ) ( El I I E >
ttt <

. , -

Cii ) ) ( yo toCt ) I yo > dit It for t > tear .

t

where Cheol ti l yo > =
E

.

Ciii ) l 401 8140 ) averaged over all 1487

that satisfy Cheol te Iyo > = E

finally one can also define a quantum

micro canonical ensemble that is closer in

definition to the classical one as :

→ eigenstates .

E IE
;

> CEt where ESE i CEDEf me
=

i

The equality
N

Trace [Pmo 8 ] = SELFIE >

,
it  it holds

is referred to as
6 Eigenstate Therwalizalion

.



The concept of entropy
-

Given some probability distribution PCP . g) ,
it's

entropy is defined as $2= - Sdp day

ftp.q7ilogpcp.gg

)
.

S is a measure of ignorance associated with

: if P is sharpy peaked at a few valves

S is small
,

and if f is afdat distribution
.

then S is maximal . .

Quantum mechanically , given a density matrix

p
"

,
s = -traeelpeogp ]

.

The most interestingpropertyof S is that

(i ) For an isolated system it stays constant

with time L Setsuna prob .

5.7 )

( i i ) For a subsystem of an isolated system ,

it increases with time due to scrambling

Of  information L 2nd law of thermodynamics)
.

We will discuss this more later
.



for the classical micro canonical ensemble ,

Iet's define ACE ) by
[ what  about

ICE ) 8 E
 = I dpdoh units

?
we will

E C ftp.qKETSE return to  it

later ]

= phase space volume of
.

thin - shell with energy
E

.

⇒ pep , q ) =

1--2 if ESHCP, g)

ICE ) SE
SEIZE

= O otherwise

( Note that

g.

with this definition . p is already
normalized

⇒ s =
- fdpdq pep , g) dog PCP , g)

Me

= +fdpdq 1- dog I RCE ) SE ]
E s Hep .gs ICE ) SE

C Etf E

= dog [ RCE ) SE ] = dog # E) It dog( SE )

Quantum mechanically Smc = log C number of

eigenstates
between E and

Etf E ) .



The AM definition implies that s can

at
be extensive because # of  eigenstates

between E and ELSE can at most grow

exponentially with system size .

#

The concept of temperature and the laws of

thermodynamics

Zerothlaw

Consider bringing two initially isolated

systems in contact so that they can exchange

energy row :

EEa
# of States of total system at energy

DIE) = JDE , RIE , ) Dz CE - Es )

= fdE , est CEI ) t Sz CE - Ez )

Since both Sy , Sz are extensive ,
DCE )

can be evaluated using saddle point

approx :



R CE ) = e
SEE # ) t s z

CE - Est )

where Etta is the maximum of the fu

SIEs ) t Sz CE - Es ) and therefore

satisfies .

Feast; 3¥.lv .
Knew"Tmm

of two systems
.

The temperature is defined as ÷ = Zesty

⇒ ÷
-

- ¥
2

⇒ systems in equilibrium
have the same

temperature .

First Law
-

Lets do work non the system by changing

its volume a little bit  by applying pressure P
.

The energy changes by - Pd V .
The

Change in entropy is :

85 = S C E - Pdv ,
Vt DV ) - S C Eg v )

= SS - Pd V t 21 DV

Eelv av
IE

= ÷
- Pd V t ¥ fe DV



After equilibrium is reached , entropy will again

be stationary ⇒ 85=0 ⇒ 3¥ =

-1¥⇒ In equilibrium ,

as = z⇒vdEt 2£ le du

= d÷t IT dv

⇒

/dE=-d$=Pd#
-

DE ,
DS ete .

Its worth emphasizing that
,

refer to differences between
different equilibrium

States ,

unlike SS above which referred to

deviation from equilibrium .

Secondly
The number of accessible States in equilibrium

Ave move than the # of States with same

energy
in any non-equilibrium

state .

85 = SyCEz* ) tsz CEz* ) - SYCE , ) - ICED

30

⇒ tf SES tyee
,

8 Ez 30



⇒ ÷ 8 Es t ¥ 8 Ez 20

but SE z
=  

- SEI ⇒ 8 Esc ¥ - ¥ ) > O

if
T

,
s Tz ⇒ S Es 30 i . e .

heat

flows from 2 to 1 .

Microscopic Origin of Second Law
-

Both Newton 's law and Schrodinger equation for time -

independent Hamiltonians are time - reversal symmetric
This seems in  contradiction with the second - law .

Lets clarify this . The reason entropy increases

is because the initial conditions that naturally- -

arise in experiments tend to have a low
entropy .

-

for example .  in the example just considered the

System is by construction a low

entropy state if T , # Tz .

Once entropy

reaches its maximum possible value
,

it does

not decrease C atleast not until a

very

long time Cf
.

Poincare recurrence ) .
But  if

it's not at its maximum possible value
.

then

there are

many
more pathways to go to a higher



entropy state than a lower entropy state .

More crucially ,
lets evolve the state

for Tl # Tz backwards in time
.

Tz One will find that the entropy will

again increase with time .
Therefore , second law

is fundamentally about  initial conditions
.

means . . .

•

I

specialinitialcondition
C i - e . low entropy )

secondlawi.bquilibriwmts.Non-Equilibn.vn#

In thermodynamics , entropy is typically defined

onlyat equilibrium .
In this context

,
second law

refers to the statement that as a system

at equilibrium with entropy So is perturbed

and finally reaches a different equilibrium
stale with entropy Ss

,
then Ss > So

Assuming no work is done on the system .



However
,

one can define entropy even out

of equilibrium using
the definition

S=  - Tr peogp .
To do this

,
first

let's remind ourselves that were the

System described by f closed ,
then

Entropy is constant .
Therefore to wake

Sense of second - law
,

one has to consider

non - closed systems .

As an example ,
consider a QM system .

that starts ian a stale Iyo > at to and

-  int

tuts = e Iyo > . Clearly S = -

Trptdogpt
= O for all time t .

where Pf14h > CHI
.

However now consider a smaller subsystem of

the total system :

=AfoIae
system .

Define PattleTracers 14T > cult I .

and SAHI =
- Tr pact ) dog pact )



One finds that SA Et7 grows with time

and saturates at a value VA

Seg
where

Sth exactly corresponds to the equilibrium

thermal entropy density

see 'fe"f-
This is a manifestation of 2nd law . Again the

initial condition has low entropy .

One can define a Similar quantity classically as well
.

consider the phase - space p .
d . f . PCD} , Egg,

t ) for

all particles evolving
under Newtonian dynamics .

from this
,

one can
define a

'

partial
'

phase . space

p . d. f . PAC EPI - .  - - PNA , q , - . . q Na}gt ) of just

NA particles out  of total N via

I A = Sdp Nat ,
-

- DPN dGNa+ ,
- - dqw P HI ,

t )

Defining SA # =
- fdps-dpnadqs-dgnn.BA dogpa

One again expects that  it will grow
with time

and then saturate to NA beg for most initial

conditions that are easy to prepare in a dab .


