Zipping many-body quantum states

Tarun Grover (UCSD)

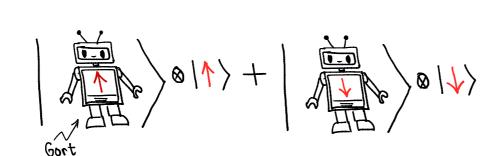
Yu-Hsueh Chen (UCSD)

arXiv:2502.18898

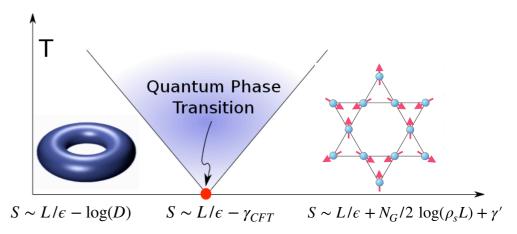
In praise of entropy

Information-theoretic objects of the form $S = -\text{trace}(\rho \log(\rho))$ have been extremely useful in a variety of contexts...

Fundamentals of thermodynamics and statistical mechanics

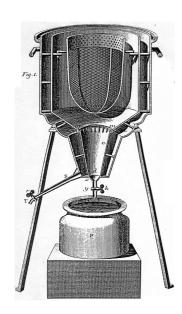


"Interpretation of classical mechanics"



Universal aspects of many-body states

 $S = -\text{trace}(\rho \log(\rho))$ is the expectation value of an unwieldy operator $\log(\rho)$.



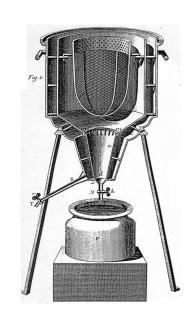
Ice calorimeter [Lavoisier, Laplace, circa 1780]

For a Gibbs state, $dE = S_{thermal} dT$

 \Rightarrow S_{thermal}(T) can be obtained from E = $\langle H(T) \rangle$

Ergodicity implies microcanonical $S(E) = S_{thermal}(T(E))$

 $S = -\text{trace}(\rho \log(\rho))$ is the expectation value of an unwieldy operator $\log(\rho)$.



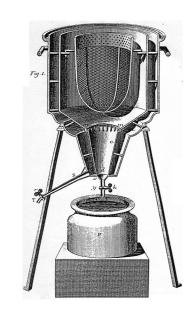
Ice calorimeter [Lavoisier, Laplace, circa 1780]

For a Gibbs state, $dE = S_{thermal} dT$

 \Rightarrow S_{thermal}(T) can be obtained from E = $\langle H(T) \rangle$

Ergodicity implies microcanonical $S(E) = S_{thermal}(T(E))$

 $S = -\text{trace}(\rho \log(\rho))$ is the expectation value of an unwieldy operator $\log(\rho)$.



One option:
Full state tomography

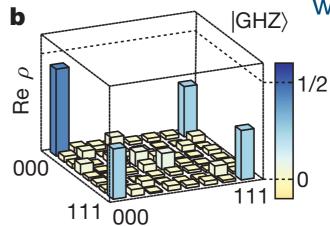
Effort scales exponentially with number of qubits

Ice calorimeter [Lavoisier, Laplace, circa 1780]

For a Gibbs state, $dE = S_{thermal} dT$

 \Rightarrow S_{thermal}(T) can be obtained from E = $\langle H(T) \rangle$

Ergodicity implies microcanonical $S(E) = S_{thermal}(T(E))$



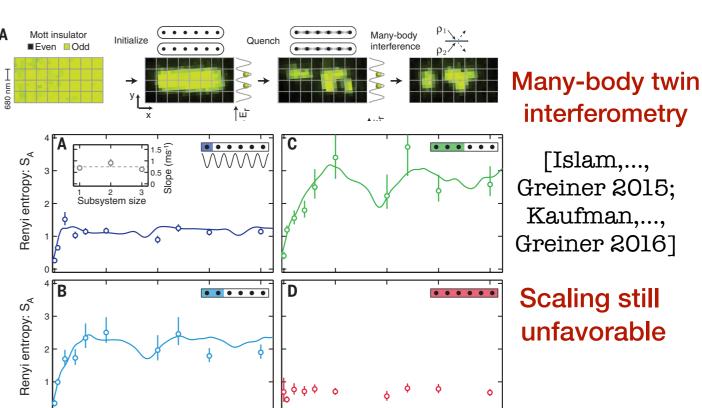
[Neeley,...,Martinis 2010]

 $S = -\text{trace}(\rho \log(\rho))$ is the expectation value of an unwieldy operator $\log(\rho)$.



Entropy of a non-thermal subsystem? A calorimeter won't do...

Measure Renyi entropy $S_2 = -\log(\operatorname{tr}(\rho^2))$ instead...



Time (ms)

Ice calorimeter [Lavoisier, Laplace, circa 1780]

For a Gibbs state, $dE = S_{thermal} dT$

 \Rightarrow S_{thermal}(T) can be obtained from E = $\langle H(T) \rangle$

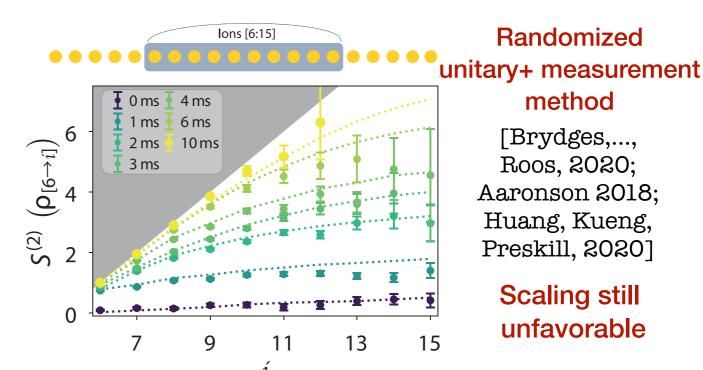
Ergodicity implies microcanonical $S(E) = S_{thermal}(T(E))$

 $S = -\text{trace}(\rho \log(\rho))$ is the expectation value of an unwieldy operator $\log(\rho)$.



Entropy of a non-thermal subsystem? A calorimeter won't do...

Measure Renyi entropy $S_2 = -\log(\operatorname{tr}(\rho^2))$ instead...

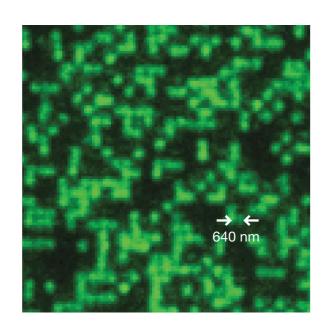


Ice calorimeter [Lavoisier, Laplace, circa 1780]

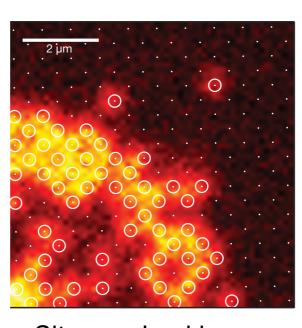
For a Gibbs state, $dE = S_{thermal} dT$

 \Rightarrow S_{thermal}(T) can be obtained from E = $\langle H(T) \rangle$

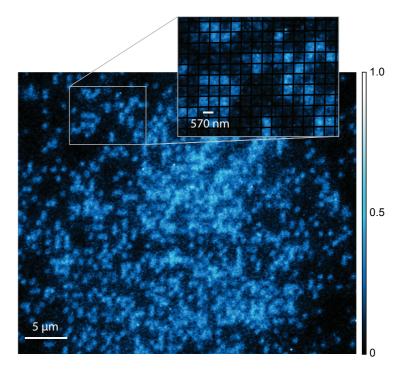
Ergodicity implies microcanonical $S(E) = S_{thermal}(T(E))$



Site-resolved image of ⁸⁷ Rb atoms [Bakr,..., Greiner, 2010]



Site-resolved image of ⁸⁷ Rb atoms [Sherson,..., Kuhr, 2010]



Site-resolved image of ⁶Li atoms [Parsons,..., Greiner 2015]

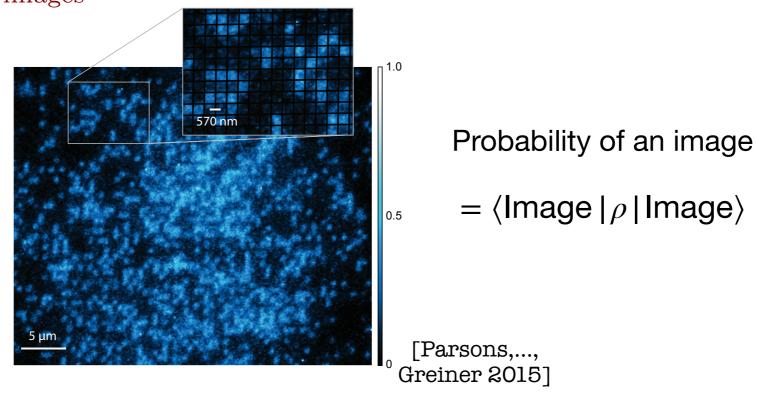
Probability of an image = $\langle Image | \rho | Image \rangle$

These images are precious. Generating them on a classical computer generically a hard task.

Can these be used to measure any entropic quantity efficiently at all?

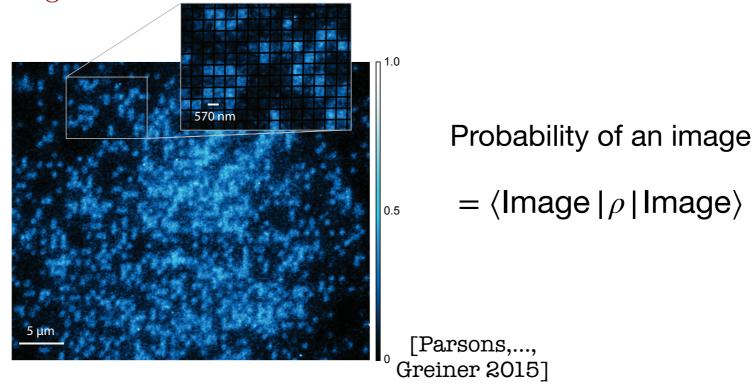
Instead of targeting $S = -\text{trace}(\rho \log(\rho))$, we will ask a simpler question:

Can we estimate "diagonal entropy" Sd, defined as



Instead of targeting $S = -\text{trace}(\rho \log(\rho))$, we will ask a simpler question: Can we estimate "diagonal entropy" S_d , defined as

$$S_d = -\sum_{\text{images}} \text{probability(image)} \cdot \log(\text{probability(image)})$$



- Unlike S, diagonal entropy S_d is non-zero even for pure states.
- S_d generically scales as volume law, even for ground states.
- $S_d \geq S$.

Basic idea

Diagonal entropy =
$$N \cdot \text{Compression ratio} = N \cdot \frac{1 \text{ MB}}{2 \text{ MB}} = N/2$$

Most efficient way to compress a string? e.g., consider

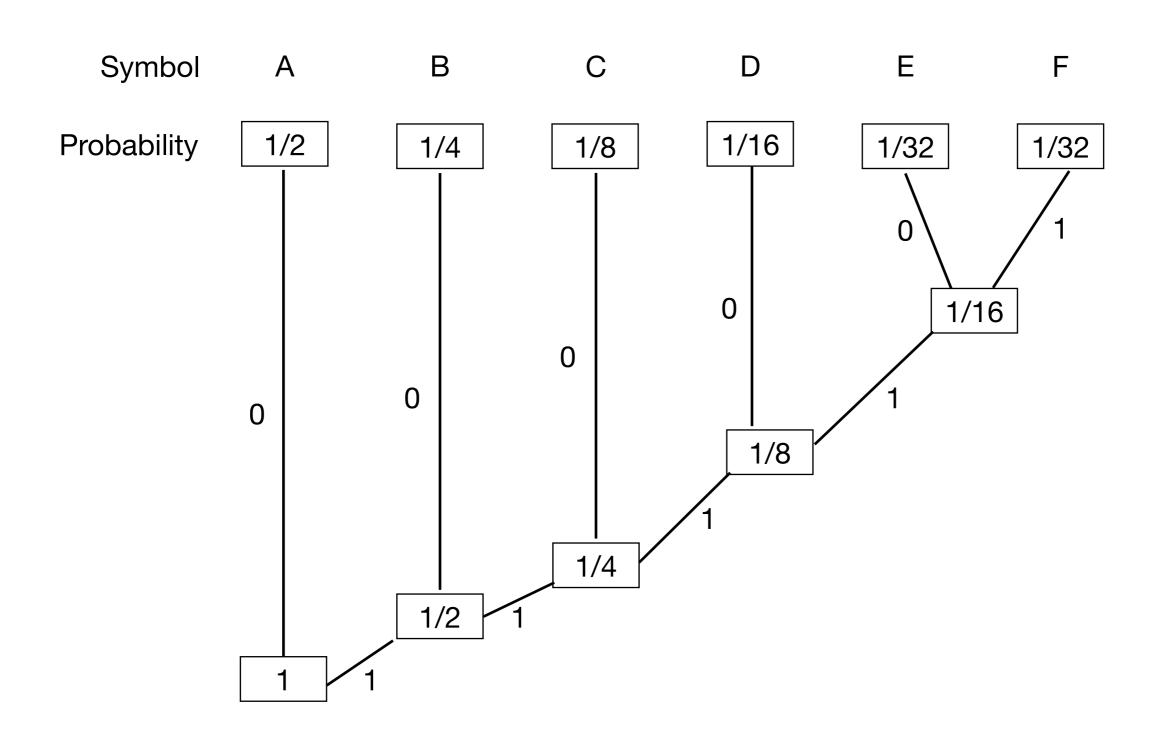
AAABABAAABBAAABAAACAAADAAABEAAAFFAABABAAABBBAAAABAAACAAADAAAB

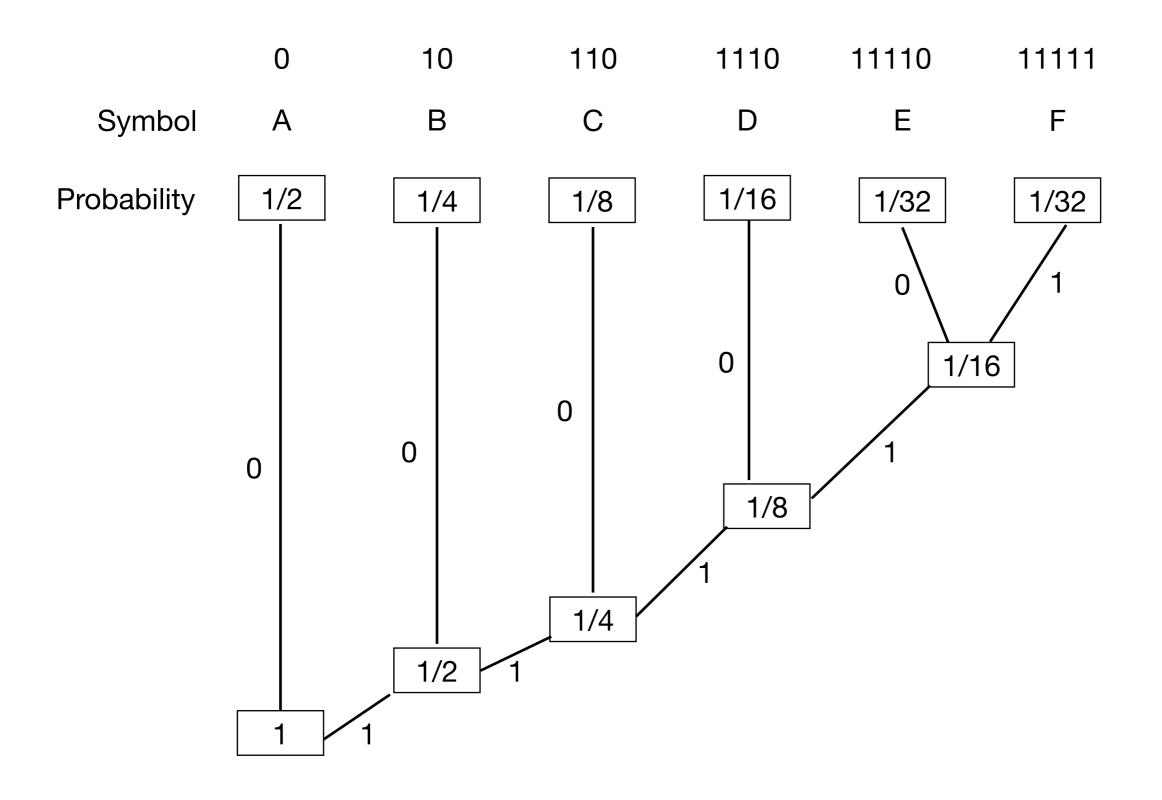
EAAAFFAABABAAABBBAAAABAAACAAADAAABEAAAF

where the probabilities of these symbols are known a priori:

 Symbol
 A
 B
 C
 D
 E
 F

 Probability
 1/2
 1/4
 1/8
 1/16
 1/32
 1/32





1110 0 10 110 11110 11111 Ε C Symbol В D F Α 1/2 Probability 1/16 1/4 1/8 1/32 1/32

$$\langle \text{Word length} \rangle = 1/2 + (2 \times 1/4) + (3 \times 1/8) + (4 \times 1/16) + (2 \times 5 \times 1/32)$$

= 1.9375

Shannon entropy of distribution = $-\sum_{i} p_{i} \log p_{i} = 1.9375$

This compression method ("Huffman coding") is optimal: $\langle Word length \rangle = Shannon entropy$

Entropy of an unknown distribution?

Consider a bit-string where the letters are being drawn from an *unknown* stationary ergodic source:

AABABBBABAABABBBABBABB

Lempel-Ziv compression (1977): make a dictionary out of this bit string:

← [borrowed from Peter Shor's lecture notes]

[Lempel, Ziv 1977, Wyner, Ziv 1993]: This compression scheme is also optimal. Unlike Huffman coding, requires just a long enough bit-string and nothing else.

Compression ratio =

"Computable Information Density (CID)"

Length of compressed bit string

Length of original bit string

= Shannon entropy density

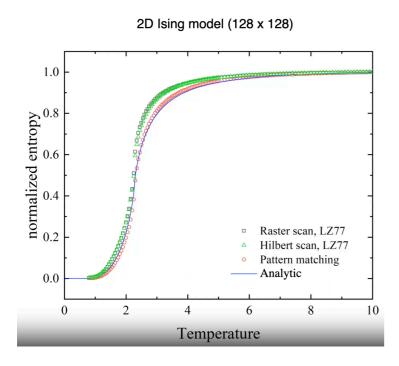
Physics by Zipping

PHYSICAL REVIEW X 9, 011031 (2019)

Quantifying Hidden Order out of Equilibrium

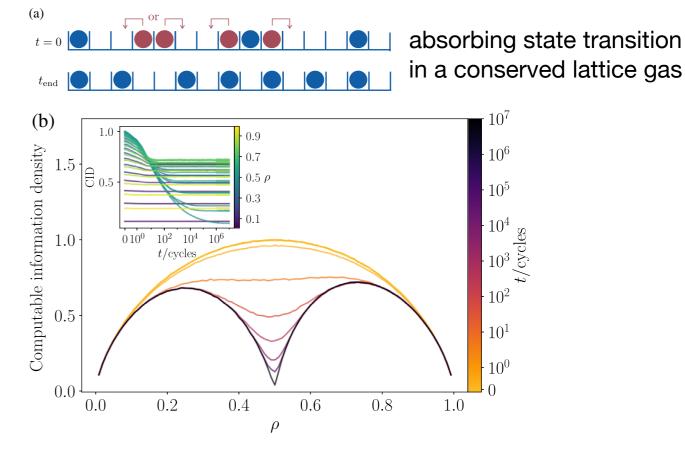
Stefano Martiniani,^{1,*} Paul M. Chaikin,^{1,†} and Dov Levine^{2,‡}

Equilibrium Entropy using compression



(from Dov Levine's seminar, 2022)

Non-equilibrium Entropy using compression



Zipping ground states

Zipping 1+1-D Quantum Ising Model

Let's take images in the X basis:

[Yu-Hsueh, TG 2025]

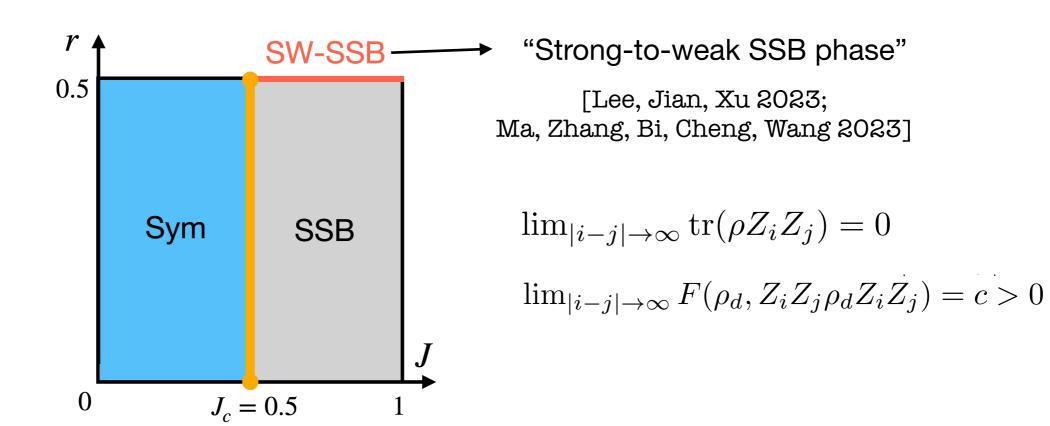
Denoting an image as $|x_j\rangle$, our goal is to estimate the diagonal entropy S_d :

$$S_d = -\sum_{x_{\mathbf{j}}} \langle x_{\mathbf{j}} | \rho | x_{\mathbf{j}} \rangle \log(\langle x_{\mathbf{j}} | \rho | x_{\mathbf{j}} \rangle) = -\sum_{x_{\mathbf{j}}} \rho_{x_{\mathbf{j}}} \log \rho_{x_{\mathbf{j}}}$$

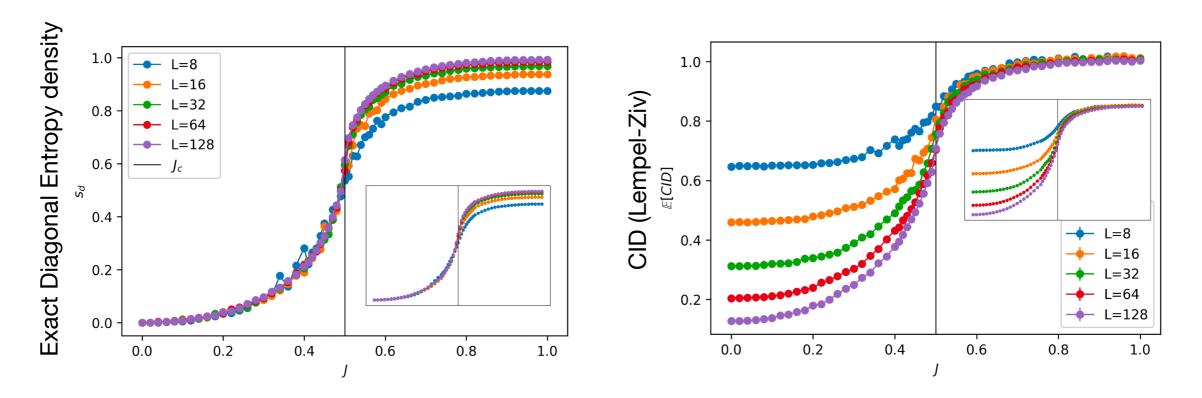
Diagonal channel as decoherence

Consider the channel
$$\mathcal{E}_r[\cdot] = \prod_j \mathcal{E}_{j,r}[\cdot], \quad \mathcal{E}_{j,r}[\cdot] = (1-r)[\cdot] + rX_j[\cdot]X_j$$

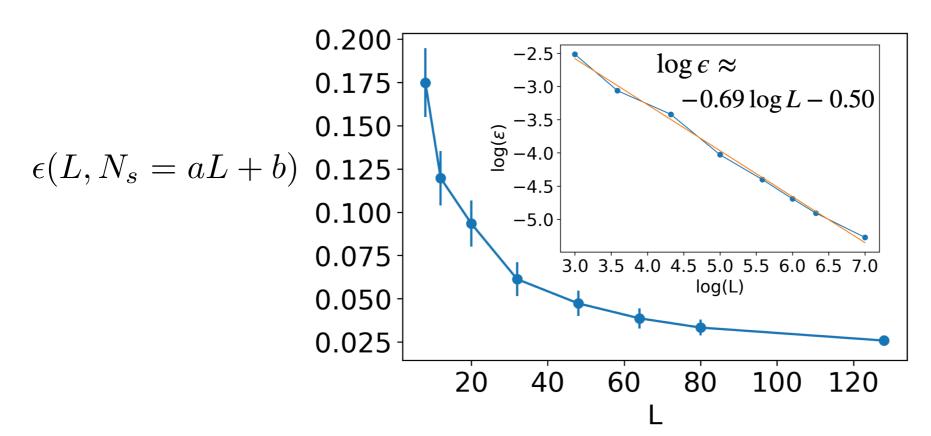
$$ho_d = \sum_{x_{\mathbf{j}}}
ho_{x_{\mathbf{j}}} |x_{\mathbf{j}}\rangle \langle x_{\mathbf{j}}|$$
 is obtained when \mathbf{r} = 1/2



Diagonal entropy vs Lempel-Ziv



How does $\epsilon(L, N_s) = |\mathbb{E}[\text{CID}](L, N_s) - s_d(L)|$ scale with L and N_s ?

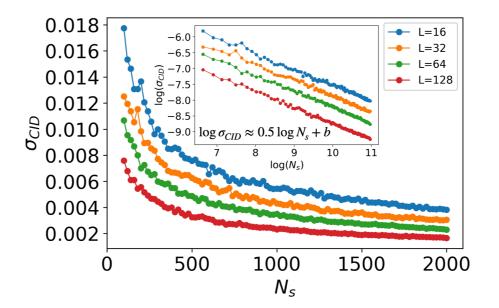


Sample complexity

Two sources of deviation between s_d and CID: finite size effect, and finite number of samples

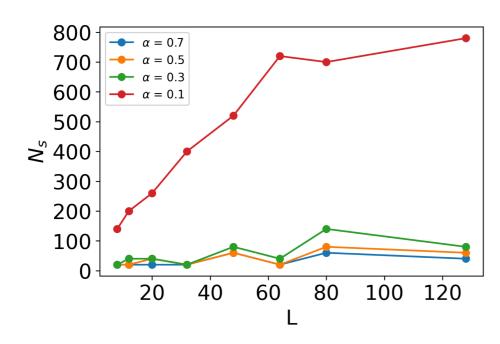
Standard deviation due to finite sampling

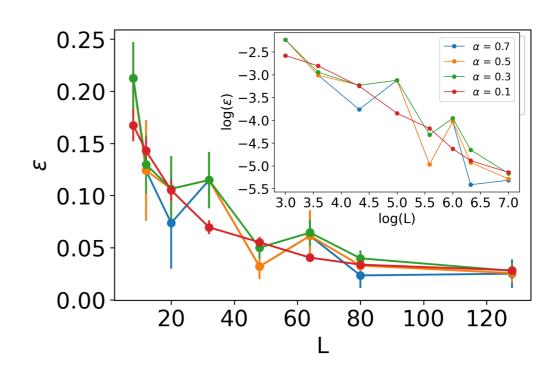
$$\sigma_{\rm CID}(L, N_s) \approx \sigma_0(L)/\sqrt{N_s}$$



How many samples needed so that $\sigma_{CID}(L, N_s) \leq \alpha \epsilon(L, N_s)$

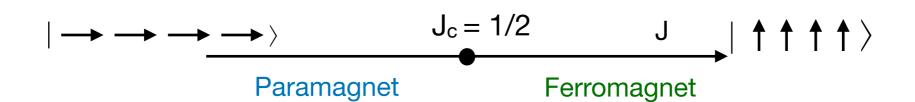
where
$$\epsilon(L, N_s) = |\mathbb{E}[\text{CID}](L, N_s) - s_d(L)|$$

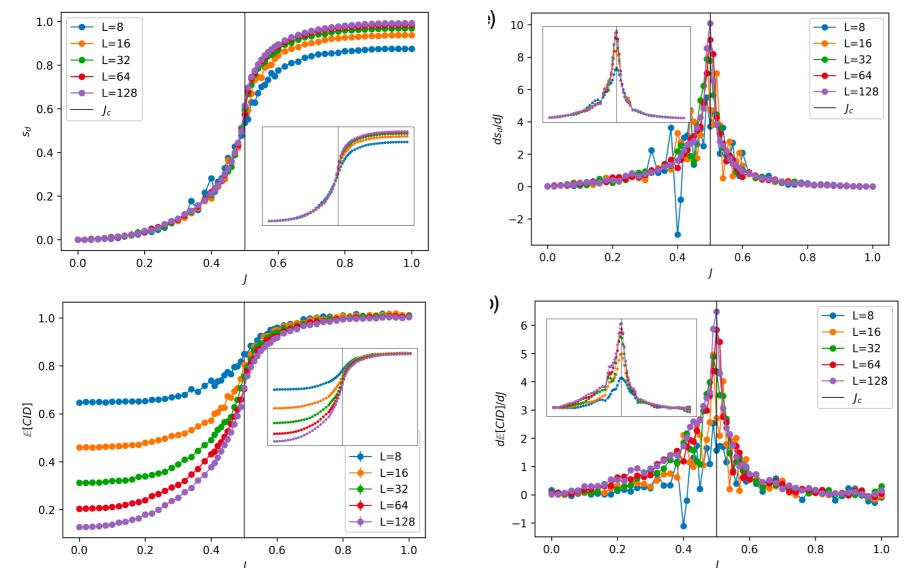




Locating phase transition

$$H = -(1 - J) \sum_{i} X_{i} - J \sum_{\langle i,j \rangle} Z_{i} Z_{j}$$





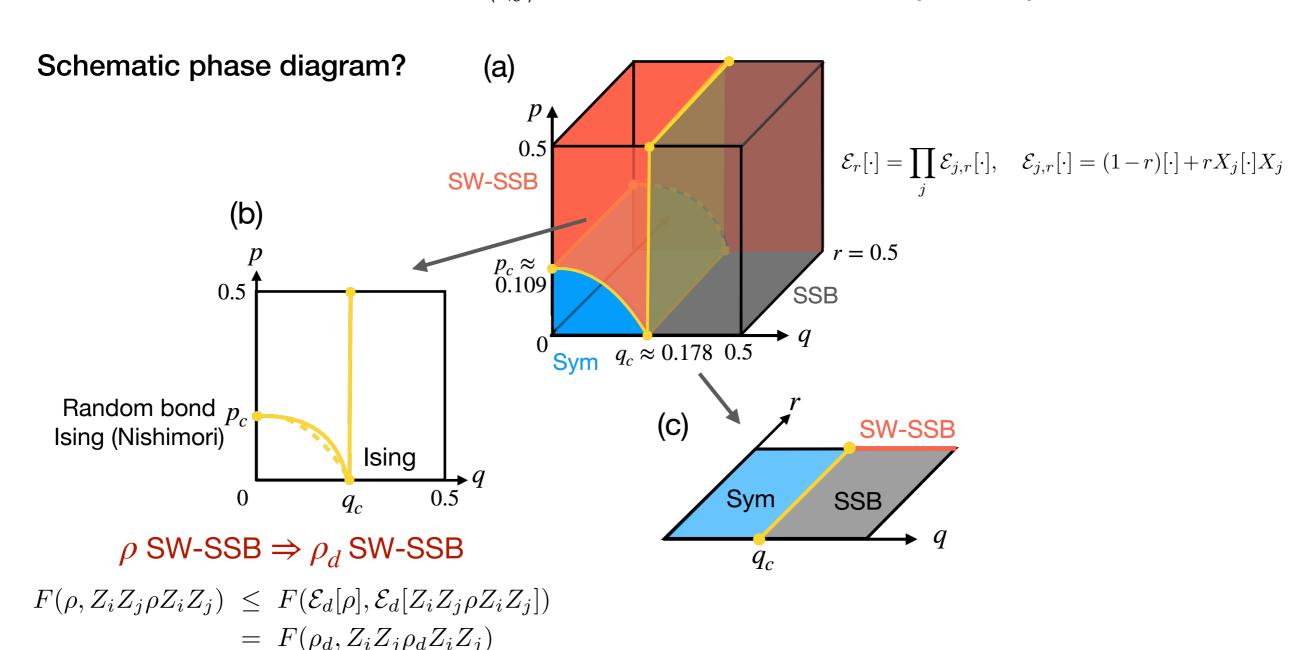
Field theory (replica calculation) predicts $S_d \sim |t| \log(1/|t|)$ $t = 1 - J/J_c$

(diagonal entropy density can be mapped to the boundary free energy of critical 2d Ising model, calculated by [Ferdinand, Fisher, 1967])

Zipping 2+1-D Decohered Ising State

We subject the pure state $|\Psi(q)\rangle=\prod_{\langle i,j\rangle}[(1-q)I+qZ_iZ_j]|x_{\bf j}=1\rangle$ on square lattice [Castelnovo, Chamon 2008]

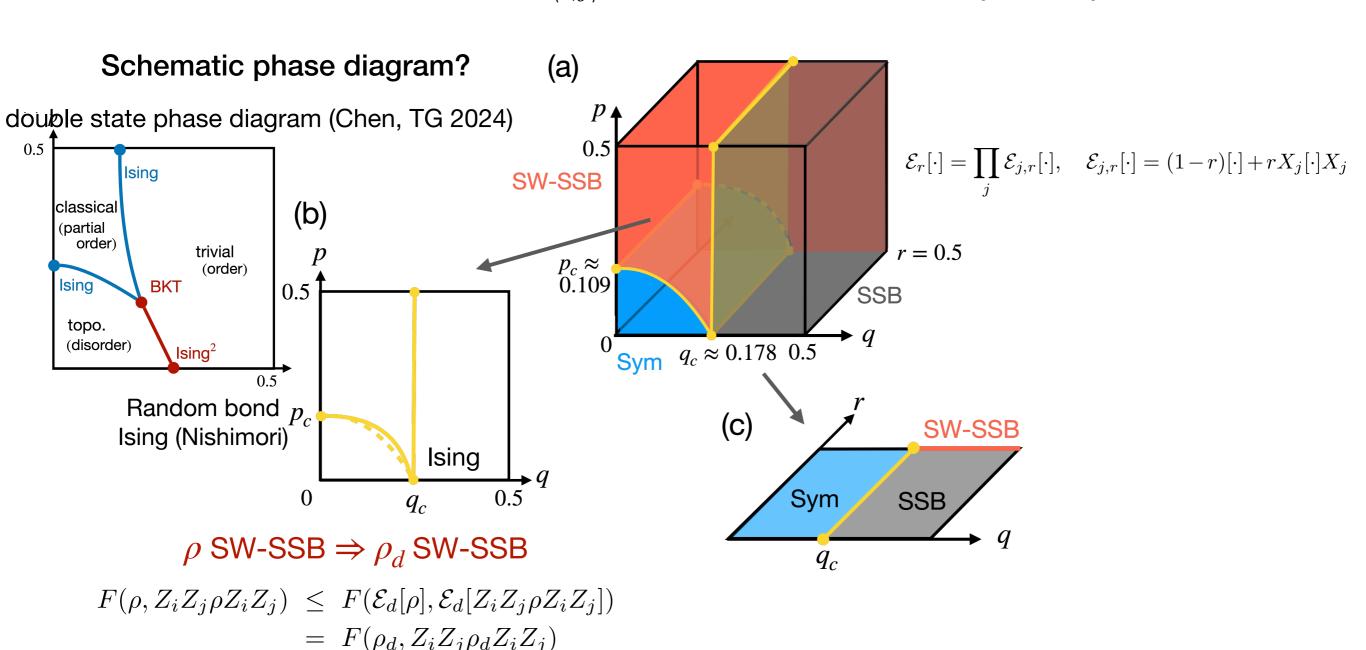
to decoherence
$$\mathcal{E}_{\langle i,j\rangle}(p)[\cdot] = (1-p)(\cdot) + pZ_iZ_j(\cdot)Z_iZ_j$$



Zipping 2+1-D Decohered Ising State

We subject the pure state
$$|\Psi(q)\rangle=\prod_{\langle i,j\rangle}[(1-q)I+qZ_iZ_j]|x_{\bf j}=1\rangle$$
 on square lattice [Castelnovo, Chamon 2008]

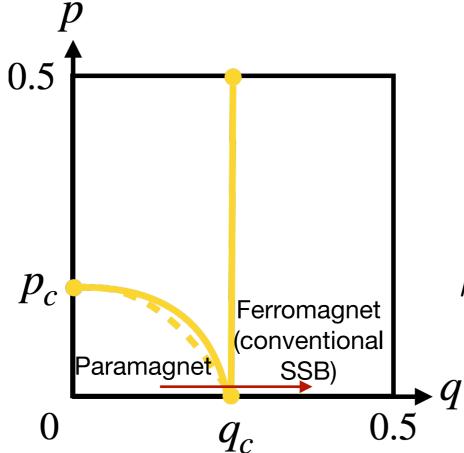
to decoherence $\mathcal{E}_{\langle i,j\rangle}(p)[\cdot] = (1-p)(\cdot) + pZ_iZ_j(\cdot)Z_iZ_j$



Zipping 2+1-D Decohered Ising State

$$|\Psi(q)\rangle = \prod_{\langle i,j\rangle} [(1-q)I + qZ_iZ_j]|x_j = 1\rangle$$

First consider p = 0 line:



Field theory calculation predicts diagonal entropy $s_d \sim t^2 \log(1/|t|)$

$$(t = |1 - q/q_c|)$$

Diagonal density matrix along p = 0

$$\rho_{x_{\mathbf{j}}} \propto |\sum_{s_{\tilde{i}}} e^{\beta \sum_{\langle \tilde{i}, \tilde{j} \rangle} J_{\langle \tilde{i}, \tilde{j} \rangle} s_{\tilde{i}} s_{\tilde{j}}}|^2 = \mathcal{Z}_{x_{\mathbf{j}}}^2(q)$$

$$\text{where } (\nabla \times J)_j = x_j$$

$$\rho_d(q,0) = \rho^2(0,p=q)/\operatorname{tr}[\rho^2(0,p=q)]$$

 $ho^2(0,p)$ undergoes a separability transition in the Ising universality class.

 $\Rightarrow \rho_d$ undergoes SW-SSB transition along the q axis in the Ising universality class

Brief outline of field-theory calculation for sd

$$S_d = \lim_{n \to 1} \frac{\log \left(\sum_{x_j} \rho_{x_j}^n\right)}{1 - n} = \lim_{n \to 1} \frac{F(2n) - nF(2)}{1 - n}$$

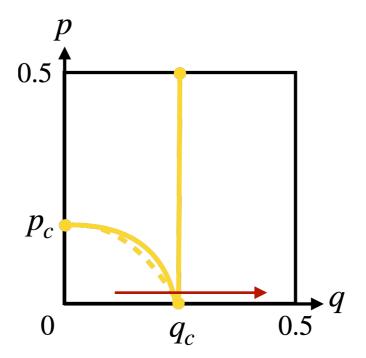
$$F(2n) = \log\Bigl(\sum_{x_{\mathbf{j}}} Z_{x_{\mathbf{j}}}^{2n}\Bigr)$$
 = Free energy of 2n-1 copies of the Ising model interacting via
$$H_{\mathrm{int}} = -K\sum_{\langle i,j\rangle} (\prod_{\alpha=1}^{2n-1} s_i^{(\alpha)} s_j^{(\alpha)})$$

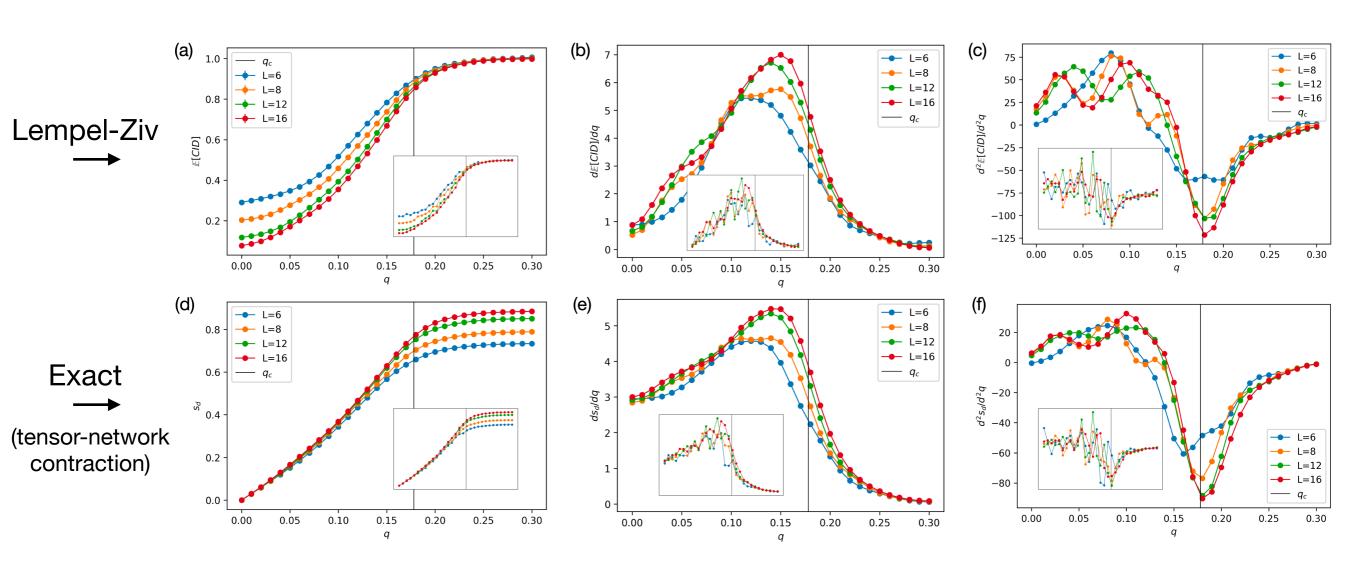
$$\mathcal{S}_{\mathrm{int}} = \int d^D r \Big(\lambda_0 \sum_{\alpha} \epsilon^{(\alpha)}(r) + \lambda \sum_{\alpha \neq \beta} \epsilon^{(\alpha)}(r) \epsilon^{(\beta)}(r) \Big)$$
 Characteristics

(calculation mapped to Cardy's book's Chapter 8.3 on random bond Ising model)

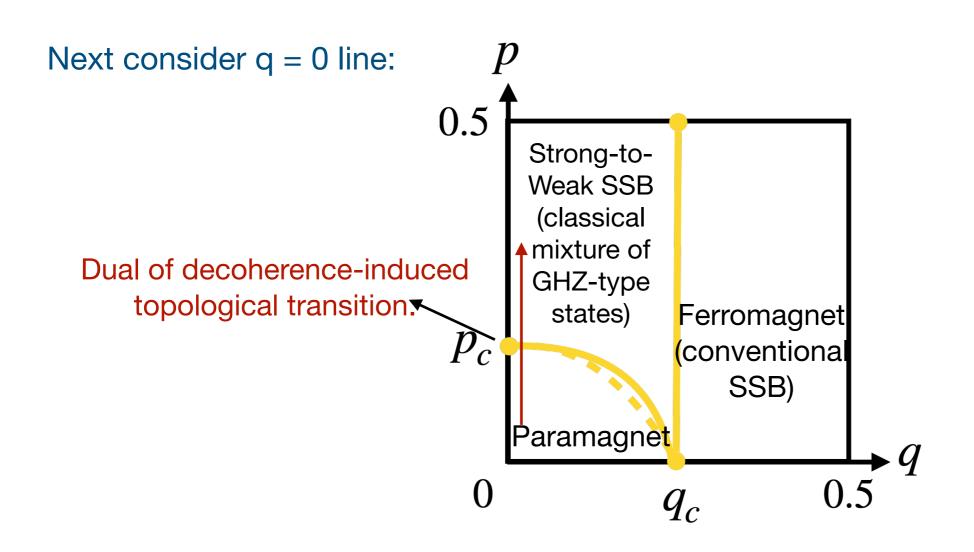
$$\frac{d\lambda}{dl} = \left(\frac{2}{\nu} - D\right)\lambda + \left(4(2n - 3) + 2C^2\right)\lambda^2 + O(\lambda^3) \qquad \epsilon^{(\alpha)}\epsilon^{(\beta)} \sim \delta_{\alpha,\beta} + C\delta_{\alpha,\beta}\epsilon^{(\alpha)}$$

- $\Rightarrow \lambda$ marginally irrelevant for D = 2 Ising model since C=0 (Ising self-duality) and $\nu=1$.
- \Rightarrow the leading singularity is the same as in the 2D Ising free energy, i.e., $t^2 \log(|t|)$.

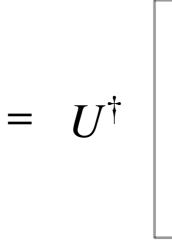




subjected to decoherence $\mathcal{E}_{\langle i,j\rangle}(p)[\cdot]=(1-p)(\cdot)+pZ_iZ_j(\cdot)Z_iZ_j$



Brief detour on decoherence-induced topological transitions

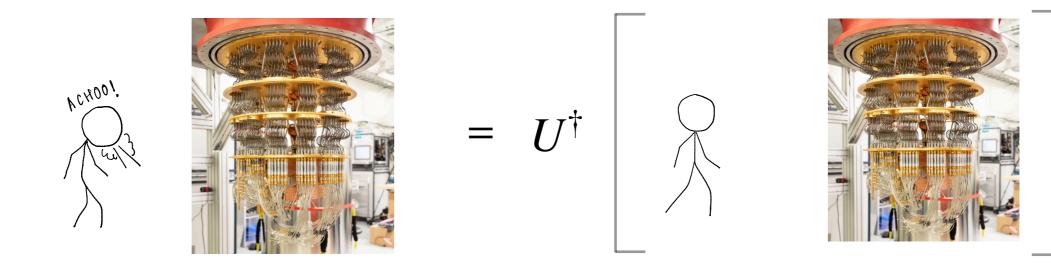


[]

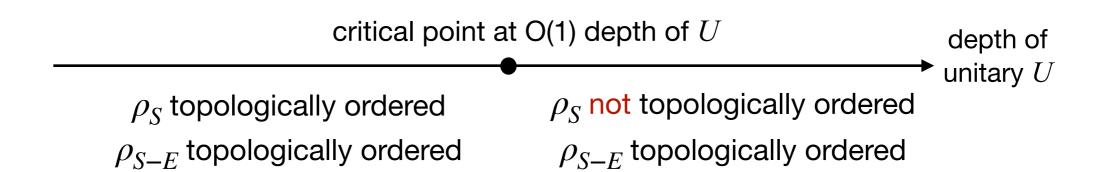
$$\rho_{\scriptscriptstyle S} = \operatorname{tr}_{\scriptscriptstyle E} \rho_{\scriptscriptstyle S-E}$$

S = quantum computer, E = experimentalist

Brief detour on decoherence-induced topological transitions



$$ho_{\scriptscriptstyle S} = \operatorname{tr}_{\scriptscriptstyle E}
ho_{S-E}$$
 $S = \operatorname{quantum computer},$ $E = \operatorname{experimentalist}$



Correlation functions of local operators completely analytic across the transition!

Requires observables non-linear in the density matrix.

[Dennis, Kitaev, Landahl, Preskill 2001; Fan, Bao, Altman, Vishwanath 2023; Lee, Jian, Xu 2023,...]

Π

Entanglement across decoherence induced topological transitions

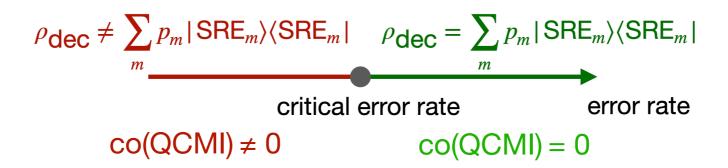
For a mixed-state
$$\rho$$
, define $\cos(\mathrm{QCMI}) = \min(\sum_i p_i \gamma(|\psi_i\rangle))$

where the minimum is taken over all possible decompositions $\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$

and $\gamma(\ket{\psi_i})$ is the topological entanglement entropy for the state $\ket{\psi_i}$

co(QCMI) = "long-range part of mixed-state entanglement".

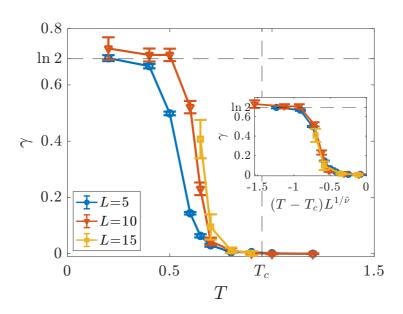
Equals zero if and only if ρ admits decomposition in terms of pure states with zero TEE.



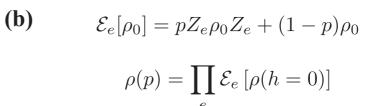
[Yu-Hsueh, TG, 2023 Wang, Song, Meng, TG, 2024]

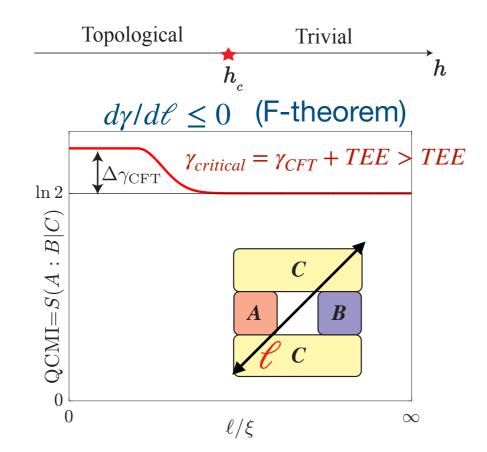
Decoherence induced transitions Vs Ground-state transitions

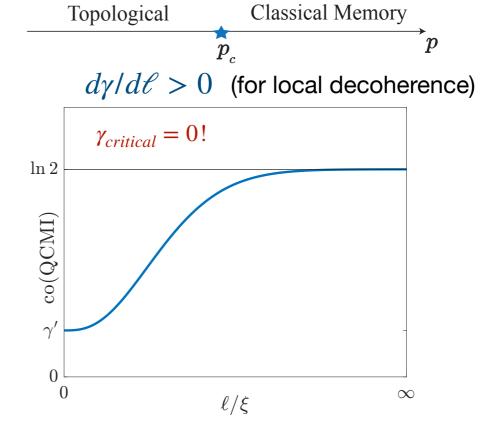
$$co(QCMI)[\rho_{ABCD}] = inf\{\sum_{i} p_i \gamma(|\psi_i\rangle_{ABCD})\} \approx 0.4$$



(a)
$$H(h) = H_{2d \text{ Toric}} + h \sum_{e} X_{e}$$
$$\rho(h) = \text{ground state of } H(h)$$





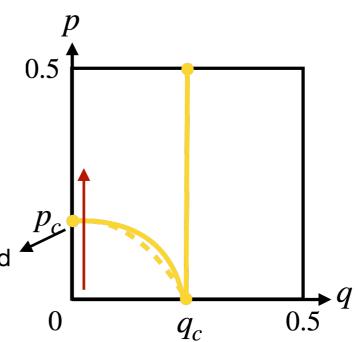


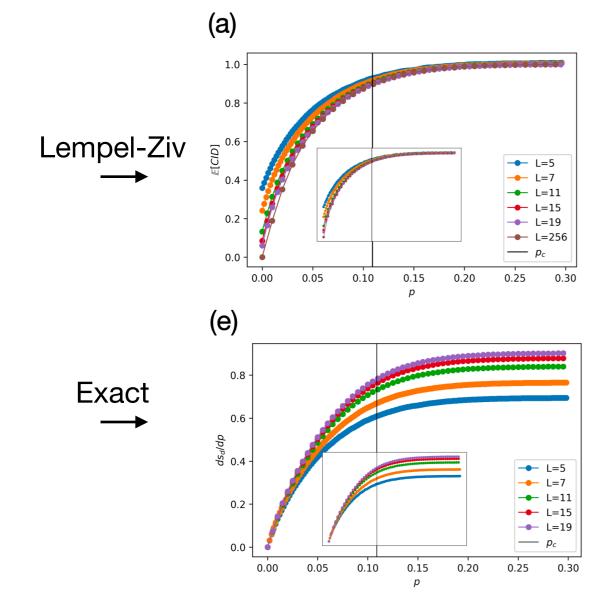
Back to zipping states...

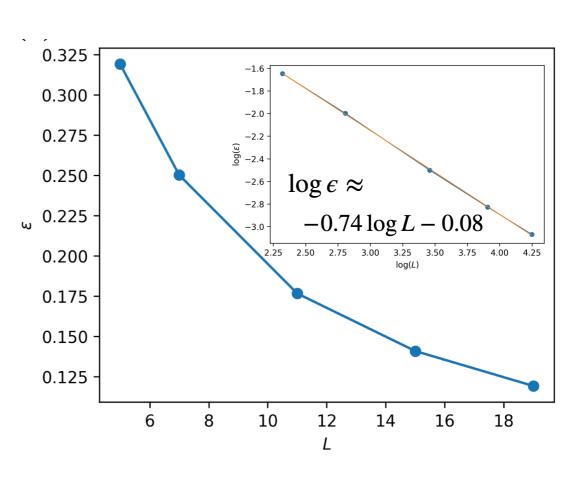
$$|\Psi(q)\rangle = \prod_{\langle i,j\rangle} [(1-q)I + qZ_iZ_j]|x_{\mathbf{j}} = 1\rangle$$

$$\mathcal{E}_{\langle i,j\rangle}(p)[\cdot] = (1-p)(\cdot) + pZ_iZ_j(\cdot)Z_iZ_j$$

Dual of decoherence-induced topological transition.







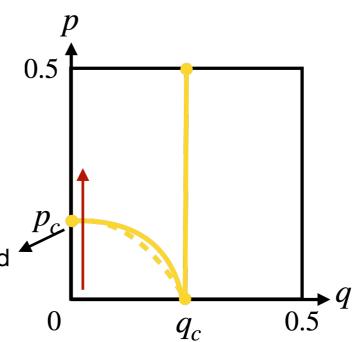
Lempel-Ziv works for the diagonal entropy density, but not subleading terms.

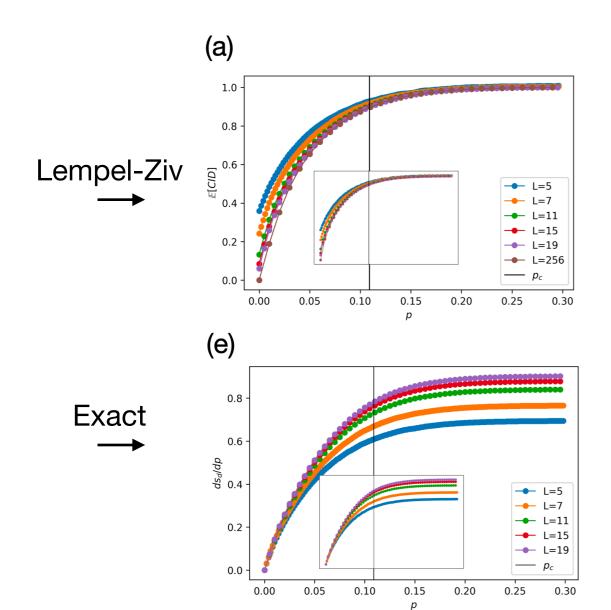
Back to zipping states...

$$|\Psi(q)\rangle = \prod_{\langle i,j\rangle} [(1-q)I + qZ_iZ_j]|x_{\mathbf{j}} = 1\rangle$$

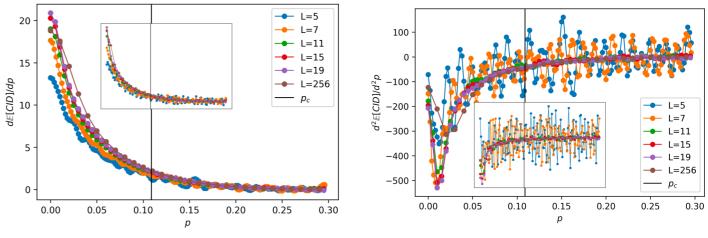
$$\mathcal{E}_{\langle i,j\rangle}(p)[\cdot] = (1-p)(\cdot) + pZ_iZ_j(\cdot)Z_iZ_j$$

Dual of decoherence-induced topological transition.





Singularity expected in the third-derivative of s_d . Not enough resolution to resolve it :(

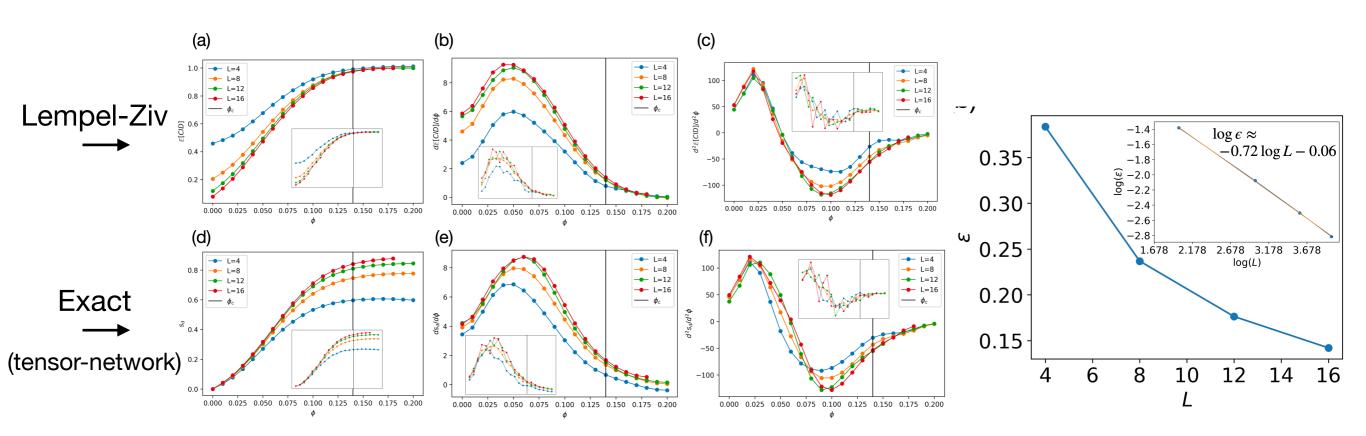


Further, Lempel-Ziv works for the diagonal entropy density, but not subleading terms :(

Another example: coherent errors

Subject $|x_j| = 1 \langle x_j| = 1$ to the following Ising-symmetry preserving unitary

$$U(\phi) = e^{i\phi\sum_{\langle i,j\rangle} Z_i Z_j}$$
 and then measure in the X-basis



Exploration limited by ability to generate images with Born rule: good opportunity for experiments!

An explicit example where the method fails

Consider
$$\rho = \frac{1}{2} \left(|x_A\rangle \langle x_A| + |x_B\rangle \langle x_B| \right)$$

 $|x_A\rangle, |x_B\rangle$ are two distinct product states generated as follows: with probability $p, x_A(i) = 1$, and with probability $1 - p, x_A(i) = -1$. Same procedure for $|x_B\rangle$.

Clearly,
$$S_d = \log(2) \Rightarrow s_d = \log(2)/N \approx 0$$
, but Lempel-Ziv's CID = $-p \log(p) - (1-p)\log(1-p)$

Reason: lack of translational invariance ("stationarity").

When does the method work?

[Wyner, Ziv 1993] showed that Lempel-Ziv works for stationary, ergodic processes. This seemingly implies that the method gives the correct diagonal entropy density if the state is translationally invariant, and bit-strings generated do not have non-trivial subsequences of non-zero probability that are translationally invariant.

Even non-Markov chains can be stationary and ergodic. Therefore, even if the conditional mutual information in the diagonal density matrix does not decay exponentially (while satisfying stationarity and ergodicity), then the method likely continues to work. Our numerics results are consistent with this expectation (e.g. the Nishimori critical point) but we are limited by size.

More work needed to analytically understand these conditions for physical states.

Summary and questions

We motivated image compression method to efficiently estimate diagonal entropy of a quantum state — it seems to track diagonal entropy density rather well in the physical examples we tried.

Image compression methods to estimate relative entropy between two distributions? (guess: use one image as a "dictionary" for another).

RG/field-theory understanding of Lempel-Ziv compression?

If there exists no other method to estimate diagonal entropy, how would one know that it has been estimated correctly in an experiment? Can one encode NP hard problems in the estimation of diagonal entropy?

Cold atoms are a natural platform for imaging, but can other methods also work, e.g., simultaneous NV-sensing of N >> 1 spins in a chosen basis?

One may not need single-site resolution — a course grained image may also work to extract universal physics.

Scaling of $\epsilon = |s_d - CID|$ at the 1+1-D TFIM critical point

