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In praise of entropy
Information-theoretic objects of the form S = 


 have been extremely useful in a variety of contexts…
−trace(ρ log(ρ))
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Measuring entropy?

Ice calorimeter [Lavoisier, Laplace, circa 1780]

S =  is the expectation value of an unwieldy operator . −trace(ρ log(ρ)) log(ρ)

For a Gibbs state, dE = Sthermal dT

 Sthermal(T) can be obtained from E = 


Ergodicity implies microcanonical S(E) = Sthermal(T(E))
⇒ ⟨H(T )⟩
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Entropy of a non-thermal subsystem? A calorimeter won’t do…
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Entropy of a non-thermal subsystem? A calorimeter won’t do…

in time. The 5% asymmetry in coupling strengths leads to small errors
that could be corrected by fine-tuning the interaction times, though this
was not done here.
Figure 3c shows the state occupation probabilities during the jGHZæ

protocol, plotted in segments corresponding to the stages of the pro-
tocol as indicated. The initial rotations create an equal superposition of
all qubit states, with all probabilities converging on 1/8. The effect of
the two iSWAP gates is then primarily to adjust the phases of the
various components of the superpositions, such that in the final rota-
tions j000æ and j111æ are populated and all other states are depopu-
lated. The occupation probabilities behave as expected, butmost of the
state evolution is hidden in the phase information not captured by
these probability measurements.
To fully characterize the quantum states created by the entangling

protocols, including the phase information, we performquantum state
tomography by applying various combinations of single-qubit rota-
tions before measurement. The density matrix is extracted from the
measured data using maximum-likelihood estimation to find the state
that best fits the data while also satisfying the physicality constraints
that it be Hermitian, positive semi-definite and have unit trace. Using
this procedure, we extract the density matrices rW and rGHZ, whose
respective real parts are shown in Fig. 4a and Fig. 4b, and whose
respective Pauli sets (expectation values of one-, two- and three-qubit
Pauli operators) are shown in Fig. 4c and Fig. 4d. Comparing the
measured states with theory, we find fidelities FW5 ÆWjrWjWæ5
0.786 0.01 and FGHZ5 ÆGHZjrGHZjGHZæ5 0.626 0.01.
To understand the significance of the measured fidelities, we com-

pare these results with entanglement witness operators that detect
three-qubit entanglement. Three-qubit entanglement is witnessed9

for the jWæ state provided that FW. 2/3, and for the jGHZæ state
provided that FGHZ. 1/2. These inequalities are satisfied by the
respective measured density matrices, indicating that they are genuine
three-qubit entangled states that cannot be decomposed into mixtures
of separable states. In addition,we find thatrGHZ violates theMermin–
Bell inequality23 G; ÆXXXæ2 ÆXYYæ2 ÆYXYæ2 ÆYYXæ# 2, as we
measure a value of GrGHZ

5 2.0766 0.029, contradicting the classical
assumptions of local reality (Supplementary Information). The violation
is not free from loopholes, owing to use of the cross-talk-free measure-
ment protocol rather than a simultaneous measurement protocol4, but it
is nonetheless an indicator of genuine three-qubit entanglement.
The lower fidelity of jGHZæ relative to jWæ is due to two main

factors. First, the jGHZæ sequence is longer because of the two

iSWAP gates; the sequence length is a substantial fraction of the
dephasing time of the qubits, T2, which is particularly detrimental
because the sequence relies on precise phases produced by the gates
to populate j000æ and j111æwhile depopulating all other states. Longer
coherence times would improve this, as would stronger coupling to
reduce the gate time. Second, the presence of j2æ, and higher levels, and
the relatively small nonlinearity of the phase qubit cause errors due to
transitions into higher excited states, for example j110æR j200æ. These
transitions can be ignored in the jWæ protocol because they are inac-
cessible with only one excitation in the system, but they cause errors in
the jGHZæ protocol because all qubit states are populated, including
those with multiple excitations. The effect of higher levels becomes
particularly complicated in this experiment when using fixed capacit-
ive couplingwith detuning to turn off the interaction, owing to spectral
crowding from the higher qubit levels. This highlights the need to
replace frequency detuning with tunable coupling schemes, which
are currently an active area of research.
The states that we have generated violate entanglement witnesses

that rule out biseparability, showing genuine three-party entangle-
ment. This ability to couple three qubits and create entangled states
with qualitatively different types of entanglement is a significant step
towards scalable quantum information processing with superconduct-
ing devices.
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Figure 4 | Quantum state tomography of |GHZæ and |Wæ. a, b, Real parts of
the measured density matrices rW (a) and rGHZ (b). For both states, the
theoretical density matrix has vanishing imaginary part, and the measured
imaginary parts (not shown) are also found to be small, with | ImrW| , 0.03
and | ImrGHZ | , 0.10. c, d, Pauli set (generalized Stokes parameters) plotted
for rW (c) and rGHZ (d). The bars show expectation values of combinations of
Pauli operators on one, two and three qubits, with theory in grey and
experiment overlaid in colour. The same state information is contained in both

representations, but the Pauli sets clearly show the differences between |Wæ-
type and |GHZæ-type entanglement. In addition to the three-qubit correlation
terms, the |Wæ state has two-qubit correlations because tracing out one qubit
from a |Wæ state leaves the others still partially entangled. The fidelity is
FW5 0.786 0.01. For |GHZæ, the two-qubit correlations other than the trivial
ZZ type are absent because tracing out one qubit leaves the others in a
completely mixed state. The fidelity is FGHZ5 0.626 0.01 and the state is also
found to violate the Mermin–Bell inequality23,24.
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One option:

Full state tomography

[Neeley,…,Martinis 2010]

Effort scales exponentially

with number of qubits
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system allows us to conclude that the dynamical
increase in entropy in the subsystems originates
in the propagation of entanglement between
the system’s constituents. The approximately
linear rise at early times (Fig. 3, inset) is related

to the spreading of entanglement in the system
within an effective light cone (2, 31, 32). Further-
more, in analogy to the growth of thermody-
namic entropy in an equilibrating classical
mechanical system, such as a gas in a closed

container, we observed the growth of local en-
tropy in a closed quantum mechanical system.
In the quantum mechanical case, however, the
mechanism responsible for the entropy is entan-
glement, which is absent from a system modeled
by classical mechanics.
When a system thermalizes, we expect that

the saturated values of local observables should
correspond to the predictions of a statistical en-
semble. By analogy, if the entanglement entropy
plays the role of thermal entropy, then in a ther-
malized pure state, we expect extensive growth
in the entanglement entropy with subsystem vol-
ume. When the entanglement entropy in a quan-
tum state grows linearly with the size of the
subsystem considered, it is known as a volume
law. Theoretical work using conformal field the-
ory has shown that indeed, at long times, a
volume law is expected for a quenched, infinite,
continuous system, whereas only an area law
with a logarithmic correction is expected for the
ground state (2, 33, 34). Characterizing the large
amount of entanglement associated with a volume
law is particularly challenging because it results
in nearly every entry of the density matrix having
a small but, importantly, nonzero magnitude.
Using the techniques outlined here, we ob-

tained measurements showing a near-volume
law in the entanglement entropy (Fig. 4A). A
linear growth with volume in the entanglement
entropy occurs when each subsystem incoherently
populates a number of states that scales with
the size of the subsystem Hilbert space. This is
because, for the Bose-Hubbard model, the Hilbert
space is approximately exponential in the lattice
size, which results in a linear growth in SA ¼
−log½Trðr2AÞ%. The exact slope of the entangle-
ment entropy versus subsystem volume depends
on the average energy of the thermalized pure
state (35). In contrast, we can prepare the ground
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Fig. 3. Dynamics of entanglement entropy. Starting from a low-entanglement ground state, a global
quantum quench leads to the development of large-scale entanglement between all subsystems. We
quenched a six-site system from the Mott insulating product state (J/U ≪ 1) with one atom per site to the
weakly interacting regime of J/U=0.64 [J/(2p) = 66Hz] andmeasured the dynamics of the entanglement
entropy. Shown are the dynamics for (A) one-, (B) two-, and (C) three-site subsystems and (D) the full
system. As it equilibrates, a subsystem acquires local entropy, whereas the entropy of the full system
remains constant and at a value given by measurement imperfections (D). The measured dynamics are
consistent with exact numerical simulations (24) with no free parameters (solid lines). Error bars are SEM.
For the largest entropies encountered in the three-site subsystem shown in (C), the large number of
populated microstates leads to a significant statistical uncertainty in the entropy, which is reflected in the
upper error bar extending to large entropies or being unbounded (24).The inset in (A) shows the slope of
the early time dynamics, extracted from (A) to (C) with a piecewise linear fit (24). The dashed line is the
mean of these measurements.
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Fig. 4. Thermalized many-body systems. After the quench, the many-body
state reaches a thermalized regime with saturated entanglement entropy. (A) In
contrast to the ground state, forwhich theRényi entropyonlyweaklydependson
subsystem size, the entanglement entropy of the saturated quenched state
grows almost linearly with size. As the subsystem size becomes comparable to
the full system size, the subsystem entropy bends back to near zero, reflecting
the globally pure zero-entropy state. For small subsystems, the Rényi entropy
in the quenched state is nearly equal to the corresponding thermal entropy
from the canonical thermal ensemble densitymatrix. (B) Themutual information
IAB = SA + SB– SAB quantifies the amount of classical (statistical) and quantum
correlations between subsystemsA andB (gray region). For small subsystems,
the thermalized quantum state hasSA +SB≈SAB, thanks to the near-volume law

scaling (red arrow), leading to vanishingmutual information.When the volumeof
AB approaches the system size, themutual information will grow because SA +
SB exceeds SAB. (C) Mutual information IAB versus the volume of AB for the
ground state and the thermalized quenched state. For small system sizes, the
quenched state exhibits smaller correlations than the adiabatically prepared
ground state, and themutual information is nearly vanishing (red arrow).When
probed on a scale near the system size, the highly entangled quenched state
exhibits much stronger correlations than the ground state. Throughout this
figure, the entanglement entropies from the last time point in Fig. 3 are
averaged over all relevant partitionings with the same subsystem volume; we
have also corrected for the extensive entropy unrelated to entanglement (24).
All solid lines represent numerical calculations with no free parameters (24).
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global purity, which is particularly challenging
in the full 462-dimensional Hilbert space defined
by the itinerant particles in our system. Further-
more, whereas in spin systems global rotations
can be used for tomography (26), there is no
known analogous scheme for extracting the full
density matrix of a many-body state of itinerant
particles. The many-body interference described
here, however, allows us to extract quantities
that are quadratic in the density matrix, such as
the purity (25). After performing the beam split-
ter operation, we were able to obtain the quan-
tum purity of the full system and any subsystem
simply by counting the number of atoms on
each site of one of the six-site chains (Fig. 2C).

Each run of the experiment yielded the parity
PðkÞ ¼ Pip

ðkÞ
i , where i is iterated over a set of

sites of interest in copy k. The single-site par-
ity operator pðkÞ

i returns 1 (–1) when the atom
number on site i is even (odd). It has been
shown that the beam splitter operation yields
hPð1Þi ¼ hPð2Þi ¼ Trðr1r2Þ, where ri is the den-
sity matrix on the set of sites considered for
each copy (4, 25, 27). Because the preparation and
quench dynamics for each copy are identical,
yielding r1 = r2 ≡ r, the average parity reduces
to the purity: hPðkÞi ¼ Trðr2Þ. When the set of
sites considered constitutes the full six-site chain,
the expectation value of this quantity returns
the global many-body purity, whereas for smaller

sets it provides the local purity of the respective
subsystem.
Comparing measurements taken with and

without the beam splitter, our data immediately
illustrate the contrast between the global and
local behaviors and how thermalization is man-
ifest (Fig. 2B). Our observations show that the
global many-body state retains its quantum
purity over time, affirming the unitarity of its
evolution after the quench. This global mea-
surement also clearly distinguishes the quan-
tum state that we produced from a canonical
thermal ensemble with a purity that is orders
of magnitude smaller. Yet the number statis-
tics locally converge to a distribution of thermal
character, which can be faithfully modeled by
that same thermal ensemble. We next exper-
imentally explored the question suggested by
this observation: How does a pure state that
appears globally distinct from a thermal en-
semble possess local properties that mirror this
thermal state?
The growth of entanglement after a quench

is key to understanding how entropy forms with-
in the subsystems of a pure quantum state,
thereby facilitating thermalization (2, 4, 5, 28).
When two parts of a system are entangled, the
full quantum state r cannot be written in a
separable fashion with respect to the Hilbert
spaces of the subsystems (29, 30). As has been
shown theoretically (4, 27) and recently observed
experimentally (25), this causes the subsystems
rA and rB to be in an entropic mixed state even
though the full many-body quantum state is
pure (30). The mixedness of the subsystem can
be quantified by the second-order Rényi entropy
SA ¼ −log½Trðr2AÞ%, which is the natural logarithm
of the purity of the subsystem density matrix.
Although the von Neumann entropy is typically
used in the context of statistical mechanics, both
quantities grow as a subsystem density matrix
becomes mixed and increasingly entropic. In
the Rényi case, the purity in the logarithm quan-
tifies the number of states contributing to the sta-
tistical mixture described by the density matrix.

Entanglement entropy dynamics
and saturation

We first studied the dynamics of the entanglement
entropy immediately after the quench for vary-
ing subsystem sizes (Fig. 3). Initially, we observed
an approximately linear rise in the entropy with
time, with a similar slope among the subsystems
considered (Fig. 3, inset) (2). After an amount of
time that depended on the subsystem size, the
entanglement entropy saturated to a steady-state
value, about which there were small residual tem-
poral fluctuations. The presence of residual fluc-
tuations is attributable in part to the finite size of
our system. An exact numerical calculation of the
dynamics with no free parameters shows excel-
lent agreement with our experimental measure-
ments. Crucially, the data indicate that whereas
the subsystems acquire entropy with time (Fig. 3,
A to C), the entropy of the full system remains
constant and is small throughout the dynam-
ics (Fig. 3D) (24). The high purity of the full
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Fig. 2. Experimental sequence. (A) Using tailored optical potentials superimposed on an optical
lattice, we deterministically prepared two copies of a six-site Bose-Hubbard system, where each
lattice site is initialized with a single atom.We reduced the lattice depth along x (specified in units of
the lattice recoil energy Er) to enable tunneling and obtained either the ground state (adiabatic melt)
or a highly excited state (sudden quench) in each six-site copy. After a variable evolution time, we
froze the evolution and characterized the final quantum state by either acquiring number statistics or
the local and global purity. Even and odd refer to the atom number parity. (B) Site-resolved number
statistics of the initial distribution (left panel, showing a strong peak at one atom with vanishing
fluctuations) and the distribution at later times (middle panel), compared with the predictions of a
canonical thermal ensemble (red bars) of the same average energy as the quenched quantum state
[J/(2p) = 66 Hz; U/(2p) = 103 Hz]. Error bars are SEM. Measurements of the global many-body
purity show that it is static and high (right panel). This is in contrast to the vanishing global purity of
the canonical thermal ensemble, yet this same ensemble accurately describes the local number
distribution that we observed. (C) To measure the atom number locally, we allowed the atoms to
expand in half-tubes along the y direction while pinning the atoms along x. In separate experiments,
we applied a many-body beam splitter by allowing the atoms in each column to tunnel in a projected
double-well potential. The resulting atom number parity (even or odd) on each site encodes the
global and local purity.
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Measure Renyi entropy  instead…S2 = − log(tr(ρ2))

[Islam,…, 

Greiner 2015;

Kaufman,…,


Greiner 2016]

Many-body twin

interferometry

Scaling still

 unfavorable
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purity (entropy) (Fig. 2, A and B), until the re-
duced state became completelymixed. At longer
times, the purity (entropy) of larger subsystems
continued to decrease (increase), as they became
entangled with the rest. The dotted curves rep-
resent numerical simulations for the experimental
parameters, including decoherence, during state
initialization, evolution, and measurement (27).
Although Fig. 2, A and B, correspond to a specific
set of connected partitionsA, the data give access
to the purities for all partitions A of the system,

as shown in Fig. 2C for a specific time t = 5 ms.
Because the second-order Rényi entropy of every
subsystem is, within three standard deviations,
larger than for the total system, this demonstrates
entanglement between all 29 – 1 = 511 bipartitions
of the 10-qubit system.
Next, a 20-qubit experimentwas performed, in

which the entropy growth of the central part of
the chain was measured during time evolution
under HXY, for partitions of up to 10 qubits. Our
observations (Fig. 3) are consistent with the for-
mation of highly entangled states. The entropy
increases rapidly over the time evolution of 10 ms,
with the reduced density matrices of up to seven
qubits becoming nearly fully mixed. The ex-
perimental data agree very well with numerical
simulations (dotted curves) obtainedwith amatrix-
product state algorithm (32), which includes the
(weak) effect of decoherence using quantum
trajectories (33). The measurement highlights
the ability of our protocol to access the entropy
of highly mixed states, despite larger statistical
errors compared with pure states (27).
Monitoring the entropy growth of arbitrary

yet highly entangled states during their time
evolution constitutes a universal tool for studying
dynamical properties of quantum many-body
systems, in connection with the concept of quan-
tum thermalization (12). In this context, a slow
entropy growth can be used to signify localiza-
tion in generic many-body quantum systems
(14). Generically, in interacting quantum systems
without disorder, a ballistic (linear) entropy
growth is predicted after a quantum quench
(12). Such growth is assumed to persist until
saturation is reached, signaling thermalization of
the system at late times. On the contrary, in the
presence of (strong) disorder and sufficiently

short-ranged interactions, the existence of the
many-body localized (MBL) phase (13) is predicted
in one-dimensional systems (34). This phase is
characterized by the absence of thermalization,
the system’s remembrance on the initial state (35)
at late times, and, in particular, a logarithmic
entropy growth (36, 37), which constitutes the
distinguishing feature between an MBL state
and a noninteracting Anderson insulator. Experi-
ments probing this entropy growth have been
realized with superconducting qubits by using
tomography (8) and ultracold atoms based on
full-counting statistics of particle numbers (38).
The persistence and stability of localization in
long-range interacting systems have also been
explored, both theoretically (14, 34, 39) and ex-
perimentally (30). The measurement of a long-
time entropy growth rate is beyond the present
capabilities of our trapped-ion quantum simu-
lator, owing to its limited coherence time; however,
wewere able to observe the effects of local, random
disorder on the entropy growth rate at early times.
Figure 4A displays the measured evolution of

the second-order Rényi entropy at half partition
as a function of time, both in the absence and in
the presence of local random disorder. Without
disorder, a rapid, linear growth of entropy is ob-
served, in agreement with theoretical simulations
including the mentioned sources of decoherence
(solid lines). To investigate the influence of dis-
order, the initial Néel state was quenched with
H ¼ HXY þHD , where the static, random dis-
order strength Dj was drawn uniformly from
½$3J0; 3J0%. To efficiently access directly disorder-
averaged quantities, our protocol offers the pos-
sibility to reduce the number of randomunitaries
that must be applied per disorder pattern and
instead average in addition over different dis-
order patterns (27). Hence, only 10 random
unitaries per disorder pattern (NM = 150 mea-
surements per unitary) and 35 randomly drawn
disorder patterns were used to obtain an ac-
curate estimate of the disorder-averaged purity
Tr½r2A%e ( ~::: denotes the disorder average) and
subsequently the second-order Rényi entro-
py Sð2ÞðrAÞe ≈$ log2Tr½r2A%e (27). The measured,
disorder-averaged entropy growth clearly dem-
onstrates how disorder reduces the growth of
entanglement. After an initial rapid evolution,
a considerable slowing of the dynamics is ob-
served, with a small but nonvanishing growth
rate at later times, a behavior consistent with
the scenario ofMBL. The system retainsmemory
of the initial Néel state during the dynamics,
which is manifest in the measured time evolu-
tion of the local magnetization (fig. S5) (27).
Finally, Fig. 4B shows the evolution of the

second-order Rényi mutual information (RMI),
defined as

I ð2ÞðrA : rBÞ ¼ Sð2ÞðrAÞ þ Sð2ÞðrBÞ

$Sð2ÞðrABÞ ð4Þ

In the presence of disorder, the RMI saturates
quickly to approximately constant values, which
decrease with increasing distance between the

Brydges et al., Science 364, 260–263 (2019) 19 April 2019 3 of 4

Fig. 3. Second-order Rényi entropy of 1- to
10-qubit partitions of a 20-qubit system.
The initial low-entropy Néel state evolves under
HXY (J0 = 370 s−1, a = 1.01) within 10 ms
into a state with high-entropy partitions,
corresponding to nearly fully mixed subsystems.
For the data taken at 6ms (10ms) of time evolution,
the two (three) data points corresponding
to highly mixed states are not shown, because they
have large statistical error bars. For details
regarding numerical simulations (dotted curves)
and error bars, see (27).

Fig. 4. Spread of quantum correlations under HXYwith and without disorder.The Hamiltonian
parameters are J0 = 420 s−1, a = 1.24. (A) Half-chain entropy growth versus time without disorder
(red data points) and with disorder, drawn uniformly from ½$3J0;3J0% (blue data points). Numerical
simulations based on unitary dynamics (dotted curves) including known sources of decoherence
(full lines) are in agreement with the measured second-order Rényi entropies [see supplementary
materials (27)]. (B) Second-order RMI of selected subsystems versus time in the presence of
disorder (see Eq. 4). The decrease of Ið2Þ with distance between subsystems is a manifestation of the
inhibition of correlation spreading by local disorder. For longer time scales, decoherence leads to a slow
increase in the entropy of the total system [Sð2ÞðrÞ ≈ 0:9 for t = 10 ms for the full system (27)].
Consequently, there is an additional contribution to the slow entropy growth of the system from this
decoherence, compared with the case of purely unitary dynamics. Error bars are the standard error of
the mean, calculated with jackknife resampling of the applied random unitaries (40).
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Ice calorimeter [Lavoisier, Laplace, circa 1780]

For a Gibbs state, dE = Sthermal dT

 Sthermal(T) can be obtained from E = 


Ergodicity implies microcanonical S(E) = Sthermal(T(E))
⇒ ⟨H(T )⟩



Site-resolved image

of 6Li atoms

These images are precious. Generating them on a

 classical computer generically a hard task.


Can these be used to measure any entropic quantity efficiently at all?

Probability of an image = ⟨Image |ρ | Image⟩

Measuring entropy?

[Parsons,…, Greiner 2015]

of a phase hologram. This is in contrast to conventional optical lattice
experiments in which lattice potentials are created by superimposing
separate laser beams to create optical standing waves. The advantage
of thenewmethod is that the geometry of the lattice is directly givenby
the pattern on the mask. The imaged light pattern, and hence the
potential landscape, can be arbitrary within the limits set by the avail-
able imaging aperture and by polarization effects that can arise due to
the large aperture imaging beyond the paraxial limit. Here, we create
blue detuned square lattice potentials with a periodicity a5 640 nm
and an overall Gaussian envelope. Amajor additional advantage is the
fact that the lattice geometry is not dependent on the wavelength20,
apart from diffraction limits and chromatic aberrations in the lens for
large wavelength changes. This allows us to use spectrally wide ‘white’
light with a short coherence length to reduce unwanted disorder from
stray light interference.With a light source centred around 758 nm,we
generate a conservative lattice potential with a lattice depth of up to 35
Erec, where Erec5 h2/8ma2 is the recoil energy of the effective lattice
wavelength, with m the mass of 87Rb.

The projection method also enables us to dynamically change the
wavelength of the lattice light without changing the lattice geometry.
This is important, as we strongly increase the lattice depth for site-
resolved imaging in order to suppress diffusion of the atoms between
sites due to recoil heating by the imaging light13. For this, we switch
the light in the 2D lattice and the vertical standing wave to near-
resonant narrow band light, increasing the lattice depth to 5,500
Erec (to 380 mK). The main use of the microscope set-up is the col-
lection of fluorescence light and high-resolution imaging of the
atoms. With the atoms pinned to the deep lattice, we illuminate
the sample with red detuned near-resonant light in an optical
molasses configuration, which simultaneously provides sub-
Doppler cooling24,25. Figure 2 shows a typical image obtained by
loading the lattice with a very dilute cloud, showing the response
of individual atoms. The spot function of a single atom can be
directly obtained from such images. We measure a typical single
atom emission FWHM size as 570 nm and 630 nm along the x and
y direction, respectively, which is close to the theoretical minimum
value of,520 nm (Fig. 3). This minimum is given by the diffraction
limit from the objective combined with the finite size of the camera

pixels and the expected extent of the atom’s on-site probability dis-
tribution within the lattice site during the imaging process. As the
same high-resolution optics are used to generate both the lattice and
the image of the atoms on the CCD camera, the imaging system is
very stable with respect to the lattice, which is important for single-
site addressing26. The observed drifts in the 2D plane are very low, less
than 10% of the lattice spacing in one hour with shot to shot fluctua-
tions of less than 15% r.m.s.

Pair densities within multiply occupied lattice sites are very high
due to the strong confinement in the lattice. When resonantly illu-
minated, such pairs undergo light assisted collisions and leave the
trap within a time of the order of 100 ms, long before they emit
sufficient photons to be detected27. Therefore the remaining number
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d CCD
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Figure 1 | Diagram of the quantum gas microscope. The two-dimensional
atom sample (a) is located a few micrometres below the lower surface of a
hemispherical lens inside the vacuum chamber. This lens serves to increase
the numerical aperture (NA) of the objective lens outside the vacuum (b) by
the index of refraction, from NA5 0.55 to NA5 0.8. The atoms are
illuminated from the side by the molasses beams (c) and the scattered
fluorescence light is collected by the objective lens and projected onto a CCD
camera (d). A 2D optical lattice is generated by projecting a periodic mask
(e) onto the atoms through the same objective lens via a beam splitter
(f). The mask is a periodic phase hologram, and a beam stop (g) blocks the
residual zeroth order, leaving only the first orders to form a sinusoidal
potential.
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Figure 2 | Imaging single atoms. a, Field of viewwith sparse site occupation.
b, Response of a single atom, derived from sparse images: shown are
horizontal (filled circles) and vertical (open circles) profiles through the
centre of the image generated by a single atom. The black line shows the
expected Airy function for a perfect imaging system with a numerical
aperture of 0.8. The blue dashed line denotes the profile expected from a
single atom, taking into account only the finite width of the CCD pixels and
the finite extension of the probability distribution of the atom’s location.
The data are from the responses of 20 atoms in different locations within the
field of view which have been precisely superimposed by subpixel shifting
before averaging.

5 μm

640 nm

Figure 3 | Site-resolved imaging of single atoms on a 640-nm-period
optical lattice, loadedwith a high density Bose–Einstein condensate. Inset,
magnified view of the central section of the picture. The lattice structure and
the discrete atoms are clearly visible. Owing to light-assisted collisions and
molecule formation on multiply occupied sites during imaging, only empty
and singly occupied sites can be seen in the image.
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reliably even in the regions of high atomic density, as illustrated in
Fig. 3.

To compare the digitally reconstructed atom distribution (see
bottom row of Fig. 2) with the raw images, we show the reconstructed
distribution convoluted with the point spread function in the middle
row of Fig. 2. For a BEC with a Poissonian atom number distribution
the average filling one detects due to the parity measurement in the
fluorescence imaging is !nni,det~1=2 1{exp {2!nnið Þ½ $, which saturates
at !nni,det~0:5 for !nni *> 1:5. In this limit, the detected atom number
variance then saturates accordingly at s2i,det~0:25. Indeed, for a BEC,
we observed that the recorded atomic density exhibits large atom
number fluctuations from site to site. In contrast, for aMott insulator
we obtain plateaus of constant integer density, with almost vanishing
fluctuations. For increasing particle numbers, the images in Fig. 2
show how successive Mott insulator shells are formed and appear as
alternating rings of one and zero atoms per site owing to our parity
measurement. In both the raw images and the reconstructed ones,
individual defects are directly visible. The high symmetry of our atom
clouds reflects the high optical quality of our lattice potentials. A
small ellipticity is causedby thedifferent harmonic trapping frequencies
vx and vy.

We used the reconstructed site occupation numbers to determine
the temperature of the sample based on a single image. For deep
lattices, U=J^300, as used in our experiments for Mott insulators,
tunnelling becomes completely suppressed such that coherent
particle–hole fluctuations are expected to be negligible and defects
are induced only by thermal fluctuations. The symmetry of our
clouds allowed us to average the data azimuthally, taking into
account the ellipticity, and to obtain radial profiles for the average
density !nndet rð Þ and variance s2det rð Þ (see Fig. 4a and b and Methods).
We fitted analytic expressions derived in the zero-tunnelling regime
(see Methods) to our data. The results of such a fit for an n5 1 (0,
m/U, 1) and an n5 2 (1,m/U,2) Mott insulator are displayed in
Fig. 4a and b. The Mott insulator regions can be identified as con-
nected regions of constant integer density and vanishing on-site
number fluctuations, which in the zero-tunnelling limit of the
Hubbard model signify the presence of incompressible Mott
domains24. For both density profiles and atom number variances
we find excellent agreement between the experimental data and the
theoretical model for all radial distances. This supports the assump-
tion that our system is in global thermal equilibrium, in contrast to
ref. 27. The extracted temperatures of T5 0.090(5)U/kB and
T5 0.074(5)U/kB for the n5 1 and n5 2 data are well below the

Mott insulator melting temperature Tm. Our temperature measure-
ments are conservative, because all defects are attributed to thermal
excitations in our model. However, defects might for example also
arise from ‘collateral damage’ caused by atoms undergoing the light-
induced collisions. For reference, we show the corresponding data
obtained by freezing out the atom distribution of a BEC. We observe
the expected saturation of !nndet at 0.5 together with a maximum vari-
ance of s2det at 0.25. We note that the thermal shells surrounding a
Mott insulator core also exhibit thismaximum variance and can be as
narrow as one to two lattice sites. In Fig. 4c and d we plot both Mott
insulator data sets versus local chemical potential. In a single image,
we thus mapped out an entire line in the phase diagram as illustrated
in the inset of Fig. 4c. The slightly different temperatures of the two
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Figure 3 | Identification of single atoms in a high-resolution image. The
points mark the centres of the lattice sites; circles indicate those sites where
our deconvolution algorithm determined the presence of an atom. The
image is a zoom into the upper right part of Fig. 2g.
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Figure 4 | Radial atom density and variance profiles. Radial profiles were
obtained from the digitally reconstructed images by azimuthal averaging.
a, b, Yellow and red points correspond to the n5 1 and n5 2Mott insulator
images of Fig. 2d and e. The grey points were obtained from aBEC (data from
Fig. 2a) for reference. Thedisplayed statistical error bars areClopper–Pearson
68% confidence intervals for the binomially distributed number of
excitations. For theMott insulators, both average density !nndet(r) and variance
s2det(r) profiles are fitted simultaneously with the model functions of
equations (1) and (2) (see Methods) with T, m and r20~2U

!
mvxvy

" #
as free

parameters. For the two curves, the fits yielded temperatures T5 0.090(5)U/
kB and T5 0.074(5)U/kB, chemical potentials m5 0.73(3)U and
m5 1.17(1)U, and radii r05 5.7(1)mm and r05 5.95(4)mm, respectively.
From the fitted values of T, m and r0, we determined the atom numbers of the
system toN5 270(20) andN5 529(8). c, d, The same data plotted versus the
local chemical potential using the local-density approximation. The inset of
c is a Bose–Hubbard phase diagram (T5 0) showing the transition between
the characteristic Mott insulator lobes (grey shading) and the superfluid
region. The straight line with arrow shows the part of the phase diagram
existing simultaneously at different radii in the trap owing to the external
harmonic confinement. The inset of d shows the entropy density calculated
for the displayed n5 2 Mott insulator.
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Site-resolved Imaging of Fermionic
6Li in an Optical Lattice

Maxwell F. Parsons, Florian Huber, Anton Mazurenko, Christie S. Chiu, Widagdo
Setiawan, Katherine Wooley-Brown, Sebastian Blatt, and Markus Greiner⇤

Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, USA

(Dated: April 21, 2015)

We demonstrate site-resolved imaging of individual fermionic 6Li atoms in a 2D optical lattice.
To preserve the density distribution during fluorescence imaging, we simultaneously cool the atoms
with 3D Raman sideband cooling. This laser cooling technique, demonstrated here for the first
time for 6Li atoms, also provides a pathway to rapid low-entropy filling of an optical lattice. We
are able to determine the occupation of individual lattice sites with a fidelity >95%, enabling
direct, local measurement of particle correlations in Fermi lattice systems. This ability will be
instrumental for creating and investigating low-temperature phases of the Fermi-Hubbard model,
including antiferromagnets and d-wave superfluidity.

PACS numbers: 03.75.Ss, 07.60.Pb, 37.10.De

Particle correlations reveal the underlying order of an
interacting quantum many-body system. Strong correla-
tions give rise to rich quantum many-body phenomena
such as high-temperature superconductivity and colossal
magneto-resistance [1]. One approach toward studying
correlated many-body systems uses ultracold atoms to
implement a well-understood and tunable realization of
a particular model, and to use the behavior of the clean
atomic system as a benchmark for theory [2]. This “syn-
thetic matter” approach is especially fruitful for strongly-
correlated fermionic systems, where, for even the simplest
models, the sign problem of the Quantum Monte Carlo
method precludes accurate computations of thermody-
namic observables [3]. In addition to theoretical sim-
plicity and tunability, ultracold atomic systems can be
designed to have interparticle spacings of order the wave-
length of visible light. By placing a quantum gas under
an optical microscope we can therefore directly observe
and manipulate quantum correlations at their smallest
length scale. Such a quantum gas microscope has been
realized for bosonic 87Rb [4, 5] and 174Yb [6] atoms. In
bosonic systems, site-resolved imaging has been used to
study the quantum phase transition from a superfluid to
a Mott insulator [5, 7, 8] and from a paramagnet to an an-
tiferromagnet [9]. Single-site resolution also enables the
extraction of non-local order parameters such as string
order [10] and allows studies of strongly-correlated dy-
namics in optical lattices [11–13]. Until very recently [14–
16], however, site-resolved imaging had not been demon-
strated for fermionic atoms. In Fermi-Hubbard systems,
cold atom experiments without single-site resolution have
observed Mott insulators [17, 18] and antiferromagnetic
correlations [19, 20]. In these experiments, understand-
ing of the prepared many-body state is limited by lack of
direct access to the many-body wave function and the in-
ability to locally measure correlations. The extension of
quantum gas microscopy to fermions will provide novel
probes for Fermi lattice systems, such as site-resolved
spin correlation functions and local entropy measure-
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FIG. 1. (color online). Fluorescence image of atoms in a
single layer of a cubic lattice obtained using Raman sideband
cooling. The filling fraction in the center of the cloud is 40%.
We collect approximately 750 photons per atom during a 1.9 s
exposure. The colorbar is in arbitrary units.

ment.
Here, we demonstrate site-resolved imaging of

fermionic 6
Li in a 2D optical lattice with high fidelity

[see Fig. 1]. 6
Li is an especially suitable species for many-

body experiments with ultracold atoms because its light
mass leads to fast thermalization and dynamics, and its
broad magnetic Feshbach resonances [21] allow precise
control of atomic interactions. The natural energy scale
for particles of mass m, in an optical lattice with spacing
a, is the recoil energy, Er = h2/8a2m, where h is Planck’s
constant. For many-body physics, working with a light
atom gives an advantage because the recoil energy scales
inversely with the mass. Experiments studying antifer-
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length of visible light. By placing a quantum gas under
an optical microscope we can therefore directly observe
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length scale. Such a quantum gas microscope has been
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extraction of non-local order parameters such as string
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probes for Fermi lattice systems, such as site-resolved
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cooling. The filling fraction in the center of the cloud is 40%.
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length of visible light. By placing a quantum gas under
an optical microscope we can therefore directly observe
and manipulate quantum correlations at their smallest
length scale. Such a quantum gas microscope has been
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correlations [19, 20]. In these experiments, understand-
ing of the prepared many-body state is limited by lack of
direct access to the many-body wave function and the in-
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probes for Fermi lattice systems, such as site-resolved
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• Unlike , diagonal entropy  is non-zero even for pure states.


•  generically scales as volume law, even for ground states.


• .

S Sd

Sd

Sd ≥ S



File size = 1 MBFile size = 2 MB

Diagonal entropy =  N ⋅ Compression ratio = N ⋅
1 MB
2 MB

= N/2

Basic idea



Most efficient way to compress a string? e.g., consider
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This compression method (“Huffman coding”) is optimal:

 Shannon entropy⟨Word length⟩ =

1/16
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Entropy of an unknown distribution?

Lempel-Ziv Notes
Prof. Peter Shor

We now explain the algorithm that Lempel and Ziv gave in a 1978 paper,
and generally called LZ78. This is opposed to LZ77, an earlier algorithm
which differed significantly in the implementation details but is based on the
same general idea. This idea is that if some text is not random, a substring
that you see once is more likely to appear again than substrings you haven’t
seen.

The LZ78 algorithm works by constructing a dictionary of substrings,
which we will call“phrases,” that have appeared in the text. The LZ78
algorithm constructs its dictionary on the fly, only going through the data
once. This is a great advantage in that you don’t have to receive the entire
document before starting to encode it. This might be a problem if, for
example, the first half of some document is in English and the second half
is in Chinese. In this case, the dictionary constructed for the first half will
be suboptimal when used on the second half.

There are many variations of Lempel Ziv around, but they all follow
the same basic idea. We’ll just concentrate on LZ78 because it is one of the
simplest to explain and analyze, although other variants may work somewhat
better in practice. The idea is to parse the sequence into distinct phrases.
The version we analyze does this greedily. Suppose, for example, we have
the string

AABABBBABAABABBBABBABB

We start with the shortest phrase on the left that we haven’t seen before.
This will always be a single letter, in this case A:

A|ABABBBABAABABBBABBABB

We now take the next phrase we haven’t seen. We’ve already seen A, so we
take AB:

A|AB|ABBBABAABABBBABBABB

The next phrase we haven’t seen is ABB, as we’ve already seen AB. Con-
tinuing, we get B after that:

A|AB|ABB|B|ABAABABBBABBABB

and you can check that the rest of the string parses into

A|AB|ABB|B|ABA|ABAB|BB|ABBA|BB

1

Consider a bit-string where the letters are being drawn from an unknown stationary

ergodic source:
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Because we’ve run out of letters, the last phrase on the end is a repeated
one. That’s O.K.

Now, how do we encode this? For each phrase we see, we stick it in
a dictionary. The next time we want to send it, we don’t send the entire
phrase, but just the number of this phrase. Consider the following table

1 2 3 4 5 6 7 8 9
A AB ABB B ABA ABAB BB ABBA BB

∅A 1B 2B ∅B 2A 5B 4B 3A 7

The first row gives the numbers of the phrase, the second row gives the
phrases, and the third row their encodings. That is, when we’re encoding
the ABAB (the sixth phrase), we encode it as 5B. This maps to ABAB
since the fifth phrase was ABA, and we add B to it. Here, the empty set ∅
should be considered as the 0’th phrase and encoded by 0. The last piece is
encoding this string into binary. This gives

001110100101001011100101100111

To see how this works, I’ve now inserted dividers and commas, to make it
more comprehensible)

0, 0|1, 1|10, 1|00, 1|010, 0|101, 1|100, 1|011, 0|0111

We have taken the third row of the previous array, expressed all the numbers
in binary (before the comma) and the letters in binary (after the comma)
Note that I’ve mapped A to 0 and B to 1. If you had a larger alphabet, you
would encode the letters by more than one bit. (In fact, you could even use
a Huffman code to encode the letters if you know the frequencies of your
letters.) Note also that as soon as a reference to a phrase might conceivably
involve k bits (starting with the 2k + 1 dictionary element), I’ve actually
used k bits, so the number of bits used before the comma keeps increasing.
This ensures that the decoding algorithm knows where to put the commas
and dividers.

To decode, the decoder needs to construct the same dictionary. To do
this, he first takes the binary string he receives, and inserts dividers and
commas. This is straightforward. The first two dividers each come after 2
bits. The next two each come after 3 bits. We then get 22 of length 4 bits,
23 of length 5 bits, 24 of length 6 bits, and in general 2k of length k + 2
bits. This is because when we encode our phrases, if we have r phrases in
our dictionary, we use "log2 r# bits to encode the number of the phrase to
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Lempel-Ziv compression (1977): make a dictionary out of this bit string:

[Lempel, Ziv 1977, Wyner, Ziv 1993]: This compression scheme is also optimal. Unlike

Huffman coding, requires just a long enough bit-string and nothing else.

Compression ratio = Length of compressed bit string
Length of original bit string

= Shannon entropy density

←  [borrowed from

Peter Shor’s lecture notes]

“Computable Information

Density (CID)”



Physics by Zipping

Equilibrium Entropy using compression Non-equilibrium Entropy using compression

conserved lattice gas (CLG) in 1D. Initially, N particles are
distributed randomly on L ≥ N sites with no multiple
occupancy. An occupied site is considered active if one
of its neighbors is also occupied. The dynamics consist of
moving particles randomly from active sites to unoccupied
neighboring sites, as illustrated in Fig. 1(a) (in practice we
implement random sequential updates, so we displace one

particle at a time). The statistical state of the system is
characterized by the order parameter fa, the fraction of sites
that are active. An “absorbing state” is attained when
fa ¼ 0, at which point the dynamics ends. No absorbing
states are possible for densities ρ≡ N=L higher than the
geometrical limit ρG ¼ 0.5. For absorbing state models in
general [37], it is well known that there exists a critical

(a)

(b) (d)

(c)

(e)

FIG. 1. The 1D conserved lattice gas model of size L ¼ 105. (a) At time t ¼ 0 the system is in an active randomly sampled state (active
sites in red) and the possible moves prescribed by the dynamics are indicated by the arrows. When the particle density is below the
critical density ρc, the system relaxes to an absorbing state, such that the fraction of active sites fa ¼ 0. (b) Time dependence of the CID
as a function of particle density ρ, a cycle corresponds to L randomly attempted moves. The system orders as a function of time,
developing a cusp minimum at the critical density ρc ¼ 0.5. The inset shows the CID time-evolution profile for several densities.
(c) Characteristic time τ as a function of density ρ, as measured by the decay of fa and CID, exhibiting a divergence near ρc, in line with
the cusp minimum in panel (b). Data are from an independent set of calculations in the neighborhood of ρc, averaged over ten
independent initial conditions. The inset shows τ as a function of jρ − ρcj, exhibiting identical power-law divergence and critical
exponent νk ¼ 3" 0.3 from both measures. Lines of best fit (dashed black lines) were obtained by bootstrapped minimum mean-square
error fits using a robust covariance estimator [38,39]. (d) Comparison of the CID for random initial states (blue triangles), states found by
the dynamics after 107 cycles (black crosses), random (uniformly sampled) absorbing states below ρc generated by Monte Carlo
sampling (red circles), and active states without “00” pairs above ρc (red squares) also generated by Monte Carlo sampling. (e) Fraction
of active sites as a function of ρ, red dashed line is the exact solution from Ref. [40].
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However, such an approach is unrealistic, as the num-
ber of measurements needed to estimate diagonal entropy
density at a fixed tolerance/error generically scales expo-
nentially with the system size. To make progress, notice
that if the probability ⇢xj can be related to correlators of
some local Hamiltonian using Eq.(4), the image of typical
measurement outcomes xj is anticipated to encode infor-
mation about the Shannon entropy. For example, if ⇢ has
high fidelity with the symmetric product state |xj = 1i,
one will typically observe most of the sites pointing in
the positive x-direction. The resulting image will appear
highly ordered, indicating that the system has low diag-
onal entropy. On the other hand, if ⇢ is a completely
random mixed state, the observer will typically obtain
a random bit string. The resulting image will be highly
disordered, suggesting that the system has large diag-
onal entropy. Following Ref.[35, 36], this intuition can
be quantitavely captured by the size of the lossless com-
pressed data file. Specifically, consider the computable
information density (CID) defined as

CID(xj) =
N (xj)

Nshu✏e
, (6)

where N (xj) is the size of the compressed file with the
measurement outcome xj and Nshu✏e is the size of the
compressed file for a random binary sequence. The rea-
son for dividing N (xj) by Nshu✏e is simply to normal-
ize the CID to one for random binary sequences. It is
known that if xj is a sequence sampled from a station-
ary and ergodic process, the expectation value of CID
E[CID] =

P
xj
pxjCID[(xj)] approaches the Shannon en-

tropy per site, in our case the diagonal entropy density
sd = Sd/N , in the limit N ! 1. We will demonstrate
numerically that the average CID E[CID] also well ap-
proximates sd in all the examples we consider, and we
believe this is the consequence of the aforementioned lo-
cality in the probability distribution ⇢xj . We now sum-
marize the protocal to estimate the diagonal entropy den-
sity:

1. Prepare the target mixed state ⇢ and then measure
it in the Pauli-X basis on all sites. The observer will
obtain an outcome xj = (x1, · · · , xN ) with probal-
ity pxj = ⇢xj .

2. Compress the measurement outcome xj using a
lossless data compression algorithm and calculate
the size of the compressed file N (xj). We use
the Lempel-Ziv 77 (LZ77) coding algorithm [32]
throughout the paper, although we don’t expect
that the choice of a specific compression algorithm
is important. See App.A for a brief introduction.

3. Compute CID(xj) = N (xj)/Nshu✏e.

4. Repeat 1-3 and take the average to obtain E[CID] =P
xj
pxjCID(xj) ⇡

P
xj2samples CID(xj). HereP

xj2samples denotes summing over all the samples

Figure 1. (a) The phase diagram ⇢(J, r) of the ground state
of (1+1)-D TFIM [Eq(7)] | (J)i subjected to the channel
Er[·] =

Q
j Ej,r[·], Ej,r[·] = (1 � r)[·] + rXj [·]Xj . (b) Typi-

cal images xj based on the probability distribution ⇢xj(J) =

hxj|⇢(J, r)|xji = |hxj| (J)i|2 at J = 0.4 and J = 0.5. Here
we choose the total system size L = 128.

generated in the first step. In Sec.VI, we discuss the
scaling of the error with the number of samples.

III. WARMUP: 1+1-D TRANSVERSE FIELD
ISING MODEL

Maybe we can remove ”WARMUP” from the section
title if we want to treat this as part of our main results.

Consider the 1+1-D transverse field Ising model
(TFIM):

H = �(1� J)
X

i

Xi � J
X

hi,ji

ZiZj , (7)

where hi, ji denotes the nearest-neighbor pair. The
ground state density matrix ⇢(J) = | (J)ih (J)| is in
the symmetric (symmetry breaking) phase when J <
Jc(J > Jc) where Jc = 0.5. We will show that the di-
agonal entropy Sd in the Ising symmetric basis can de-
tect this transition. Of course, this transition can sim-
ply be detected via the connected two-point correlator

hZiZji
def
= tr(⇢ZiZj) � tr(⇢Zi) tr(⇢Zj), and as such, the

diagonal entropy o↵ers no apparent advantage. However,
let’s subject the ground state to the maximal dephasing
channel ⇢(J) ! Ed[⇢(J)] where Ed[·] =

Q
j
Ej [·], Ej [·] =

(⇢+Xj⇢Xj)/2. The correlator hZiZji now vanishes iden-
tically due to symmetry reasons, while Sd will continue to
serve as a diagnostic for what is now an SW-SSB transi-
tion. In addition to serving as a test-bed for our method-
ology, we will use this example later to also analyze the
complexity of estimating Sd in experiments (Sec.VI).

Let’s take images in the X basis:

Zipping 1+1-D Quantum Ising Model
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Jc = 1/2

Paramagnet Ferromagnet

J⟩ ⟩

Denoting an image as , our goal is to estimate the diagonal entropy Sd:|xj⟩

Zipping quantum states: scalable approach to certain pure and mixed-state transitions

Yu-Hsueh Chen and Tarun Grover
Department of Physics, University of California at San Diego, La Jolla, California 92093, USA

I. INTRODUCTION

Entropy of a quantum many-body state ⇢, defined as
S = � tr (⇢ log ⇢) [1], is a remarkably versatile measure
of its coarse, universal features, such as the number of
its low-energy degrees of freedom, or the ability of a sys-
tem to act as its own bath. Entropy is one of the few
quantities that remains well-defined even for an out-of-
equilibrium system, while retaining a straightforward in-
terpretation: it equals the von Neumann entanglement
between the system and its environment. Despite its at-
tractive features, experimental measurement of entropy
is generically challenging. This is primarily because it’s
a non-linear function of the density matrix, and can be
thought of as an expectation value of a somewhat un-
wieldy state-dependent operator, viz, � log ⇢. In this
work we will focus on a class of problems where a spe-
cific non-linear observable, namely the diagonal entropy
Sd in a chosen basis (may be cite Ref[2] here?), is a useful
object. We numerically demonstrate that the volume-
law coe�cient of Sd, namely, limV!1 Sd/V , can be e�-
ciently measured experimentally via projective measure-
ments on the system, by using a well-known algorithm
for lossless data compression. Several of our examples are
motivated from the physics of mixed-state phases, such
as strong-to-weak symmetry breaking, and decodability
of error-correcting code.

Let us briefly discuss why certain universal phenom-
ena in many-body physics require access to observables
that are non-linear functions of the density matrix. A
prominent example concerns subjecting a topologically
ordered state, such as the toric code, to a finite-depth
local channel [3–9]. Since the channel is finite-depth, any
correlation function of the form tr(⇢O1(x)O2(0)), where
O1, O2 are state-independent operators, does not change
qualitatively, and is an analytic function of the decoher-
ence rate. Nevertheless, beyond a certain threshold, the
system loses quantum memory, i.e., it becomes impossi-
ble to perform error-correction given just the location of
anyons. This is an intrinsic mixed-state transition and it
shows up in various diagnostics that are non-linear func-
tions of the density matrix such as the von Neumann
entropy SvN = � tr (⇢ log ⇢). Intuitively, across the tran-
sition, information is lost from the system to the envi-
ronment, and therefore, entropic quantities such as SvN

are sensitive to the transition.
A duality transformation on the aforementioned ex-

ample of decohered toric code subjected illustrates why
the diagonal entropy Sd in a specific basis may also be
useful to detect a conceptually similar class of transi-
tions. The diagonal entropy Sd, is simply the Shan-
non entropy of the probability distribution obtained by

making projective measurements on the density matrix
⇢ in some chosen basis, which we denote as {|xji}:
Sd = �

P
xj
hxj|⇢|xji log(hxj|⇢|xji). Unlike von Neumann

entropy S = � tr(⇢ log ⇢), Sd is clearly basis dependent.
Let us consider the Kramers-Wannier dual of the afore-
mentioned example of toric code subjected to the bit-flip
noise. In this dual formulation, one subjects a paramag-
net state |xj = 1i to an Ising symmmetric channel with
local Kraus operators ZiZj on each link hi, ji. Beyond a
threshold decoherence rate, the density matrix can be ex-
pressed as a classical mixture of GHZ-like states. This is
the strong-to-weak symmetry SSB phenomena that has
recently been discussed from various di↵erent perspec-
tives cite many references here [5, 10–25].

Since symmetry plays an important role in the dual
picture, one may ask if the diagonal entropy in the Ising
symmetric basis has any special significance. Indeed, it
is easy to show that the decohered density matrix is al-
ready diagonal in the Ising symmetric basis, and there-
fore, Sd = SvN , which implies that Sd also sees the same
phase transition as SvN is this a new result or should
we cite Lessa et al here? More interestingly, using data
processing inequality one can show that if there exists
an SW-SSB phase for ⇢, then there must also exist an
SW-SSB phase for the ⇢d. More interestingly, since ⇢d
can be obtained by applying a strongly symmetric, short-
depth channel to ⇢, the existence of an SW-SSB phase for
⇢ implies the existence of an SW-SSB phase for ⇢d [11].
Further, by continuity, if one perturbs either the initial
state or the Kraus operators a bit, so that the Ising sym-
metry is still respected, there will continue to be a SW-
SSB phase transition for both ⇢ and ⇢d, although their
phase boundaries need not coincide.

Having argued that the diagonal entropy Sd is a use-
ful quantity from a conceptual viewpoint, let us discuss
its measurement in experiments. A brute-force tomo-
graphic approach to measuring Sd involves recording the
measurement outcomes (bit strings) and constructing a
histogram of these results. Since the number of possi-
ble measurement outcomes scale linearly with the Hilbert
space size, such a scheme scales exponentially with the
system size, and therefore, is not e�cient. We note
that there has been remarkable recent progress in es-
timating observables, including, Renyi entropies Sn =
1

1�n
log tr ⇢n of a density matrix using shadow tomog-

raphy/randomized measurement methods [26–31], but
these approaches too scale exponentially with the sup-
port of the density matrix ⇢ for estimating Sn/V .

In this work we will exploit the lossless data compres-
sion methods discovered by Lempel and Ziv [32] to es-
timate Sd. Given a bit string xj of length N generated
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from an unknown probability distribution, this algorithm
provides a lossless compression scheme to obtain a com-
pressed file whose size is N (xj). One can then show that
the expectation value of the ratio N (xj)/Nshu✏e, where
Nshu✏e is the size of the compressed file for a random
binary sequence, approaches the Shannon entropy den-
sity Sd/N for the unknown probability distribution from
which the bit string was generated. Although this algo-
rithm has been applied to a variety of problems in classi-
cal statistical mechanics, both in and out of equilibrium
[33–36], we are not aware of any application to estimate
diagonal entropy of many-body quantum systems. We
will apply this algorithm to the problems of our interest
hinted above.

Our main results are:

1. We show that the diagonal entropy can detect a
variety of phase transitions. In particular, we con-
sider two di↵erent classes of examples (i) Diagonal
entropy of a pure state exhibiting a quantum phase
transition, or equivalently, von Neumann entropy
of a pure state subjected to a maximal dephasing
channel. (ii) Diagonal entropy of a mixed-state that
exhibits a SW-SSB phase transition.

2. We show that the diagonal entropy density in the
examples we studied can be faithfully obtained us-
ing the Lempel-Ziv data compression method.

The exploration of diagonal entropy also lead us to the
following additional results:

3. We study the phase diagram of the (dual of)
Castelnovo-Chamon state (Ref.[37]), | (q)i =Q

hi,ji[(1�q)I+qZiZj ]|xj = 1i, subjected to Kraus
operators ZiZj on each bond hiji with probabil-
ity p, as well as Kraus operators Xj on each site
with probability r. The three-dimensional phase
diagram of the corresponding mixed-state as a
function of (p, q, r) shows three distinct phases: a
symmetric phase, a conventional symmetry broken
phase, and an SW-SSB phase.

4. We study the universal scaling behavior of the di-
agonal entropy density by using replica trick and
renormalization group arguments. In particular,
we argue that the diagonal entropy density sd for
the 1+1-D transverse-field Ising model in the sym-
metric basis is proportional to the boundary con-
tribution to the free energy in a classical 2D Ising
model, and therefore its singular part scales as
sd,sing ⇠ |t| log(1/|t|), where t is the deviation from
the critical point.

In contrast, in the aforementioned Castelnovo-
Chamon (pure) state, we find that sd maps to the
bulk free energy of the 2D classical Ising model,
and therefore its singular part scales as sd,sing ⇠
t2 log(1/|t|), where t is again the deviation from the
critical point. Our numerical results for the diago-
nal entropy are consistent with these predictions.

II. DIAGONAL ENTROPY: USES AND ITS
SCALABLE ESTIMATION

A. Diagonal entropy as a diagnostic for certain
phase transitions

The main object of our study will be the diagonal en-
tropy Sd of a many-body density matrix ⇢ in some chosen
product basis, which we will denote as {|xji}:

Sd = �
X

xj

hxj|⇢|xji log(hxj|⇢|xji)

= �
X

xj

⇢xj log ⇢xj

(1)

Since Sd is a clearly a basis dependent object, an im-
mediate question is: what, if any, universal information
about the state ⇢ can be inferred from Sd? We will pro-
vide a few di↵erent perspectives on this question. A key
insight is that if the state ⇢ has a certain symmetry, and
the measurement basis {|xji} is also invariant under the
same symmetry, then the diagonal entropy can capture
certain universal features where the symmetry plays an
important role (e.g. spontaneous symmetry breaking, or
symmetry enforced separability transitions). Let us elab-
orate this further in a few di↵erent contexts:
(i) Strong-to-weak SSB:
Let us recall that one says that a density matrix has

a ‘strong symmetry’ if U⇢ = ei✓⇢, and weak symmetry
if U⇢U † = ⇢, where U is the generator of the symmetry
[38, 39]. We will focus on examples where the mixed state
of interest respects a strong Z2 symmetry: U⇢ = ±⇢,
where U =

Q
N

j=1 Xj with N the total system size. As a
function of decoherence rate, the mixed state can undergo
a phase transition where the strong Z2 symmetry is spon-
taneously broken down to a weak Z2 symmetry. We will
use the acronym “SW-SSB” for the corresponding sym-
metry broken phase. As has been discussed previously,
to detect such a transition, one typically needs access
to quantities that are non-linear functions of the den-
sity matrix, such as Renyi entropies Sn = 1

1�n
log (tr ⇢n)

or the von Neumann entropy S = � tr ⇢ log ⇢, which is
rather challenging.
Let us now consider making a projective measurement

on ⇢ in the X-basis. ⇢xj = hxj|⇢|xji is the probability of
obtaining the measurement outcome xj = (x1, · · · , xN )
and the diagonal entropy Sd is the corresponding classical
Shannon entropy. This process of preparing ⇢ and then
measuring in the Pauli-X basis can also be understood as
preparing the diagonal mixed state ⇢d =

P
xj
⇢xj |xjihxj|

by subjecting a maximal dephasing channel (in the Pauli-
X basis) to ⇢: ⇢d = Ed[⇢], where Ed[·] =

Q
j
Ej [·], Ej [·] =

(⇢ + Xj⇢Xj)/2. The diagonal entropy of ⇢ then corre-
sponds to the von Neumann entropy of ⇢d. Since Ed[·] is
a strongly symmetric finite-depth local channel, several
intrinsic properties of ⇢ cannot be altered by Ed[·]. In par-
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However, such an approach is unrealistic, as the num-
ber of measurements needed to estimate diagonal entropy
density at a fixed tolerance/error generically scales expo-
nentially with the system size. To make progress, notice
that if the probability ⇢xj can be related to correlators of
some local Hamiltonian using Eq.(4), the image of typical
measurement outcomes xj is anticipated to encode infor-
mation about the Shannon entropy. For example, if ⇢ has
high fidelity with the symmetric product state |xj = 1i,
one will typically observe most of the sites pointing in
the positive x-direction. The resulting image will appear
highly ordered, indicating that the system has low diag-
onal entropy. On the other hand, if ⇢ is a completely
random mixed state, the observer will typically obtain
a random bit string. The resulting image will be highly
disordered, suggesting that the system has large diag-
onal entropy. Following Ref.[35, 36], this intuition can
be quantitavely captured by the size of the lossless com-
pressed data file. Specifically, consider the computable
information density (CID) defined as

CID(xj) =
N (xj)

Nshu✏e
, (6)

where N (xj) is the size of the compressed file with the
measurement outcome xj and Nshu✏e is the size of the
compressed file for a random binary sequence. The rea-
son for dividing N (xj) by Nshu✏e is simply to normal-
ize the CID to one for random binary sequences. It is
known that if xj is a sequence sampled from a station-
ary and ergodic process, the expectation value of CID
E[CID] =

P
xj
pxjCID[(xj)] approaches the Shannon en-

tropy per site, in our case the diagonal entropy density
sd = Sd/N , in the limit N ! 1. We will demonstrate
numerically that the average CID E[CID] also well ap-
proximates sd in all the examples we consider, and we
believe this is the consequence of the aforementioned lo-
cality in the probability distribution ⇢xj . We now sum-
marize the protocal to estimate the diagonal entropy den-
sity:

1. Prepare the target mixed state ⇢ and then measure
it in the Pauli-X basis on all sites. The observer will
obtain an outcome xj = (x1, · · · , xN ) with probal-
ity pxj = ⇢xj .

2. Compress the measurement outcome xj using a
lossless data compression algorithm and calculate
the size of the compressed file N (xj). We use
the Lempel-Ziv 77 (LZ77) coding algorithm [32]
throughout the paper, although we don’t expect
that the choice of a specific compression algorithm
is important. See App.A for a brief introduction.

3. Compute CID(xj) = N (xj)/Nshu✏e.

4. Repeat 1-3 and take the average to obtain E[CID] =P
xj
pxjCID(xj) ⇡

P
xj2samples CID(xj). HereP

xj2samples denotes summing over all the samples

Figure 1. (a) The phase diagram ⇢(J, r) of the ground state
of (1+1)-D TFIM [Eq(7)] | (J)i subjected to the channel
Er[·] =

Q
j Ej,r[·], Ej,r[·] = (1 � r)[·] + rXj [·]Xj . (b) Typi-

cal images xj based on the probability distribution ⇢xj(J) =

hxj|⇢(J, r)|xji = |hxj| (J)i|2 at J = 0.4 and J = 0.5. Here
we choose the total system size L = 128.

generated in the first step. In Sec.VI, we discuss the
scaling of the error with the number of samples.

III. WARMUP: 1+1-D TRANSVERSE FIELD
ISING MODEL

Maybe we can remove ”WARMUP” from the section
title if we want to treat this as part of our main results.

Consider the 1+1-D transverse field Ising model
(TFIM):

H = �(1� J)
X

i

Xi � J
X

hi,ji

ZiZj , (7)

where hi, ji denotes the nearest-neighbor pair. The
ground state density matrix ⇢(J) = | (J)ih (J)| is in
the symmetric (symmetry breaking) phase when J <
Jc(J > Jc) where Jc = 0.5. We will show that the di-
agonal entropy Sd in the Ising symmetric basis can de-
tect this transition. Of course, this transition can sim-
ply be detected via the connected two-point correlator

hZiZji
def
= tr(⇢ZiZj) � tr(⇢Zi) tr(⇢Zj), and as such, the

diagonal entropy o↵ers no apparent advantage. However,
let’s subject the ground state to the maximal dephasing
channel ⇢(J) ! Ed[⇢(J)] where Ed[·] =

Q
j
Ej [·], Ej [·] =

(⇢+Xj⇢Xj)/2. The correlator hZiZji now vanishes iden-
tically due to symmetry reasons, while Sd will continue to
serve as a diagnostic for what is now an SW-SSB transi-
tion. In addition to serving as a test-bed for our method-
ology, we will use this example later to also analyze the
complexity of estimating Sd in experiments (Sec.VI).

[Yu-Hsueh, TG 2025]
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Figure 1. (a) The phase diagram ⇢(J, r) of the ground state
of (1+1)-D TFIM [Eq(9)] | (J)i subjected to the channel
Er[·] =

Q
j Ej,r[·], Ej,r[·] = (1 � r)[·] + rXj [·]Xj . (b) Typi-

cal images xj based on the probability distribution ⇢xj(J) =

hxj|⇢(J, r)|xji = |hxj| (J)i|2 at J = 0.4 and J = 0.6. The
total system size is L = 128.

between no dephasing and maximal dephasing as r varies
from 0 to 1/2:

Er[·] =
Y

j

Ej,r[·], Ej,r[·] = (1�r)[·]+rXj [·]Xj . (11)

The resulting density matrix, ⇢(J, r) = Er[⇢(J)], satisfies

tr[⇢(J, r)ZiZj ] = (1� 2r)2 tr[⇢(J, r = 0)ZiZj ]. (12)

Following the aforementioned criteria for SW-SSB, only
the r = 1/2 line in the (J, r) plane corresponds to an SW-
SSB transition, whereas for any r < 1/2, the transition is
a standard SSB transition. The phase diagram is shown
in Fig. 1(a).

B. Universal scaling behavior of diagonal entropy

We now discuss the universal behavior of the diagonal
entropy density. Our main conclusion is that the singular
part of limV!1 Sd/V scales as |(J � Jc) log |J � Jc||.
This implies that the first derivative of Sd, i.e., dSd/dJ ,
diverges at J = Jc.

Let us first examine the physical meaning of the
probability distribution ⇢xj = |hxj| i|2. Following

Eqs.(3)-(5), ⇢xj = |hxj = 1|
Q

j
Z

(1�xj)/2
j

| i|2. In the

continuum limit, |xj = 1i ⇠
R
D'(r, 0)|'(r, 0)i and

| i ⇠
R
D'(r, ⌧)e�S['(r,⌧)]|'(r, 0)i, where S['(r, ⌧)] =R 0

⌧=�1 d⌧
R
dr['(@2

⌧
+r2

r
+m2)'+ u'4]. Therefore,

⇢xj ⇠ |
Z

D'(r, ⌧)[· · ·'(rj , 0) · · · ]e�S['(r,⌧)]|2, (13)

which is the square of the multi-point correlator in the
scalar �4 theory at the imaginary time ⌧ = 0. It proves
beneficial to examine the lattice-spacetime formulation

of Eq.(13):

⇢xj ⇠ |
X

zj,⌧

(
LY

j=0

z
1�xj

2
j,⌧=0)e

�
P

h(j,⌧),(j0,⌧0)i zj,⌧zj0,⌧0 |2. (14)

Using the standard Kramers-Wannier duality, one can ex-
press the multi-point correlator as the following disorder
model on the dual lattice:

⇢xj ⇠ |
X

s̃i

eK(
P

hĩ,j̃i2⌧ 6=0 s
ĩ
s
j̃
+
P

hĩ,j̃i2⌧=0 mhĩ,j̃isĩsj̃)|2

= Z2
me

.

(15)

Here, tanh(�) = e�2K , and me = {mh̃i,j̃i = ±1} is any
bond configuration satisfying

Q
h̃i,j̃i2j

mh̃i,j̃i = xj (note

that we sometimes write e = h̃i, j̃i for notational sim-
plicity). Eq. (15) represents the partition function of a
classical Ising model with disorder me restricted to the
⌧ = 0 line [see Fig. 2(a)]. In this dual picture, xj = �1
corresponds to the presence of an Ising vortex, defined
via

Q
h̃i,j̃i2j

mh̃i,j̃i = �1. In the symmetric phase, con-
figurations in which a single Ising vortex is far from the
others are exponentially suppressed, and the typical mea-
surement outcomes correspond to situations where Ising
vortices are always bound in pairs. On the other hand, in
the symmetry-breaking phase, the two-point correlation
function saturates to a finite constant, corresponding to
a situation where Ising vortices are deconfined.

To formalize this intuition and understand the
universal behavior of the diagonal entropy, Sd =
�
P

xj
⇢xj log ⇢xj , we employ the replica trick to explic-

itly derive the statistical mechanical model for S(n)
d

=
log
P

xj
⇢n
xj
/(1� n), and then take the replica limit n !

1. The central quantity associated with S(n)
d

is obtained
by summing over the disorder me of Z2n

me
, which can be

computed as

X

me

Z2n
me

=
X

s
(↵)

ĩ

"
e
�
P

h̃i,j̃i2⌧ 6=0

2nP
↵=1

s
(↵)

ĩ
s
(↵)

j̃

Y

h̃i,j̃i
2⌧=0

cosh

 
�

2nX

↵=1

s(↵)
ĩ

s(↵)
j̃

!#

=
X

s
(↵)

ĩ

e�H[�;s(↵)

ĩ
] =

X

s
(↵)

ĩ

e
�(

2nP
↵=1

(H↵

Ising,⌧>0+H
↵

Ising,⌧>0)+Hint)
.

(16)

Here, H↵

Ising,⌧>0 = ��
P

h̃i,j̃i2⌧>0 s
(↵)

ĩ
s(↵)
j̃

represents the

↵-th copy of the Ising model on the upper half-infinite
plane. A similar relation holds for H↵

Ising,⌧<0 on the
lower half-infinite plane. On the other hand, Hint =

�
P

x
ln cosh

⇣
�
P2n

↵=1 s
(↵)
x,0+s

(↵)
x,0�

⌘
represents the interac-

tion terms that couple the 2n copies of Ising models
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followed by maximal Pauli-X depasing. Sec.VI is de-
voted to analyzing the sample complexity of estimating
diagonal entropy. We conclude in Sec.VII by discussing
directions for future work.

II. DIAGONAL ENTROPY: USES AND
SCALABLE ESTIMATION

A. Diagonal entropy as a diagnostic for certain
phase transitions

The main object of our study is the diagonal entropy
Sd of a many-body density matrix ⇢ in a chosen product
basis, which we denote as {|xji}:

Sd = �
X

xj

hxj|⇢|xji log(hxj|⇢|xji)

= �
X

xj

⇢xj log ⇢xj

(2)

All logarithms (log(·)) are base 2 unless stated otherwise.
When using the natural logarithm (base e), we denote it
as ln(·).

Since Sd is clearly a basis-dependent object, an im-
mediate question is: what, if any, information about the
state ⇢ can be inferred from Sd? As discussed in previous
works [19–22, 72], the sub-volume-law contributions to Sd

can encode universal information about critical states.
Partly motivated by recent progress in many-body open
quantum systems [24–46], here we provide a few addi-
tional perspectives on this question, which will guide our
subsequent discussion. A key insight is that if the state
⇢ has a certain symmetry, and the measurement basis
{|xji} is also invariant under the same symmetry, then
the diagonal entropy can capture certain universal fea-
tures where the symmetry plays an important role (e.g.,
spontaneous symmetry breaking or symmetry-enforced
separability transitions). Let us elaborate this further in
a few di↵erent contexts:

(i) Strong-to-weak SSB:
Let us recall that a density matrix is said to have

a “strong symmetry” if U⇢ = ei✓⇢ and a “weak sym-
metry” if U⇢U † = ⇢, where U is the generator of the
symmetry [73, 74]. We will focus on examples where
the mixed state of interest respects a strong Z2 symme-
try: U⇢ = ±⇢, where U =

Q
N

j=1 Xj , with N the to-
tal system size. As a function of the decoherence rate,
the mixed state can undergo a phase transition in which
the strong Z2 symmetry is spontaneously broken down
to a weak Z2 symmetry [26, 31–46]. We will use the
acronym “SW-SSB” for the corresponding symmetry-
broken phase. As previously discussed, detecting such a
transition typically requires access to quantities that are
nonlinear functions of the density matrix, such as Rényi
entropies Sn = 1

1�n
log (tr ⇢n) or the von Neumann en-

tropy S = � tr ⇢ log ⇢, which is rather challenging.

Let us now consider making a projective measure-
ment on ⇢ in the X-basis. ⇢xj = hxj|⇢|xji represents
the probability of obtaining a measurement outcome
xj = (x1, · · · , xN ), and the diagonal entropy Sd is the
corresponding classical Shannon entropy. The process of
preparing ⇢ and subsequently measuring it in the Pauli-
X basis can also be understood as preparing the diagonal
mixed state ⇢d =

P
xj
⇢xj |xjihxj| by applying a maximal

dephasing channel in the Pauli-X basis to ⇢: ⇢d = Ed[⇢],
where Ed[·] =

Q
j
Ej [·], with Ej [·] = (⇢ +Xj⇢Xj)/2. The

diagonal entropy of ⇢ then corresponds to the von Neu-
mann entropy of ⇢d. Since Ed[·] is a strongly symmetric,
finite-depth local channel, several intrinsic properties of
⇢ cannot be altered by Ed[·]. In particular, as shown
in Ref. [32], if ⇢ is in the SW-SSB phase, then ⇢d will
be as well. We will further show in later sections that
several information-theoretic quantities of ⇢d that detect
SW-SSB provide bounds for the corresponding quanti-
ties of ⇢. Pertinently, we will construct examples where
the phase diagram for the density matrix ⇢d has the same
qualitative structure as that for ⇢, and along certain axes
of the tuning parameter, Sd in fact equals S, thereby in-
heriting the singularities of S across transitions.

(ii) Average strange-correlator/temporal-boundary
correlator:

Using |xji =
Q

j
Z

(1�xj)/2
j

|xj = 1i, let us rewrite ⇢xj

as

⇢xj = hxj = 1|
Y

j

Z
(1�xj)/2
j

⇢
Y

j

Z
(1�xj)/2
j

|xj = 1i. (3)

We now use Eq. (3) to heuristically interpret the diagonal
entropy Sd as an ‘average temporal boundary correlator’
associated with a bulk action. To see this, let us as-
sume that ⇢ is obtained by applying a local, finite-depth
quantum channel E to the ground state | 0i of a local
Hamiltonian H, i.e., ⇢ = E [| 0ih 0|]. In this setup, one
can express the coarse-grained version of the state ⇢ as a
path integral in a d+ 1-dimensional spacetime:

⇢ ⇠
Z

D'(r, ⌧)|'(r,1)ih'(r,�1)|

e�SH ['(r,⌧)]�SE ['(r,1),'(r,�1)],

(4)

where SH ['(r, ⌧)] =
R1
�1 d⌧

R
ddrLH ['(r, ⌧)] denotes

the e↵ective imaginary-time action associated with
the Hamiltonian H while SE ['(r,1),'(r,�1)]] =R
ddrLE ['(r,1),'(r,�1)] represents the e↵ect of the

channel E [·]. We note that there is no integral over
time in SE since E is a finite-depth local channel. Us-
ing |xj = 1i ⇠

R
D'(r,�1)|'(r,�1)i and hxj = 1| ⇠R

D'(r,1)h'(r,1)|, one can rewrite Eq.(3) as

⇢xj ⇠
Z

D'(r, ⌧)e�SH�SE [· · ·'(r,�1)'(r,1) · · · ], (5)

which is nothing but the temporal boundary correlation
between ⇢ and the symmetric product state |xj = 1i at

is obtained when r = 1/2

7

Figure 1. (a) The phase diagram ⇢(J, r) of the ground state
of (1+1)-D TFIM [Eq(9)] | (J)i subjected to the channel
Er[·] =

Q
j Ej,r[·], Ej,r[·] = (1 � r)[·] + rXj [·]Xj . (b) Typi-

cal images xj based on the probability distribution ⇢xj(J) =

hxj|⇢(J, r)|xji = |hxj| (J)i|2 at J = 0.4 and J = 0.6. The
total system size is L = 128.

between no dephasing and maximal dephasing as r varies
from 0 to 1/2:

Er[·] =
Y

j

Ej,r[·], Ej,r[·] = (1�r)[·]+rXj [·]Xj . (11)

The resulting density matrix, ⇢(J, r) = Er[⇢(J)], satisfies

tr[⇢(J, r)ZiZj ] = (1� 2r)2 tr[⇢(J, r = 0)ZiZj ]. (12)

Following the aforementioned criteria for SW-SSB, only
the r = 1/2 line in the (J, r) plane corresponds to an SW-
SSB transition, whereas for any r < 1/2, the transition is
a standard SSB transition. The phase diagram is shown
in Fig. 1(a).

B. Universal scaling behavior of diagonal entropy

We now discuss the universal behavior of the diagonal
entropy density. Our main conclusion is that the singular
part of limV!1 Sd/V scales as |(J � Jc) log |J � Jc||.
This implies that the first derivative of Sd, i.e., dSd/dJ ,
diverges at J = Jc.

Let us first examine the physical meaning of the
probability distribution ⇢xj = |hxj| i|2. Following

Eqs.(3)-(5), ⇢xj = |hxj = 1|
Q

j
Z

(1�xj)/2
j

| i|2. In the

continuum limit, |xj = 1i ⇠
R
D'(r, 0)|'(r, 0)i and

| i ⇠
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which is the square of the multi-point correlator in the
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Here, tanh(�) = e�2K , and me = {mh̃i,j̃i = ±1} is any
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Q
h̃i,j̃i2j
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Q
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P
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P
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(↵)

ĩ
s(↵)
j̃
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↵-th copy of the Ising model on the upper half-infinite
plane. A similar relation holds for H↵
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�
P

x
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⇣
�
P2n

↵=1 s
(↵)
x,0+s

(↵)
x,0�

⌘
represents the interac-

tion terms that couple the 2n copies of Ising models
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N ! 1. We will numerically demonstrate that E[CID]
closely approximates sd in all the examples we consider.
We attribute this to the inherent locality in the proba-
bility distribution ⇢xj hinted above.

We now summarize the protocol to estimate the diag-
onal entropy density:

1. Prepare the target mixed state ⇢ and then measure
it in the Pauli-X basis on all sites. The observer
obtains an outcome xj = (x1, · · · , xN ) with proba-
bility pxj = ⇢xj .

2. Compress the measurement outcome xj using a
lossless data compression algorithm, and calcu-
late the size of the compressed file N (xj). We
use the Lempel-Ziv 77 (LZ77) coding algorithm [7]
throughout the paper, although we do not expect
the choice of a specific variant of the Lempel-Ziv
algorithm to be crucial. See App. A for a brief
introduction.

3. Compute CID(xj) = N (xj)/Nshu✏e.

4. Repeat steps 1–3 and take the average
to obtain E[CID] =

P
xj
pxjCID(xj) ⇡P

xj2samples CID(xj)/Ns, where Ns is the number

of samples. Here,
P

xj2samples denotes summation
over all samples generated in the first step. In
Sec. VI, we discuss the scaling of the error with
the number of samples.

III. 1+1-D TRANSVERSE FIELD ISING MODEL

In this section, we will illustrate our approach to the di-
agonal entropy density for the ground state of the (1+1)-
D transverse field Ising model (TFIM). The Hamiltonian
is:

H = �(1� J)
X

i

Xi � J
X

hi,ji

ZiZj , (9)

where hi, ji denotes the nearest-neighbor pair. The
ground state density matrix ⇢(J) = | (J)ih (J)| is in
the symmetric phase for J < Jc and in the symmetry-
breaking phase for J > Jc, where Jc = 0.5. The univer-
sal, subleading terms in the diagonal entropy were dis-
cussed in Ref. [19], and as we discuss below, the volume-
law coe�cient of the diagonal entropy Sd in the Ising-
symmetric basis can also detect this transition (due to
Kramers-Wannier duality, the diagonal entropy in the
Pauli-Z basis can be related to the one in the Pauli-X
basis [19]).

Of course, this transition can simply be detected via

the connected two-point correlator hZiZji
def
= tr(⇢ZiZj)�

tr(⇢Zi) tr(⇢Zj); thus, the diagonal entropy o↵ers no ap-
parent advantage. However, let us subject the ground
state to the maximal dephasing channel ⇢(J) ! Ed[⇢(J)],
where Ed[·] =

Q
j
Ej [·] with Ej [·] = (⇢ +Xj⇢Xj)/2. The

correlator hZiZji now vanishes identically due to sym-
metry constraints, whereas Sd continues to serve as a
diagnostic for what is now an SW-SSB transition. We
note that this particular SW-SSB transition can also be
detected by the expectation value of Ising-symmetric op-
erators, such as tr(⇢

P
i
Xi)/L. However, as discussed

below, the diagonal entropy is sensitive even to those
SW-SSB transitions that are undetectable via such linear
observables. In addition to serving as a testbed for our
methodology, we will later use this example to analyze
the complexity of estimating Sd in experiments (Sec. VI).

A. Structure of the diagonal density matrix and its
relation to SW-SSB

Let us elaborate on the connection between SW-SSB
and the singularity of the diagonal entropy in the Ising-
symmetric basis. Sd is simply the von Neumann entropy
of the diagonal mixed state ⇢d, which is obtained by ap-
plying the maximal dephasing channel Ed[·] =

Q
j
Ej [·]

with Ej [·] = [(·) + Xj(·)Xj ]/2 to ⇢. This channel
leaves all observables involving only Pauli-X matrices un-
changed. Therefore, the two-point connected correlation
tr(⇢dXiXj)�tr(⇢dXi) tr(⇢dXj) decays exponentially as a
function of |i� j| for J 6= Jc and polynomially at J = Jc,
since | (J = Jc)i is critical. It is then natural to expect
that the von Neumann entropy of ⇢d, which equals the
diagonal entropy Sd of ⇢ in the Ising-symmetric basis, is
non-analytic at J = Jc. Later, we will use e↵ective field
theory to analyze its universal scaling behavior.
We claim that ⇢d(J > Jc) is, in fact, an SW-SSB state

[26, 31, 32]. By definition, an SW-SSB state ⇢ satisfies
the following two properties [32]:

(a) There is no long-range order in the two-point cor-
relation function, i.e., lim|i�j|!1 tr(⇢ZiZj) = 0.

(b) The fidelity between ⇢ and ZiZj⇢ZiZj saturates
to a finite constant as |i � j| ! 1, i.e.,
lim|i�j|!1 F (⇢d, ZiZj⇢dZiZj) = c > 0.

⇢d satisfies (a) because tr(⇢dZiZj) = tr(Ed[⇢]ZiZj) =
tr(⇢Ed[ZiZj ]) = 0, where, in the last equality, we have
used Ed[ZiZj ] = 0 8i, j due to Ising symmetry. On the
other hand, ⇢d satisfies (b) due to the data-processing
inequality:

F (⇢, ZiZj⇢ZiZj)  F (Ed[⇢], Ed[ZiZj⇢ZiZj ])

= F (⇢d, ZiZj⇢dZiZj) (10)

where we have used Ed[ZiZj(·)ZiZj ] = ZiZjEd[·]ZiZj

in the second step. Since ⇢(J) = | (J)ih (J)|
is a pure state, the left-hand side of Eq. (10)
satisfies lim|i�j|!1 F (⇢(J), ZiZj⇢(J)ZiZj) =
lim|i�j|!1 |h (J)|ZiZj | (J)i|2 6= 0 for J > Jc.
Therefore, the diagonal density matrix ⇢d is an SW-SSB
state for J > Jc.
More generally, one can apply the following channel

Er to the ground state ⇢(J) of TFIM, which interpolates
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“Strong-to-weak SSB phase”
[Lee, Jian, Xu 2023; 


Ma, Zhang, Bi, Cheng, Wang 2023]
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Figure 3. (a) E[CID] as a function of the tuning parameter J for the ground state of the (1 + 1)-D TFIM in Eq.(7). (b) The
subleading term �E[CID] = 2L[E[CID](2L) � E[CID](L)] for L = 32, 64 as a function of J . (c) The derivative dE[CID]/dJ as
a function of J estimated using the finite-di↵erence method. (d)-(f) Same quantities as (a)-(c) with E[CID] replaced by the
diagonal entropy density sd = �

P
xj

⇢xj log ⇢xj/N ⇡ �
P

xj2samples log
�
⇢xj

�
/N . All the insets show the results obtained from

smoothing the raw data by locally averaging the nearby data points (see the main text for details). in the inset of (b), (e), (c),
(f), add the tick-marks on the axes

trix in the symmetric basis. We will then use this con-
nection to probe the phase diagram using E[CID] and the
diagonal entropy SD.

The Hilbert space of our model consists of qubits on
the vertices of the 2d square lattice. The state of our
interest is obtained as follows: we start with the pure
state

| (q)i =
Y

hi,ji

[(1� q)I + qZiZj ]|xj = 1i (18)

and then subject it to the following strongly symmetric
channel on all edges:

Ehi,ji(p)[·] = (1� p)(·) + pZiZj(·)ZiZj . (19)

The resulting density matrix ⇢(q, p) =Q
hi,ji Ehi,ji(p)[| (q)ih (q)|] then depends on two

tuning parameters. Similar to Sec. III, since we are
interested in the relationship between the “target mixed
state” ⇢(p, q) and the diagonal mixed state ⇢d, obtained
from it through a maximal dephasing channel in the
Pauli-X basis, it is again useful to consider a more gen-
eral three-parameter mixed state �(p, q, r) = Er[⇢(p, q)],
where the channel Er is given by Eq. (9). Thus, the
r = 0 and r = 0.5 planes correspond to ⇢(p, q) and
⇢d(p, q), respectively.

In the following, we will provide arguments that the

phase diagram of the state �(p, q, r) is the one shown in
Fig.4(a). In particular, we will see that all yellow solid
points along the phase boundaries are known through ex-
act mapping to appropriate classical statistical mechan-
ics models. We will first consider the r = 0 plane, which
corresponds to the target mixed state ⇢(q, p) = �(q, p, 0),
and then use a combination of statistical mechanics map-
pings, quantum information inequalities, and perturba-
tive arguments to discuss the three-dimensional global
phase diagram.

Phase diagram in the r = 0 plane: The conjec-
tured phase diagram for the target mixed state ⇢(q, p)
has been discussed in Ref.[45] (more precisely, [45] stud-
ied the phase diagram of the Wegner dual of ⇢(q, p)).
Along the p = 0 line, ⇢(q, 0) = | (q)ih (q)| is the ground
state of a Rokhsar-Kivelson type Hamiltonian [46], and
the paramagnetic to ferromagnetic transition (which oc-

curs at qc = (1�
pp

2� 1)/2 ⇡ 0.178) is described by the
(2+0)-D Ising universality (and not 3+0-D Ising model)
– the dimensional reduction being a common feature of
‘conformal quantum critical points’ [47]. When q > qc,
the system is in the standard SSB phase characterized by
the long-range order in the two-point correlation function
(lim|i�j|!1 tr(⇢ZiZj) = c > 0). On the other hand, the
q = 0 line corresponds to subjecting the zero correlation
length paramagnet state to decoherence, which has al-
ready been studied in Ref.[5]. When p > pc ⇡ 0.109, the
system is in the SW-SSB phase characterized by the long-
range order in the fidelity correlator without the long-
range order in the two-point correlations [11]. From the
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where e2� = i tan(�) and {Jh̃i,j̃i} can be any bond config-
uration satisfying

Q
h̃i,j̃i2j

Jh̃i,j̃i = xj . Similar to Eq.(23),
Eq.(31) can be derived from the standard Kramers-
Wannier duality.

Figs. 8(a), (b), and (c) display E[CID], dE[CID]/d�,
and d2E[CID]/d2� respectively (after locally averag-
ing the data as previously described). The same
quantities estimated by the direct evaluation sd ⇡
�
P

xj2samples log
�
⇢xj

�
/(L2Ns) are shown in Fig.8(d),

(e), and (f). Similar to Sec.IVA, the generation of sam-
ples as well as the calculation of sd are done using a
tensor-network-based approach.

In both calculations, we find a peak in the 2nd
derivative of sd at � ⇡ 0.09. We also compute the
free energy cost of a single Ising vortex [he��Fl/2i] =P

Jh̃i,̃ji

q
ZJhĩ,j̃i

ZJhĩ,j̃i,l
/
P

Jh̃i,̃ji
ZJhĩ,j̃i

, which is the same

quantity studied in Sec.IV. We find that [he��Fl/2i] be-
comes close to zero close to � ⇡ 0.09, consistent with the
peak estimated from the second derivative of sd. The lo-
cation of the critical point ⇡ 0.09 we found is lower than
the one estimated in Ref.[90] (�c ⇡ 0.14). We do not
know the origin of this discrepancy. One possibility is
the limited system sizes accessible to us. The main chal-
lenge in simulating larger systems is faithfully generating
images with the correct Born probability distribution;
estimating entropy using Lempel-Ziv is straightforward
once such images are available. Nonetheless, similar to
the previous examples, the entropy density estimated us-
ing Lempel-Ziv approaches the one calculated directly, as
shown more systematically in the next section.

VI. COMPLEXITY OF ESTIMATING
DIAGONAL ENTROPY

We now analyze the complexity of using Lempel-Ziv
compression scheme to estimate the diagonal entropy
density as a function of the system size L and the num-
ber of samples Ns. We primarily focus on the 1+1-
D example from Sec.III with J = 0.6 (on a classical
computer, generating samples with the correct proba-
bility is the limiting factor, and among the examples
we studied, it is easiest to generate the samples in the
1+1-D example). We aim to understand how the di↵er-
ence ✏(L,Ns) = |E[CID](L,Ns) � sd(L)| behaves, where
E[CID](L,Ns) denotes the value of CID for a system of
linear size L, averaged over Ns samples. We will nu-
merically substantiate the following claim: there exists a
function Ns(L) which scales at most polynomially with
L such that ✏(L,Ns(L)) decays to zero as 1/La where a
is some positive number.

Fig.9(a) shows ✏(L,Ns = aL+ b), where a, b are some
numbers. We find that ✏(L,Ns = aL + b) ⇡ 1/L0.7.
This is strongly suggestive that one only needs at most
polynomially many samples so that ✏(L,Ns) decays as
1/poly(L). A natural question is whether one can fur-
ther optimize Ns(L), as suggested by studies on classical

Figure 9. (a) ✏ = |E[CID](L,Ns) � sd| as a function of the
system size L with Ns = 50 + 5L. (b) Standard deviation
for E[CID](L,Ns) due to finite number of samples, �CID, as
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many-body systems [91]. To explore the possibility of
a function Ns(L) that grows even slower than poly(L),
we first note that there are two sources of deviations be-
tween E[CID](L,Ns) and sd. The first source is finite
Ns at a fixed L, and the second source is finite L (in the
following discussion, we ignore the Monte Carlo standard
deviation associated with sd, since it’s much smaller than
either of these two sources of deviations). Let’s first dis-
cuss the behavior of the finite sampling error. Fig.9(b)
shows the standard deviation �CID(L,Ns) as a function
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where e2� = i tan(�) and {Jh̃i,j̃i} can be any bond config-
uration satisfying
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Jh̃i,j̃i = xj . Similar to Eq.(23),
Eq.(31) can be derived from the standard Kramers-
Wannier duality.

Figs. 8(a), (b), and (c) display E[CID], dE[CID]/d�,
and d2E[CID]/d2� respectively (after locally averag-
ing the data as previously described). The same
quantities estimated by the direct evaluation sd ⇡
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/(L2Ns) are shown in Fig.8(d),

(e), and (f). Similar to Sec.IVA, the generation of sam-
ples as well as the calculation of sd are done using a
tensor-network-based approach.

In both calculations, we find a peak in the 2nd
derivative of sd at � ⇡ 0.09. We also compute the
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quantity studied in Sec.IV. We find that [he��Fl/2i] be-
comes close to zero close to � ⇡ 0.09, consistent with the
peak estimated from the second derivative of sd. The lo-
cation of the critical point ⇡ 0.09 we found is lower than
the one estimated in Ref.[90] (�c ⇡ 0.14). We do not
know the origin of this discrepancy. One possibility is
the limited system sizes accessible to us. The main chal-
lenge in simulating larger systems is faithfully generating
images with the correct Born probability distribution;
estimating entropy using Lempel-Ziv is straightforward
once such images are available. Nonetheless, similar to
the previous examples, the entropy density estimated us-
ing Lempel-Ziv approaches the one calculated directly, as
shown more systematically in the next section.
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a function Ns(L) that grows even slower than poly(L),
we first note that there are two sources of deviations be-
tween E[CID](L,Ns) and sd. The first source is finite
Ns at a fixed L, and the second source is finite L (in the
following discussion, we ignore the Monte Carlo standard
deviation associated with sd, since it’s much smaller than
either of these two sources of deviations). Let’s first dis-
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Figure 11. Plots analogous to Fig. 9(a) for the real and the
complex RBIM along the Nishimori line with p = 0.1 and
� = 0.1⇡, respectively. Here we fix Ns = 2000.

of Ns for di↵erent L. We find that for all system sizes,
�CID(L,Ns) ⇡ �0(L)/

p
Ns, which is the standard behav-

ior for a sampling error. The function �0(L) is a mono-
tonically decreasing function of L. When Ns is large
enough, the main source of deviation is finite L. This
motivates the following question: how many samples are
needed at a fixed L, such that �CID(L,Ns)  ↵✏(L,Ns),
where ↵ is some positive number. We denote the func-
tion that saturates this inequality as N↵

s
(L). When

the number of samples is bigger than N↵

s
(L), the lim-

iting factor is finite L. Fig.10(a) shows N↵

s
(L) for var-

ious ↵ as a function of L, and Fig. shows ✏↵(L) =
|E[CID](L,N↵

s
(L))�sd(L)|. Although the plots thus ob-

tained are more jagged than the ones for Ns ⇠ L, they
are suggestive that ✏↵(L) = |E[CID](L,N↵

s
(L)) � sd(L)|

decays to zero with a similar slope, while the asymptotic
behavior of N↵

s
(L) seems to grow slower than poly(L)

when ↵ & 0.3. These behaviors clearly illustrate the
advantage of E[CID] over a tomographic approach to es-
timate entropy: in tomography, the number of samples
required to achieve the same error increases exponentially
as the system size increases.

The aforementioned scaling behavior also underlines
why extracting subleading terms in the diagonal entropy
is not feasible using the image compression method. For
example, if Sd = s1

d
L + log(2) + O(1/L), then our nu-

merical results imply that the estimated diagonal entropy
equals LE[CID] = s1

d
L+O(L↵) where ↵ ⇡ 0.3. It is not

obvious that the exponent ↵ is universal, and one might
be able to improve upon it by using alternative variants of
the compression scheme, as briefly discussed in Sec.VII.

In addition to the 1+1-D TFIM, we also studied the
scaling behavior of ✏(L,Ns) for the following two states
(a) the state ⇢(p, q = 0) discussed in Sec. IVA2, whose
diagonal entropy corresponds to the disorder-averaged
free energy of the 2D RBIM along the Nishimori line with
real couplings. (b) the state ⇢(�) discussed in Sec.V,
whose diagonal entropy corresponds to the free energy
of the 2D RBIM along the Nishimori line with complex
couplings (in the latter case, we have access to images
for system sizes only up to L ⇡ 16). For simplicity, we
choose Ns = 2000, so that �CID(L,Ns) ⌧ ↵✏(L,Ns), and
the limiting factor is the finite system size (as an aside,
the plot for ✏(L,Ns = 2000) in the 1+1-D TFIM case

is essentially identical to the one shown in Fig.9(a) for
✏(L,Ns ⇠ L)). We find that for both the real and the
complex Nishimori cases, ✏(L,Ns = 2000) decays poly-
nomially with L at the system sizes accessible to us, see
Figs. 11(a), (b).
The above results also have implications for estimating

the derivatives of sd. Let us consider estimating dsd/dJ
using a finite-di↵erence scheme where J is a tuning pa-
rameter. Approximating dsd/dJ at J = J0 as

dsd
dJ

���
J=J0

⇡ sd(J +�J)� sd(J ��J)

2�J
, (32)

there are two sources of errors: (a) Error due to inaccu-
rate estimation of sd — this scales as ✏(L)/�J , where
we have assumed that the number of samples Ns is large
enough so that the limiting factor is finite system size.
(b) Truncation error due to non-zero �J — this scales as
|s(3)|(�J)2 where s(3) = d3sd/dJ3|J=J0 . The total error
then scales as ✏(L)/�J + |s(3)|(�J)2. This analysis im-
plies that the optimal value of �(J) ⇠ (✏(L)/|s(3)|)1/3.
Choosing this optimal value, the error itself scales as
✏(L)2/3|s(3)|1/3. Thus, as long as s(3) does not diverge
with the system size L, derivative estimates can be made
arbitrarily precise by considering larger systems. How-
ever, in the vicinity of a critical point, s(3) typically
does diverge, potentially limiting the accuracy of dsd/dJ .
A similar analysis can be carried out for higher deriva-
tives. A systematic numerical study using this optimal
approach is left for future work.

VII. DISCUSSION

In this paper we explored Lempel-Ziv’s lossless com-
pression algorithm as a scalable scheme to estimate the
Shannon entropy density of the probability distribution
corresponding to the outcomes of projective measure-
ments on a quantum state (“diagonal entropy”). We
verified the validity of this scheme for several problems,
some inspired by recent ideas in the phases of open quan-
tum systems, such as strong-to-weak symmetry breaking.
We also developed a renormalization group and replica-
based approach to diagonal entropy for certain problems
where we applied our scheme. Partly motivated from
our exploration of the diagonal entropy, we also stud-
ied the phase diagram of a 2+1-D quantum paramagnet
subjected to decoherence, and which exhibits a rich phase
diagram consisting of strong-to-weak symmetry breaking
as well as standard paramagnet to ferromagnet transition
(Fig.4).
A basic question is: when does the compression algo-

rithm lead to the asymptotically correct value of the diag-
onal entropy density sd? In all the examples we consider,
a measurement outcome xj = (x1, . . . , xN ) is closely tied
with its Born probability ⇢xj . Specifically, ⇢xj is pro-
portional to the multi-point correlator with respect to
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ZJhĩ,j̃i
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a function Ns(L) that grows even slower than poly(L),
we first note that there are two sources of deviations be-
tween E[CID](L,Ns) and sd. The first source is finite
Ns at a fixed L, and the second source is finite L (in the
following discussion, we ignore the Monte Carlo standard
deviation associated with sd, since it’s much smaller than
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corresponding to the outcomes of projective measure-
ments on a quantum state (“diagonal entropy”). We
verified the validity of this scheme for several problems,
some inspired by recent ideas in the phases of open quan-
tum systems, such as strong-to-weak symmetry breaking.
We also developed a renormalization group and replica-
based approach to diagonal entropy for certain problems
where we applied our scheme. Partly motivated from
our exploration of the diagonal entropy, we also stud-
ied the phase diagram of a 2+1-D quantum paramagnet
subjected to decoherence, and which exhibits a rich phase
diagram consisting of strong-to-weak symmetry breaking
as well as standard paramagnet to ferromagnet transition
(Fig.4).
A basic question is: when does the compression algo-

rithm lead to the asymptotically correct value of the diag-
onal entropy density sd? In all the examples we consider,
a measurement outcome xj = (x1, . . . , xN ) is closely tied
with its Born probability ⇢xj . Specifically, ⇢xj is pro-
portional to the multi-point correlator with respect to
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where e2� = i tan(�) and {Jh̃i,j̃i} can be any bond config-
uration satisfying

Q
h̃i,j̃i2j

Jh̃i,j̃i = xj . Similar to Eq.(23),
Eq.(31) can be derived from the standard Kramers-
Wannier duality.

Figs. 8(a), (b), and (c) display E[CID], dE[CID]/d�,
and d2E[CID]/d2� respectively (after locally averag-
ing the data as previously described). The same
quantities estimated by the direct evaluation sd ⇡
�
P

xj2samples log
�
⇢xj

�
/(L2Ns) are shown in Fig.8(d),

(e), and (f). Similar to Sec.IVA, the generation of sam-
ples as well as the calculation of sd are done using a
tensor-network-based approach.

In both calculations, we find a peak in the 2nd
derivative of sd at � ⇡ 0.09. We also compute the
free energy cost of a single Ising vortex [he��Fl/2i] =P

Jh̃i,̃ji

q
ZJhĩ,j̃i

ZJhĩ,j̃i,l
/
P

Jh̃i,̃ji
ZJhĩ,j̃i

, which is the same

quantity studied in Sec.IV. We find that [he��Fl/2i] be-
comes close to zero close to � ⇡ 0.09, consistent with the
peak estimated from the second derivative of sd. The lo-
cation of the critical point ⇡ 0.09 we found is lower than
the one estimated in Ref.[90] (�c ⇡ 0.14). We do not
know the origin of this discrepancy. One possibility is
the limited system sizes accessible to us. The main chal-
lenge in simulating larger systems is faithfully generating
images with the correct Born probability distribution;
estimating entropy using Lempel-Ziv is straightforward
once such images are available. Nonetheless, similar to
the previous examples, the entropy density estimated us-
ing Lempel-Ziv approaches the one calculated directly, as
shown more systematically in the next section.

VI. COMPLEXITY OF ESTIMATING
DIAGONAL ENTROPY

We now analyze the complexity of using Lempel-Ziv
compression scheme to estimate the diagonal entropy
density as a function of the system size L and the num-
ber of samples Ns. We primarily focus on the 1+1-
D example from Sec.III with J = 0.6 (on a classical
computer, generating samples with the correct proba-
bility is the limiting factor, and among the examples
we studied, it is easiest to generate the samples in the
1+1-D example). We aim to understand how the di↵er-
ence ✏(L,Ns) = |E[CID](L,Ns) � sd(L)| behaves, where
E[CID](L,Ns) denotes the value of CID for a system of
linear size L, averaged over Ns samples. We will nu-
merically substantiate the following claim: there exists a
function Ns(L) which scales at most polynomially with
L such that ✏(L,Ns(L)) decays to zero as 1/La where a
is some positive number.

Fig.9(a) shows ✏(L,Ns = aL+ b), where a, b are some
numbers. We find that ✏(L,Ns = aL + b) ⇡ 1/L0.7.
This is strongly suggestive that one only needs at most
polynomially many samples so that ✏(L,Ns) decays as
1/poly(L). A natural question is whether one can fur-
ther optimize Ns(L), as suggested by studies on classical

Figure 9. (a) ✏ = |E[CID](L,Ns) � sd| as a function of the
system size L with Ns = 50 + 5L. (b) Standard deviation
for E[CID](L,Ns) due to finite number of samples, �CID, as
a function of the number of sample Ns for di↵erent system
sizes L. Both plots are for 1+1-D TFIM at J = 0.6. Both
plots are for 1+1-D TFIM at J = 0.6.

Figure 10. (a) N↵
s , the minimum number of samples such

that �CID(L,N
↵
s )  ↵ · ✏(L,N↵

s ), as a function of L for dif-
ferent values of ↵. (b) ✏↵(L) = |E[CID](L,N↵

s (L)) � sd(L)|
as a function of the system size L. Both plots are for 1+1-D
TFIM at J = 0.6.

many-body systems [91]. To explore the possibility of
a function Ns(L) that grows even slower than poly(L),
we first note that there are two sources of deviations be-
tween E[CID](L,Ns) and sd. The first source is finite
Ns at a fixed L, and the second source is finite L (in the
following discussion, we ignore the Monte Carlo standard
deviation associated with sd, since it’s much smaller than
either of these two sources of deviations). Let’s first dis-
cuss the behavior of the finite sampling error. Fig.9(b)
shows the standard deviation �CID(L,Ns) as a function

where
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However, such an approach is unrealistic, as the num-
ber of measurements needed to estimate diagonal entropy
density at a fixed tolerance/error generically scales expo-
nentially with the system size. To make progress, notice
that if the probability ⇢xj can be related to correlators of
some local Hamiltonian using Eq.(4), the image of typical
measurement outcomes xj is anticipated to encode infor-
mation about the Shannon entropy. For example, if ⇢ has
high fidelity with the symmetric product state |xj = 1i,
one will typically observe most of the sites pointing in
the positive x-direction. The resulting image will appear
highly ordered, indicating that the system has low diag-
onal entropy. On the other hand, if ⇢ is a completely
random mixed state, the observer will typically obtain
a random bit string. The resulting image will be highly
disordered, suggesting that the system has large diag-
onal entropy. Following Ref.[35, 36], this intuition can
be quantitavely captured by the size of the lossless com-
pressed data file. Specifically, consider the computable
information density (CID) defined as

CID(xj) =
N (xj)

Nshu✏e
, (6)

where N (xj) is the size of the compressed file with the
measurement outcome xj and Nshu✏e is the size of the
compressed file for a random binary sequence. The rea-
son for dividing N (xj) by Nshu✏e is simply to normal-
ize the CID to one for random binary sequences. It is
known that if xj is a sequence sampled from a station-
ary and ergodic process, the expectation value of CID
E[CID] =

P
xj
pxjCID[(xj)] approaches the Shannon en-

tropy per site, in our case the diagonal entropy density
sd = Sd/N , in the limit N ! 1. We will demonstrate
numerically that the average CID E[CID] also well ap-
proximates sd in all the examples we consider, and we
believe this is the consequence of the aforementioned lo-
cality in the probability distribution ⇢xj . We now sum-
marize the protocal to estimate the diagonal entropy den-
sity:

1. Prepare the target mixed state ⇢ and then measure
it in the Pauli-X basis on all sites. The observer will
obtain an outcome xj = (x1, · · · , xN ) with probal-
ity pxj = ⇢xj .

2. Compress the measurement outcome xj using a
lossless data compression algorithm and calculate
the size of the compressed file N (xj). We use
the Lempel-Ziv 77 (LZ77) coding algorithm [32]
throughout the paper, although we don’t expect
that the choice of a specific compression algorithm
is important. See App.A for a brief introduction.

3. Compute CID(xj) = N (xj)/Nshu✏e.

4. Repeat 1-3 and take the average to obtain E[CID] =P
xj
pxjCID(xj) ⇡

P
xj2samples CID(xj). HereP

xj2samples denotes summing over all the samples

Figure 1. (a) The phase diagram ⇢(J, r) of the ground state
of (1+1)-D TFIM [Eq(7)] | (J)i subjected to the channel
Er[·] =

Q
j Ej,r[·], Ej,r[·] = (1 � r)[·] + rXj [·]Xj . (b) Typi-

cal images xj based on the probability distribution ⇢xj(J) =

hxj|⇢(J, r)|xji = |hxj| (J)i|2 at J = 0.4 and J = 0.5. Here
we choose the total system size L = 128.

generated in the first step. In Sec.VI, we discuss the
scaling of the error with the number of samples.

III. WARMUP: 1+1-D TRANSVERSE FIELD
ISING MODEL

Maybe we can remove ”WARMUP” from the section
title if we want to treat this as part of our main results.

Consider the 1+1-D transverse field Ising model
(TFIM):

H = �(1� J)
X

i

Xi � J
X

hi,ji

ZiZj , (7)

where hi, ji denotes the nearest-neighbor pair. The
ground state density matrix ⇢(J) = | (J)ih (J)| is in
the symmetric (symmetry breaking) phase when J <
Jc(J > Jc) where Jc = 0.5. We will show that the di-
agonal entropy Sd in the Ising symmetric basis can de-
tect this transition. Of course, this transition can sim-
ply be detected via the connected two-point correlator

hZiZji
def
= tr(⇢ZiZj) � tr(⇢Zi) tr(⇢Zj), and as such, the

diagonal entropy o↵ers no apparent advantage. However,
let’s subject the ground state to the maximal dephasing
channel ⇢(J) ! Ed[⇢(J)] where Ed[·] =

Q
j
Ej [·], Ej [·] =

(⇢+Xj⇢Xj)/2. The correlator hZiZji now vanishes iden-
tically due to symmetry reasons, while Sd will continue to
serve as a diagnostic for what is now an SW-SSB transi-
tion. In addition to serving as a test-bed for our method-
ology, we will use this example later to also analyze the
complexity of estimating Sd in experiments (Sec.VI).

Jc = 1/2

Paramagnet Ferromagnet

J⟩ ⟩
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Figure 3. (a) E[CID] as a function of the tuning parameter J for the ground state of the (1 + 1)-D TFIM in Eq.(7). (b) The
subleading term �E[CID] = 2L[E[CID](2L) � E[CID](L)] for L = 32, 64 as a function of J . (c) The derivative dE[CID]/dJ as
a function of J estimated using the finite-di↵erence method. (d)-(f) Same quantities as (a)-(c) with E[CID] replaced by the
diagonal entropy density sd = �

P
xj

⇢xj log ⇢xj/N ⇡ �
P

xj2samples log
�
⇢xj

�
/N . All the insets show the results obtained from

smoothing the raw data by locally averaging the nearby data points (see the main text for details). in the inset of (b), (e), (c),
(f), add the tick-marks on the axes

trix in the symmetric basis. We will then use this con-
nection to probe the phase diagram using E[CID] and the
diagonal entropy SD.

The Hilbert space of our model consists of qubits on
the vertices of the 2d square lattice. The state of our
interest is obtained as follows: we start with the pure
state

| (q)i =
Y

hi,ji

[(1� q)I + qZiZj ]|xj = 1i (18)

and then subject it to the following strongly symmetric
channel on all edges:

Ehi,ji(p)[·] = (1� p)(·) + pZiZj(·)ZiZj . (19)

The resulting density matrix ⇢(q, p) =Q
hi,ji Ehi,ji(p)[| (q)ih (q)|] then depends on two

tuning parameters. Similar to Sec. III, since we are
interested in the relationship between the “target mixed
state” ⇢(p, q) and the diagonal mixed state ⇢d, obtained
from it through a maximal dephasing channel in the
Pauli-X basis, it is again useful to consider a more gen-
eral three-parameter mixed state �(p, q, r) = Er[⇢(p, q)],
where the channel Er is given by Eq. (9). Thus, the
r = 0 and r = 0.5 planes correspond to ⇢(p, q) and
⇢d(p, q), respectively.

In the following, we will provide arguments that the

phase diagram of the state �(p, q, r) is the one shown in
Fig.4(a). In particular, we will see that all yellow solid
points along the phase boundaries are known through ex-
act mapping to appropriate classical statistical mechan-
ics models. We will first consider the r = 0 plane, which
corresponds to the target mixed state ⇢(q, p) = �(q, p, 0),
and then use a combination of statistical mechanics map-
pings, quantum information inequalities, and perturba-
tive arguments to discuss the three-dimensional global
phase diagram.

Phase diagram in the r = 0 plane: The conjec-
tured phase diagram for the target mixed state ⇢(q, p)
has been discussed in Ref.[45] (more precisely, [45] stud-
ied the phase diagram of the Wegner dual of ⇢(q, p)).
Along the p = 0 line, ⇢(q, 0) = | (q)ih (q)| is the ground
state of a Rokhsar-Kivelson type Hamiltonian [46], and
the paramagnetic to ferromagnetic transition (which oc-

curs at qc = (1�
pp

2� 1)/2 ⇡ 0.178) is described by the
(2+0)-D Ising universality (and not 3+0-D Ising model)
– the dimensional reduction being a common feature of
‘conformal quantum critical points’ [47]. When q > qc,
the system is in the standard SSB phase characterized by
the long-range order in the two-point correlation function
(lim|i�j|!1 tr(⇢ZiZj) = c > 0). On the other hand, the
q = 0 line corresponds to subjecting the zero correlation
length paramagnet state to decoherence, which has al-
ready been studied in Ref.[5]. When p > pc ⇡ 0.109, the
system is in the SW-SSB phase characterized by the long-
range order in the fidelity correlator without the long-
range order in the two-point correlations [11]. From the
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Figure 3. (a) E[CID] as a function of the tuning parameter J for the ground state of the (1 + 1)-D TFIM in Eq.(7). (b) The
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The Hilbert space of our model consists of qubits on
the vertices of the 2d square lattice. The state of our
interest is obtained as follows: we start with the pure
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| (q)i =
Y

hi,ji

[(1� q)I + qZiZj ]|xj = 1i (18)

and then subject it to the following strongly symmetric
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Ehi,ji(p)[·] = (1� p)(·) + pZiZj(·)ZiZj . (19)

The resulting density matrix ⇢(q, p) =Q
hi,ji Ehi,ji(p)[| (q)ih (q)|] then depends on two
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corresponds to the target mixed state ⇢(q, p) = �(q, p, 0),
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tive arguments to discuss the three-dimensional global
phase diagram.
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has been discussed in Ref.[45] (more precisely, [45] stud-
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the system is in the standard SSB phase characterized by
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(lim|i�j|!1 tr(⇢ZiZj) = c > 0). On the other hand, the
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Figure 5. (a)-(c) E[CID], dE[CID]/dq, and d2E[CID]/d2q as functions of the tuning parameter q obtained by smoothing the
raw data. The insets show the original data. (d)-(f) Same quantities as (a)-(c) with E[CID] replaced by the diagonal entropy
density sd. (g) The system on the dual lattice of size L⇥L with L = 7. Here the Ising vortices reside on plaquettes, and there
are (L+ 1)⇥ (L+ 1) spins on the dual lattice. The blue cross indicates the creation of the isolated Ising vortex at the center,
which can be implemented by flipping the bonds labeled in the blue color. The red squares indicate the locations ĩ and j̃ when
computing the disorder-averaged spin-spin correlation function [hsĩsj̃i]. (h) The disorder-averaged free energy cost [he��Fl/2i]
as a function of perturbed strength q.

| (q)i =
Y

hi,ji

[(1� q)I + qZiZj ]|xj = 1i (18)

and then subject it to the following strongly symmetric
channel on all edges:

Ehi,ji(p)[·] = (1� p)(·) + pZiZj(·)ZiZj . (19)

The resulting density matrix ⇢(q, p) =Q
hi,ji Ehi,ji(p)[| (q)ih (q)|] then depends on two

tuning parameters. Similar to Sec. III, since we are
interested in the relationship between the “target mixed
state” ⇢(p, q) and the diagonal mixed state ⇢d, obtained
from it through a maximal dephasing channel in the
Pauli-X basis, it is again useful to consider a more gen-
eral three-parameter mixed state �(p, q, r) = Er[⇢(p, q)],
where the channel Er is given by Eq. (9). Thus, the
r = 0 and r = 0.5 planes correspond to ⇢(p, q) and
⇢d(p, q), respectively.

In the following, we will provide arguments that the
phase diagram of the state �(p, q, r) is the one shown in
Fig.4(a). In particular, we will see that all yellow solid
points along the phase boundaries are known through ex-
act mapping to appropriate classical statistical mechan-
ics models. We will first consider the r = 0 plane, which
corresponds to the target mixed state ⇢(q, p) = �(q, p, 0),
and then use a combination of statistical mechanics map-
pings, quantum information inequalities, and perturba-
tive arguments to discuss the three-dimensional global
phase diagram.

Phase diagram in the r = 0 plane: The conjec-
tured phase diagram for the target mixed state ⇢(q, p)

has been discussed in Ref.[47] (more precisely, [47] stud-
ied the phase diagram of the Wegner dual of ⇢(q, p)).
Along the p = 0 line, ⇢(q, 0) = | (q)ih (q)| is the ground
state of a Rokhsar-Kivelson type Hamiltonian [48], and
the paramagnetic to ferromagnetic transition (which oc-

curs at qc = (1�
pp

2� 1)/2 ⇡ 0.178) is described by the
(2+0)-D Ising universality (and not 3+0-D Ising model)
– the dimensional reduction being a common feature of
‘conformal quantum critical points’ [49]. When q > qc,
the system is in the standard SSB phase characterized by
the long-range order in the two-point correlation function
(lim|i�j|!1 tr(⇢ZiZj) = c > 0). On the other hand, the
q = 0 line corresponds to subjecting the zero correlation
length paramagnet state to decoherence, which has al-
ready been studied in Ref.[5]. When p > pc ⇡ 0.109, the
system is in the SW-SSB phase characterized by the long-
range order in the fidelity correlator without the long-
range order in the two-point correlations [11]. From the
results along the lines p = 0 and q = 0, it is then nat-
ural to expect that the system in the whole (q, p)-plane
exhibits three phases: symmetric (Sym), SW-SSB, and
SSB phases. The phase boundary between the SSB phase
and the SW-SSB phase is straight because non-maximal
local decoherence cannot change long-distance correla-
tions of local operators (and therefore, the correlations
along the line q = qc must decay as power-law). The
r = 0 plane in Fig.4(a) shows the conjectured phase dia-
gram. We emphasize that the straight yellow boundary
at q = qc is determined exactly by the long-range order
of the two-point correlation function, while the curved
yellow line is drawn only schematically.

Phase diagram for r 6= 0: Given the understand-
ing of the r = 0 plane, one can now use the prop-
erty that �(q, p, r) = Er[⇢(q, p)] to deduce the topol-
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The resulting density matrix ⇢(q, p) =Q
hi,ji Ehi,ji(p)[| (q)ih (q)|] then depends on two
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from it through a maximal dephasing channel in the
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2� 1)/2 ⇡ 0.178) is described by the
(2+0)-D Ising universality (and not 3+0-D Ising model)
– the dimensional reduction being a common feature of
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the system is in the standard SSB phase characterized by
the long-range order in the two-point correlation function
(lim|i�j|!1 tr(⇢ZiZj) = c > 0). On the other hand, the
q = 0 line corresponds to subjecting the zero correlation
length paramagnet state to decoherence, which has al-
ready been studied in Ref.[5]. When p > pc ⇡ 0.109, the
system is in the SW-SSB phase characterized by the long-
range order in the fidelity correlator without the long-
range order in the two-point correlations [11]. From the
results along the lines p = 0 and q = 0, it is then nat-
ural to expect that the system in the whole (q, p)-plane
exhibits three phases: symmetric (Sym), SW-SSB, and
SSB phases. The phase boundary between the SSB phase
and the SW-SSB phase is straight because non-maximal
local decoherence cannot change long-distance correla-
tions of local operators (and therefore, the correlations
along the line q = qc must decay as power-law). The
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gram. We emphasize that the straight yellow boundary
at q = qc is determined exactly by the long-range order
of the two-point correlation function, while the curved
yellow line is drawn only schematically.
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Figure 4. (a) The three-dimensional phase diagram for the mixed state �(p, q, r) = Er[⇢(p, q)], where Er[·] =
Q

j Ej,r[·],
Ej,r[·] = (1 � r)[·] + rXj [·]Xj (see Eqs. 20,21). The target mixed state ⇢ and the diagonal mixed state ⇢d corresponds to the
r = 0 and r = 0.5 plane, respectively. (b) The phase boundaries for ⇢ (solid line) and ⇢d (dashed lines). Note that ⇢ exhibit
three phases (Sym, SSB, and SW-SSB phase) while ⇢d only exhibit two phases (Sym and SW-SSB phase). (c) The phase
diagram of ⇢(q, p = 0, r). Note that the SW-SSB phase only exists along the r = 0.5 line with q > qc. (d) The typical images
xj based on the probability distribution ⇢xj(q, p) at (q, p) = (0.1, 0), (0.25, 0), (0, 0.05), and (0, 0.15).

the special case r = 0.5 (which corresponds to the di-
agonal mixed state ⇢d), the channel Er=0.5[·] completely
eliminates the two-point correlations. This implies that
the system in the r = 0.5 plane will never exhibit an SSB
phase. On the other hand, it can also be shown that the
fidelity F (�, ZiZj�ZiZj) is an upper bound of the fidelity
F (⇢, ZiZj⇢ZiZj), using the same argument as in Sec. III.
It follows that the transition of �(p, q, r > 0) out of the
symmetric phase cannot occur before the transition of
⇢(p, q) = �(p, q, r = 0) out of the symmetric phase.

We now elaborate on the relationship between the diag-
onal mixed state ⇢d(q, p) = �(q, p, r = 0.5) and the target
mixed state ⇢(q, p). First, consider these density matri-
ces at q = 0: ⇢(q = 0, p) /

P
xj s.t.

Q
j
xj=1 Zxj(p)|xjihxj|

[26], where Zxj(p) =
P

s
ĩ

e�
P

hĩ,j̃i Jhĩ,j̃isĩsj̃ , tanh(�) =
1� 2p is the partition function of the random bond Ising
model on the dual lattice ĩ, with {Jh̃i,j̃i} representing any
bond configuration satisfying

Q
h̃i,j̃i2j

Jh̃i,j̃i = xj . Since
this density matrix is already diagonal in the Pauli-X ba-
sis, it follows that ⇢(0, p) = ⇢d(0, p), and thus the diago-
nal entropy is exactly equal to the von Neumann entropy
S(⇢) = � tr(⇢ log ⇢) of the target mixed state. Further-
more, S(p, q) = Sd(p, q) + O(q2) for small q. This fol-
lows from the symmetry S(p, q) = S(p,�q), and similarly
Sd(p,�q) = Sd(p, q). This symmetry is implemented by
the unitary operator

Q
i2A

Xi, where i 2 A denotes sites
on the A sublattice of the square lattice. Thus, the phase
boundaries determined by the singularities of S and Sd

have zero slope at (p = pc, q = 0) and coincide at linear
order in q.

Remarkably, the diagonal entropy also correctly cap-
tures the transition for ⇢ when p = 0, i.e., along
the pure-state transition line. This can be seen by
expressing the eigenvalues of ⇢d analytically: ⇢xj =

|hxj| i|2 = |hxj = 1|
Q

j
Z

(1�xj)/2
j

| i|2 / |hxj =

1|
Q

j
Z

(1�xj)/2
j

eK
P

hi,ji ZiZj |xj = 1i|2, where tanh(K) =
q/(1 � q). By inserting a complete Pauli-Z basis I =P

zj
|zjihzj| between eK

P
hi,ji ZiZj and |xj = 1i, we ob-

tain

⇢xj / |
X

zj

Y

j

z
(1�xj)/2
j

eK
P

hi,ji zizj |2 (22)

/ |
X

s
ĩ

e�
P

hĩ,j̃i Jhĩ,j̃isĩsj̃ |2 = Z2
xj
(q). (23)

Here, tanh(�) = 1 � 2q, and {Jh̃i,j̃i} represents
any bond configuration satisfying

Q
h̃i,j̃i2j

Jh̃i,j̃i =
xj . Note that Eq. (23) follows from the standard
Kramers–Wannier duality. By comparing ⇢(0, p) /P

xj s.t.
Q

j
xj=1 Zxj(p)|xjihxj| with Eq. (23), we find that

⇢d(q, 0) = ⇢2(0, p = q)/ tr
⇥
⇢2(0, p = q)

⇤
is proportional

to the square of the fixed-point paramagnetic state un-
der decoherence. Ref. [29] shows that the density ma-
trix ⇢2(0, p)/ tr

⇥
⇢2(0, p)

⇤
undergoes a separability tran-

sition at p = qc, where it can (cannot) be expressed
as a convex sum of GHZ states for p > qc (p < qc).
This serves as a signature of SW-SSB, leading to the
conclusion that the SSB transition in the pure state
⇢(q, 0) = | (q)ih (q)| manifests as the SW-SSB tran-
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Figure 1. (a) The phase diagram ⇢(J, r) of the ground state
of (1+1)-D TFIM [Eq(9)] | (J)i subjected to the channel
Er[·] =

Q
j Ej,r[·], Ej,r[·] = (1 � r)[·] + rXj [·]Xj . (b) Typi-

cal images xj based on the probability distribution ⇢xj(J) =

hxj|⇢(J, r)|xji = |hxj| (J)i|2 at J = 0.4 and J = 0.6. The
total system size is L = 128.

between no dephasing and maximal dephasing as r varies
from 0 to 1/2:

Er[·] =
Y

j

Ej,r[·], Ej,r[·] = (1�r)[·]+rXj [·]Xj . (11)

The resulting density matrix, ⇢(J, r) = Er[⇢(J)], satisfies

tr[⇢(J, r)ZiZj ] = (1� 2r)2 tr[⇢(J, r = 0)ZiZj ]. (12)

Following the aforementioned criteria for SW-SSB, only
the r = 1/2 line in the (J, r) plane corresponds to an SW-
SSB transition, whereas for any r < 1/2, the transition is
a standard SSB transition. The phase diagram is shown
in Fig. 1(a).

B. Universal scaling behavior of diagonal entropy

We now discuss the universal behavior of the diagonal
entropy density. Our main conclusion is that the singular
part of limV!1 Sd/V scales as |(J � Jc) log |J � Jc||.
This implies that the first derivative of Sd, i.e., dSd/dJ ,
diverges at J = Jc.

Let us first examine the physical meaning of the
probability distribution ⇢xj = |hxj| i|2. Following

Eqs.(3)-(5), ⇢xj = |hxj = 1|
Q

j
Z

(1�xj)/2
j

| i|2. In the

continuum limit, |xj = 1i ⇠
R
D'(r, 0)|'(r, 0)i and

| i ⇠
R
D'(r, ⌧)e�S['(r,⌧)]|'(r, 0)i, where S['(r, ⌧)] =R 0

⌧=�1 d⌧
R
dr['(@2

⌧
+r2

r
+m2)'+ u'4]. Therefore,

⇢xj ⇠ |
Z

D'(r, ⌧)[· · ·'(rj , 0) · · · ]e�S['(r,⌧)]|2, (13)

which is the square of the multi-point correlator in the
scalar �4 theory at the imaginary time ⌧ = 0. It proves
beneficial to examine the lattice-spacetime formulation

of Eq.(13):

⇢xj ⇠ |
X

zj,⌧

(
LY

j=0

z
1�xj

2
j,⌧=0)e

�
P

h(j,⌧),(j0,⌧0)i zj,⌧zj0,⌧0 |2. (14)

Using the standard Kramers-Wannier duality, one can ex-
press the multi-point correlator as the following disorder
model on the dual lattice:

⇢xj ⇠ |
X

s̃i

eK(
P

hĩ,j̃i2⌧ 6=0 s
ĩ
s
j̃
+
P

hĩ,j̃i2⌧=0 mhĩ,j̃isĩsj̃)|2

= Z2
me

.

(15)

Here, tanh(�) = e�2K , and me = {mh̃i,j̃i = ±1} is any
bond configuration satisfying

Q
h̃i,j̃i2j

mh̃i,j̃i = xj (note

that we sometimes write e = h̃i, j̃i for notational sim-
plicity). Eq. (15) represents the partition function of a
classical Ising model with disorder me restricted to the
⌧ = 0 line [see Fig. 2(a)]. In this dual picture, xj = �1
corresponds to the presence of an Ising vortex, defined
via

Q
h̃i,j̃i2j

mh̃i,j̃i = �1. In the symmetric phase, con-
figurations in which a single Ising vortex is far from the
others are exponentially suppressed, and the typical mea-
surement outcomes correspond to situations where Ising
vortices are always bound in pairs. On the other hand, in
the symmetry-breaking phase, the two-point correlation
function saturates to a finite constant, corresponding to
a situation where Ising vortices are deconfined.

To formalize this intuition and understand the
universal behavior of the diagonal entropy, Sd =
�
P

xj
⇢xj log ⇢xj , we employ the replica trick to explic-

itly derive the statistical mechanical model for S(n)
d

=
log
P

xj
⇢n
xj
/(1� n), and then take the replica limit n !

1. The central quantity associated with S(n)
d

is obtained
by summing over the disorder me of Z2n

me
, which can be

computed as

X

me

Z2n
me

=
X

s
(↵)

ĩ

"
e
�
P

h̃i,j̃i2⌧ 6=0

2nP
↵=1

s
(↵)

ĩ
s
(↵)

j̃

Y

h̃i,j̃i
2⌧=0

cosh

 
�

2nX

↵=1

s(↵)
ĩ

s(↵)
j̃

!#

=
X

s
(↵)

ĩ

e�H[�;s(↵)

ĩ
] =

X

s
(↵)

ĩ

e
�(

2nP
↵=1

(H↵

Ising,⌧>0+H
↵

Ising,⌧>0)+Hint)
.

(16)

Here, H↵

Ising,⌧>0 = ��
P

h̃i,j̃i2⌧>0 s
(↵)

ĩ
s(↵)
j̃

represents the

↵-th copy of the Ising model on the upper half-infinite
plane. A similar relation holds for H↵

Ising,⌧<0 on the
lower half-infinite plane. On the other hand, Hint =

�
P

x
ln cosh

⇣
�
P2n

↵=1 s
(↵)
x,0+s

(↵)
x,0�

⌘
represents the interac-

tion terms that couple the 2n copies of Ising models

Ising
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N ! 1. We will numerically demonstrate that E[CID]
closely approximates sd in all the examples we consider.
We attribute this to the inherent locality in the proba-
bility distribution ⇢xj hinted above.

We now summarize the protocol to estimate the diag-
onal entropy density:

1. Prepare the target mixed state ⇢ and then measure
it in the Pauli-X basis on all sites. The observer
obtains an outcome xj = (x1, · · · , xN ) with proba-
bility pxj = ⇢xj .

2. Compress the measurement outcome xj using a
lossless data compression algorithm, and calcu-
late the size of the compressed file N (xj). We
use the Lempel-Ziv 77 (LZ77) coding algorithm [7]
throughout the paper, although we do not expect
the choice of a specific variant of the Lempel-Ziv
algorithm to be crucial. See App. A for a brief
introduction.

3. Compute CID(xj) = N (xj)/Nshu✏e.

4. Repeat steps 1–3 and take the average
to obtain E[CID] =

P
xj
pxjCID(xj) ⇡P

xj2samples CID(xj)/Ns, where Ns is the number

of samples. Here,
P

xj2samples denotes summation
over all samples generated in the first step. In
Sec. VI, we discuss the scaling of the error with
the number of samples.

III. 1+1-D TRANSVERSE FIELD ISING MODEL

In this section, we will illustrate our approach to the di-
agonal entropy density for the ground state of the (1+1)-
D transverse field Ising model (TFIM). The Hamiltonian
is:

H = �(1� J)
X

i

Xi � J
X

hi,ji

ZiZj , (9)

where hi, ji denotes the nearest-neighbor pair. The
ground state density matrix ⇢(J) = | (J)ih (J)| is in
the symmetric phase for J < Jc and in the symmetry-
breaking phase for J > Jc, where Jc = 0.5. The univer-
sal, subleading terms in the diagonal entropy were dis-
cussed in Ref. [19], and as we discuss below, the volume-
law coe�cient of the diagonal entropy Sd in the Ising-
symmetric basis can also detect this transition (due to
Kramers-Wannier duality, the diagonal entropy in the
Pauli-Z basis can be related to the one in the Pauli-X
basis [19]).

Of course, this transition can simply be detected via

the connected two-point correlator hZiZji
def
= tr(⇢ZiZj)�

tr(⇢Zi) tr(⇢Zj); thus, the diagonal entropy o↵ers no ap-
parent advantage. However, let us subject the ground
state to the maximal dephasing channel ⇢(J) ! Ed[⇢(J)],
where Ed[·] =

Q
j
Ej [·] with Ej [·] = (⇢ +Xj⇢Xj)/2. The

correlator hZiZji now vanishes identically due to sym-
metry constraints, whereas Sd continues to serve as a
diagnostic for what is now an SW-SSB transition. We
note that this particular SW-SSB transition can also be
detected by the expectation value of Ising-symmetric op-
erators, such as tr(⇢

P
i
Xi)/L. However, as discussed

below, the diagonal entropy is sensitive even to those
SW-SSB transitions that are undetectable via such linear
observables. In addition to serving as a testbed for our
methodology, we will later use this example to analyze
the complexity of estimating Sd in experiments (Sec. VI).

A. Structure of the diagonal density matrix and its
relation to SW-SSB

Let us elaborate on the connection between SW-SSB
and the singularity of the diagonal entropy in the Ising-
symmetric basis. Sd is simply the von Neumann entropy
of the diagonal mixed state ⇢d, which is obtained by ap-
plying the maximal dephasing channel Ed[·] =

Q
j
Ej [·]

with Ej [·] = [(·) + Xj(·)Xj ]/2 to ⇢. This channel
leaves all observables involving only Pauli-X matrices un-
changed. Therefore, the two-point connected correlation
tr(⇢dXiXj)�tr(⇢dXi) tr(⇢dXj) decays exponentially as a
function of |i� j| for J 6= Jc and polynomially at J = Jc,
since | (J = Jc)i is critical. It is then natural to expect
that the von Neumann entropy of ⇢d, which equals the
diagonal entropy Sd of ⇢ in the Ising-symmetric basis, is
non-analytic at J = Jc. Later, we will use e↵ective field
theory to analyze its universal scaling behavior.
We claim that ⇢d(J > Jc) is, in fact, an SW-SSB state

[26, 31, 32]. By definition, an SW-SSB state ⇢ satisfies
the following two properties [32]:

(a) There is no long-range order in the two-point cor-
relation function, i.e., lim|i�j|!1 tr(⇢ZiZj) = 0.

(b) The fidelity between ⇢ and ZiZj⇢ZiZj saturates
to a finite constant as |i � j| ! 1, i.e.,
lim|i�j|!1 F (⇢d, ZiZj⇢dZiZj) = c > 0.

⇢d satisfies (a) because tr(⇢dZiZj) = tr(Ed[⇢]ZiZj) =
tr(⇢Ed[ZiZj ]) = 0, where, in the last equality, we have
used Ed[ZiZj ] = 0 8i, j due to Ising symmetry. On the
other hand, ⇢d satisfies (b) due to the data-processing
inequality:

F (⇢, ZiZj⇢ZiZj)  F (Ed[⇢], Ed[ZiZj⇢ZiZj ])

= F (⇢d, ZiZj⇢dZiZj) (10)

where we have used Ed[ZiZj(·)ZiZj ] = ZiZjEd[·]ZiZj

in the second step. Since ⇢(J) = | (J)ih (J)|
is a pure state, the left-hand side of Eq. (10)
satisfies lim|i�j|!1 F (⇢(J), ZiZj⇢(J)ZiZj) =
lim|i�j|!1 |h (J)|ZiZj | (J)i|2 6= 0 for J > Jc.
Therefore, the diagonal density matrix ⇢d is an SW-SSB
state for J > Jc.
More generally, one can apply the following channel

Er to the ground state ⇢(J) of TFIM, which interpolates

 SW-SSB   SW-SSBρ ⇒ ρd
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Figure 5. (a)-(c) E[CID], dE[CID]/dq, and d2E[CID]/d2q as functions of the tuning parameter q obtained by smoothing the
raw data. The insets show the original data. (d)-(f) Same quantities as (a)-(c) with E[CID] replaced by the diagonal entropy
density sd. (g) The system on the dual lattice of size L⇥L with L = 7. Here the Ising vortices reside on plaquettes, and there
are (L+ 1)⇥ (L+ 1) spins on the dual lattice. The blue cross indicates the creation of the isolated Ising vortex at the center,
which can be implemented by flipping the bonds labeled in the blue color. The red squares indicate the locations ĩ and j̃ when
computing the disorder-averaged spin-spin correlation function [hsĩsj̃i]. (h) The disorder-averaged free energy cost [he��Fl/2i]
as a function of perturbed strength q.

| (q)i =
Y

hi,ji

[(1� q)I + qZiZj ]|xj = 1i (18)

and then subject it to the following strongly symmetric
channel on all edges:

Ehi,ji(p)[·] = (1� p)(·) + pZiZj(·)ZiZj . (19)

The resulting density matrix ⇢(q, p) =Q
hi,ji Ehi,ji(p)[| (q)ih (q)|] then depends on two

tuning parameters. Similar to Sec. III, since we are
interested in the relationship between the “target mixed
state” ⇢(p, q) and the diagonal mixed state ⇢d, obtained
from it through a maximal dephasing channel in the
Pauli-X basis, it is again useful to consider a more gen-
eral three-parameter mixed state �(p, q, r) = Er[⇢(p, q)],
where the channel Er is given by Eq. (9). Thus, the
r = 0 and r = 0.5 planes correspond to ⇢(p, q) and
⇢d(p, q), respectively.

In the following, we will provide arguments that the
phase diagram of the state �(p, q, r) is the one shown in
Fig.4(a). In particular, we will see that all yellow solid
points along the phase boundaries are known through ex-
act mapping to appropriate classical statistical mechan-
ics models. We will first consider the r = 0 plane, which
corresponds to the target mixed state ⇢(q, p) = �(q, p, 0),
and then use a combination of statistical mechanics map-
pings, quantum information inequalities, and perturba-
tive arguments to discuss the three-dimensional global
phase diagram.

Phase diagram in the r = 0 plane: The conjec-
tured phase diagram for the target mixed state ⇢(q, p)

has been discussed in Ref.[47] (more precisely, [47] stud-
ied the phase diagram of the Wegner dual of ⇢(q, p)).
Along the p = 0 line, ⇢(q, 0) = | (q)ih (q)| is the ground
state of a Rokhsar-Kivelson type Hamiltonian [48], and
the paramagnetic to ferromagnetic transition (which oc-

curs at qc = (1�
pp

2� 1)/2 ⇡ 0.178) is described by the
(2+0)-D Ising universality (and not 3+0-D Ising model)
– the dimensional reduction being a common feature of
‘conformal quantum critical points’ [49]. When q > qc,
the system is in the standard SSB phase characterized by
the long-range order in the two-point correlation function
(lim|i�j|!1 tr(⇢ZiZj) = c > 0). On the other hand, the
q = 0 line corresponds to subjecting the zero correlation
length paramagnet state to decoherence, which has al-
ready been studied in Ref.[5]. When p > pc ⇡ 0.109, the
system is in the SW-SSB phase characterized by the long-
range order in the fidelity correlator without the long-
range order in the two-point correlations [11]. From the
results along the lines p = 0 and q = 0, it is then nat-
ural to expect that the system in the whole (q, p)-plane
exhibits three phases: symmetric (Sym), SW-SSB, and
SSB phases. The phase boundary between the SSB phase
and the SW-SSB phase is straight because non-maximal
local decoherence cannot change long-distance correla-
tions of local operators (and therefore, the correlations
along the line q = qc must decay as power-law). The
r = 0 plane in Fig.4(a) shows the conjectured phase dia-
gram. We emphasize that the straight yellow boundary
at q = qc is determined exactly by the long-range order
of the two-point correlation function, while the curved
yellow line is drawn only schematically.

Phase diagram for r 6= 0: Given the understand-
ing of the r = 0 plane, one can now use the prop-
erty that �(q, p, r) = Er[⇢(q, p)] to deduce the topol-

We subject the pure state
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Figure 5. (a)-(c) E[CID], dE[CID]/dq, and d2E[CID]/d2q as functions of the tuning parameter q obtained by smoothing the
raw data. The insets show the original data. (d)-(f) Same quantities as (a)-(c) with E[CID] replaced by the diagonal entropy
density sd. (g) The system on the dual lattice of size L⇥L with L = 7. Here the Ising vortices reside on plaquettes, and there
are (L+ 1)⇥ (L+ 1) spins on the dual lattice. The blue cross indicates the creation of the isolated Ising vortex at the center,
which can be implemented by flipping the bonds labeled in the blue color. The red squares indicate the locations ĩ and j̃ when
computing the disorder-averaged spin-spin correlation function [hsĩsj̃i]. (h) The disorder-averaged free energy cost [he��Fl/2i]
as a function of perturbed strength q.

| (q)i =
Y

hi,ji

[(1� q)I + qZiZj ]|xj = 1i (18)

and then subject it to the following strongly symmetric
channel on all edges:

Ehi,ji(p)[·] = (1� p)(·) + pZiZj(·)ZiZj . (19)

The resulting density matrix ⇢(q, p) =Q
hi,ji Ehi,ji(p)[| (q)ih (q)|] then depends on two

tuning parameters. Similar to Sec. III, since we are
interested in the relationship between the “target mixed
state” ⇢(p, q) and the diagonal mixed state ⇢d, obtained
from it through a maximal dephasing channel in the
Pauli-X basis, it is again useful to consider a more gen-
eral three-parameter mixed state �(p, q, r) = Er[⇢(p, q)],
where the channel Er is given by Eq. (9). Thus, the
r = 0 and r = 0.5 planes correspond to ⇢(p, q) and
⇢d(p, q), respectively.

In the following, we will provide arguments that the
phase diagram of the state �(p, q, r) is the one shown in
Fig.4(a). In particular, we will see that all yellow solid
points along the phase boundaries are known through ex-
act mapping to appropriate classical statistical mechan-
ics models. We will first consider the r = 0 plane, which
corresponds to the target mixed state ⇢(q, p) = �(q, p, 0),
and then use a combination of statistical mechanics map-
pings, quantum information inequalities, and perturba-
tive arguments to discuss the three-dimensional global
phase diagram.

Phase diagram in the r = 0 plane: The conjec-
tured phase diagram for the target mixed state ⇢(q, p)

has been discussed in Ref.[47] (more precisely, [47] stud-
ied the phase diagram of the Wegner dual of ⇢(q, p)).
Along the p = 0 line, ⇢(q, 0) = | (q)ih (q)| is the ground
state of a Rokhsar-Kivelson type Hamiltonian [48], and
the paramagnetic to ferromagnetic transition (which oc-

curs at qc = (1�
pp

2� 1)/2 ⇡ 0.178) is described by the
(2+0)-D Ising universality (and not 3+0-D Ising model)
– the dimensional reduction being a common feature of
‘conformal quantum critical points’ [49]. When q > qc,
the system is in the standard SSB phase characterized by
the long-range order in the two-point correlation function
(lim|i�j|!1 tr(⇢ZiZj) = c > 0). On the other hand, the
q = 0 line corresponds to subjecting the zero correlation
length paramagnet state to decoherence, which has al-
ready been studied in Ref.[5]. When p > pc ⇡ 0.109, the
system is in the SW-SSB phase characterized by the long-
range order in the fidelity correlator without the long-
range order in the two-point correlations [11]. From the
results along the lines p = 0 and q = 0, it is then nat-
ural to expect that the system in the whole (q, p)-plane
exhibits three phases: symmetric (Sym), SW-SSB, and
SSB phases. The phase boundary between the SSB phase
and the SW-SSB phase is straight because non-maximal
local decoherence cannot change long-distance correla-
tions of local operators (and therefore, the correlations
along the line q = qc must decay as power-law). The
r = 0 plane in Fig.4(a) shows the conjectured phase dia-
gram. We emphasize that the straight yellow boundary
at q = qc is determined exactly by the long-range order
of the two-point correlation function, while the curved
yellow line is drawn only schematically.

Phase diagram for r 6= 0: Given the understand-
ing of the r = 0 plane, one can now use the prop-
erty that �(q, p, r) = Er[⇢(q, p)] to deduce the topol-
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Figure 4. (a) The three-dimensional phase diagram for the mixed state �(p, q, r) = Er[⇢(p, q)], where Er[·] =
Q

j Ej,r[·],
Ej,r[·] = (1 � r)[·] + rXj [·]Xj (see Eqs. 20,21). The target mixed state ⇢ and the diagonal mixed state ⇢d corresponds to the
r = 0 and r = 0.5 plane, respectively. (b) The phase boundaries for ⇢ (solid line) and ⇢d (dashed lines). Note that ⇢ exhibit
three phases (Sym, SSB, and SW-SSB phase) while ⇢d only exhibit two phases (Sym and SW-SSB phase). (c) The phase
diagram of ⇢(q, p = 0, r). Note that the SW-SSB phase only exists along the r = 0.5 line with q > qc. (d) The typical images
xj based on the probability distribution ⇢xj(q, p) at (q, p) = (0.1, 0), (0.25, 0), (0, 0.05), and (0, 0.15).

the special case r = 0.5 (which corresponds to the di-
agonal mixed state ⇢d), the channel Er=0.5[·] completely
eliminates the two-point correlations. This implies that
the system in the r = 0.5 plane will never exhibit an SSB
phase. On the other hand, it can also be shown that the
fidelity F (�, ZiZj�ZiZj) is an upper bound of the fidelity
F (⇢, ZiZj⇢ZiZj), using the same argument as in Sec. III.
It follows that the transition of �(p, q, r > 0) out of the
symmetric phase cannot occur before the transition of
⇢(p, q) = �(p, q, r = 0) out of the symmetric phase.

We now elaborate on the relationship between the diag-
onal mixed state ⇢d(q, p) = �(q, p, r = 0.5) and the target
mixed state ⇢(q, p). First, consider these density matri-
ces at q = 0: ⇢(q = 0, p) /

P
xj s.t.

Q
j
xj=1 Zxj(p)|xjihxj|

[26], where Zxj(p) =
P

s
ĩ

e�
P

hĩ,j̃i Jhĩ,j̃isĩsj̃ , tanh(�) =
1� 2p is the partition function of the random bond Ising
model on the dual lattice ĩ, with {Jh̃i,j̃i} representing any
bond configuration satisfying

Q
h̃i,j̃i2j

Jh̃i,j̃i = xj . Since
this density matrix is already diagonal in the Pauli-X ba-
sis, it follows that ⇢(0, p) = ⇢d(0, p), and thus the diago-
nal entropy is exactly equal to the von Neumann entropy
S(⇢) = � tr(⇢ log ⇢) of the target mixed state. Further-
more, S(p, q) = Sd(p, q) + O(q2) for small q. This fol-
lows from the symmetry S(p, q) = S(p,�q), and similarly
Sd(p,�q) = Sd(p, q). This symmetry is implemented by
the unitary operator

Q
i2A

Xi, where i 2 A denotes sites
on the A sublattice of the square lattice. Thus, the phase
boundaries determined by the singularities of S and Sd

have zero slope at (p = pc, q = 0) and coincide at linear
order in q.

Remarkably, the diagonal entropy also correctly cap-
tures the transition for ⇢ when p = 0, i.e., along
the pure-state transition line. This can be seen by
expressing the eigenvalues of ⇢d analytically: ⇢xj =

|hxj| i|2 = |hxj = 1|
Q

j
Z

(1�xj)/2
j

| i|2 / |hxj =

1|
Q

j
Z

(1�xj)/2
j

eK
P

hi,ji ZiZj |xj = 1i|2, where tanh(K) =
q/(1 � q). By inserting a complete Pauli-Z basis I =P

zj
|zjihzj| between eK

P
hi,ji ZiZj and |xj = 1i, we ob-

tain

⇢xj / |
X

zj

Y

j

z
(1�xj)/2
j

eK
P

hi,ji zizj |2 (22)

/ |
X

s
ĩ

e�
P

hĩ,j̃i Jhĩ,j̃isĩsj̃ |2 = Z2
xj
(q). (23)

Here, tanh(�) = 1 � 2q, and {Jh̃i,j̃i} represents
any bond configuration satisfying

Q
h̃i,j̃i2j

Jh̃i,j̃i =
xj . Note that Eq. (23) follows from the standard
Kramers–Wannier duality. By comparing ⇢(0, p) /P

xj s.t.
Q

j
xj=1 Zxj(p)|xjihxj| with Eq. (23), we find that

⇢d(q, 0) = ⇢2(0, p = q)/ tr
⇥
⇢2(0, p = q)

⇤
is proportional

to the square of the fixed-point paramagnetic state un-
der decoherence. Ref. [29] shows that the density ma-
trix ⇢2(0, p)/ tr

⇥
⇢2(0, p)

⇤
undergoes a separability tran-

sition at p = qc, where it can (cannot) be expressed
as a convex sum of GHZ states for p > qc (p < qc).
This serves as a signature of SW-SSB, leading to the
conclusion that the SSB transition in the pure state
⇢(q, 0) = | (q)ih (q)| manifests as the SW-SSB tran-
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Figure 1. (a) The phase diagram ⇢(J, r) of the ground state
of (1+1)-D TFIM [Eq(9)] | (J)i subjected to the channel
Er[·] =

Q
j Ej,r[·], Ej,r[·] = (1 � r)[·] + rXj [·]Xj . (b) Typi-

cal images xj based on the probability distribution ⇢xj(J) =

hxj|⇢(J, r)|xji = |hxj| (J)i|2 at J = 0.4 and J = 0.6. The
total system size is L = 128.

between no dephasing and maximal dephasing as r varies
from 0 to 1/2:

Er[·] =
Y

j

Ej,r[·], Ej,r[·] = (1�r)[·]+rXj [·]Xj . (11)

The resulting density matrix, ⇢(J, r) = Er[⇢(J)], satisfies

tr[⇢(J, r)ZiZj ] = (1� 2r)2 tr[⇢(J, r = 0)ZiZj ]. (12)

Following the aforementioned criteria for SW-SSB, only
the r = 1/2 line in the (J, r) plane corresponds to an SW-
SSB transition, whereas for any r < 1/2, the transition is
a standard SSB transition. The phase diagram is shown
in Fig. 1(a).

B. Universal scaling behavior of diagonal entropy

We now discuss the universal behavior of the diagonal
entropy density. Our main conclusion is that the singular
part of limV!1 Sd/V scales as |(J � Jc) log |J � Jc||.
This implies that the first derivative of Sd, i.e., dSd/dJ ,
diverges at J = Jc.

Let us first examine the physical meaning of the
probability distribution ⇢xj = |hxj| i|2. Following

Eqs.(3)-(5), ⇢xj = |hxj = 1|
Q

j
Z

(1�xj)/2
j

| i|2. In the

continuum limit, |xj = 1i ⇠
R
D'(r, 0)|'(r, 0)i and

| i ⇠
R
D'(r, ⌧)e�S['(r,⌧)]|'(r, 0)i, where S['(r, ⌧)] =R 0

⌧=�1 d⌧
R
dr['(@2

⌧
+r2

r
+m2)'+ u'4]. Therefore,

⇢xj ⇠ |
Z

D'(r, ⌧)[· · ·'(rj , 0) · · · ]e�S['(r,⌧)]|2, (13)

which is the square of the multi-point correlator in the
scalar �4 theory at the imaginary time ⌧ = 0. It proves
beneficial to examine the lattice-spacetime formulation

of Eq.(13):

⇢xj ⇠ |
X

zj,⌧

(
LY

j=0

z
1�xj

2
j,⌧=0)e

�
P

h(j,⌧),(j0,⌧0)i zj,⌧zj0,⌧0 |2. (14)

Using the standard Kramers-Wannier duality, one can ex-
press the multi-point correlator as the following disorder
model on the dual lattice:

⇢xj ⇠ |
X

s̃i

eK(
P

hĩ,j̃i2⌧ 6=0 s
ĩ
s
j̃
+
P

hĩ,j̃i2⌧=0 mhĩ,j̃isĩsj̃)|2

= Z2
me

.

(15)

Here, tanh(�) = e�2K , and me = {mh̃i,j̃i = ±1} is any
bond configuration satisfying

Q
h̃i,j̃i2j

mh̃i,j̃i = xj (note

that we sometimes write e = h̃i, j̃i for notational sim-
plicity). Eq. (15) represents the partition function of a
classical Ising model with disorder me restricted to the
⌧ = 0 line [see Fig. 2(a)]. In this dual picture, xj = �1
corresponds to the presence of an Ising vortex, defined
via

Q
h̃i,j̃i2j

mh̃i,j̃i = �1. In the symmetric phase, con-
figurations in which a single Ising vortex is far from the
others are exponentially suppressed, and the typical mea-
surement outcomes correspond to situations where Ising
vortices are always bound in pairs. On the other hand, in
the symmetry-breaking phase, the two-point correlation
function saturates to a finite constant, corresponding to
a situation where Ising vortices are deconfined.

To formalize this intuition and understand the
universal behavior of the diagonal entropy, Sd =
�
P

xj
⇢xj log ⇢xj , we employ the replica trick to explic-

itly derive the statistical mechanical model for S(n)
d

=
log
P

xj
⇢n
xj
/(1� n), and then take the replica limit n !

1. The central quantity associated with S(n)
d

is obtained
by summing over the disorder me of Z2n

me
, which can be

computed as

X

me

Z2n
me

=
X

s
(↵)

ĩ

"
e
�
P

h̃i,j̃i2⌧ 6=0

2nP
↵=1

s
(↵)

ĩ
s
(↵)

j̃

Y

h̃i,j̃i
2⌧=0

cosh

 
�

2nX

↵=1

s(↵)
ĩ

s(↵)
j̃

!#

=
X

s
(↵)

ĩ

e�H[�;s(↵)

ĩ
] =

X

s
(↵)

ĩ

e
�(

2nP
↵=1

(H↵

Ising,⌧>0+H
↵

Ising,⌧>0)+Hint)
.

(16)

Here, H↵

Ising,⌧>0 = ��
P

h̃i,j̃i2⌧>0 s
(↵)

ĩ
s(↵)
j̃

represents the

↵-th copy of the Ising model on the upper half-infinite
plane. A similar relation holds for H↵

Ising,⌧<0 on the
lower half-infinite plane. On the other hand, Hint =

�
P

x
ln cosh

⇣
�
P2n

↵=1 s
(↵)
x,0+s

(↵)
x,0�

⌘
represents the interac-

tion terms that couple the 2n copies of Ising models

Ising
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N ! 1. We will numerically demonstrate that E[CID]
closely approximates sd in all the examples we consider.
We attribute this to the inherent locality in the proba-
bility distribution ⇢xj hinted above.

We now summarize the protocol to estimate the diag-
onal entropy density:

1. Prepare the target mixed state ⇢ and then measure
it in the Pauli-X basis on all sites. The observer
obtains an outcome xj = (x1, · · · , xN ) with proba-
bility pxj = ⇢xj .

2. Compress the measurement outcome xj using a
lossless data compression algorithm, and calcu-
late the size of the compressed file N (xj). We
use the Lempel-Ziv 77 (LZ77) coding algorithm [7]
throughout the paper, although we do not expect
the choice of a specific variant of the Lempel-Ziv
algorithm to be crucial. See App. A for a brief
introduction.

3. Compute CID(xj) = N (xj)/Nshu✏e.

4. Repeat steps 1–3 and take the average
to obtain E[CID] =

P
xj
pxjCID(xj) ⇡P

xj2samples CID(xj)/Ns, where Ns is the number

of samples. Here,
P

xj2samples denotes summation
over all samples generated in the first step. In
Sec. VI, we discuss the scaling of the error with
the number of samples.

III. 1+1-D TRANSVERSE FIELD ISING MODEL

In this section, we will illustrate our approach to the di-
agonal entropy density for the ground state of the (1+1)-
D transverse field Ising model (TFIM). The Hamiltonian
is:

H = �(1� J)
X

i

Xi � J
X

hi,ji

ZiZj , (9)

where hi, ji denotes the nearest-neighbor pair. The
ground state density matrix ⇢(J) = | (J)ih (J)| is in
the symmetric phase for J < Jc and in the symmetry-
breaking phase for J > Jc, where Jc = 0.5. The univer-
sal, subleading terms in the diagonal entropy were dis-
cussed in Ref. [19], and as we discuss below, the volume-
law coe�cient of the diagonal entropy Sd in the Ising-
symmetric basis can also detect this transition (due to
Kramers-Wannier duality, the diagonal entropy in the
Pauli-Z basis can be related to the one in the Pauli-X
basis [19]).

Of course, this transition can simply be detected via

the connected two-point correlator hZiZji
def
= tr(⇢ZiZj)�

tr(⇢Zi) tr(⇢Zj); thus, the diagonal entropy o↵ers no ap-
parent advantage. However, let us subject the ground
state to the maximal dephasing channel ⇢(J) ! Ed[⇢(J)],
where Ed[·] =

Q
j
Ej [·] with Ej [·] = (⇢ +Xj⇢Xj)/2. The

correlator hZiZji now vanishes identically due to sym-
metry constraints, whereas Sd continues to serve as a
diagnostic for what is now an SW-SSB transition. We
note that this particular SW-SSB transition can also be
detected by the expectation value of Ising-symmetric op-
erators, such as tr(⇢

P
i
Xi)/L. However, as discussed

below, the diagonal entropy is sensitive even to those
SW-SSB transitions that are undetectable via such linear
observables. In addition to serving as a testbed for our
methodology, we will later use this example to analyze
the complexity of estimating Sd in experiments (Sec. VI).

A. Structure of the diagonal density matrix and its
relation to SW-SSB

Let us elaborate on the connection between SW-SSB
and the singularity of the diagonal entropy in the Ising-
symmetric basis. Sd is simply the von Neumann entropy
of the diagonal mixed state ⇢d, which is obtained by ap-
plying the maximal dephasing channel Ed[·] =

Q
j
Ej [·]

with Ej [·] = [(·) + Xj(·)Xj ]/2 to ⇢. This channel
leaves all observables involving only Pauli-X matrices un-
changed. Therefore, the two-point connected correlation
tr(⇢dXiXj)�tr(⇢dXi) tr(⇢dXj) decays exponentially as a
function of |i� j| for J 6= Jc and polynomially at J = Jc,
since | (J = Jc)i is critical. It is then natural to expect
that the von Neumann entropy of ⇢d, which equals the
diagonal entropy Sd of ⇢ in the Ising-symmetric basis, is
non-analytic at J = Jc. Later, we will use e↵ective field
theory to analyze its universal scaling behavior.
We claim that ⇢d(J > Jc) is, in fact, an SW-SSB state

[26, 31, 32]. By definition, an SW-SSB state ⇢ satisfies
the following two properties [32]:

(a) There is no long-range order in the two-point cor-
relation function, i.e., lim|i�j|!1 tr(⇢ZiZj) = 0.

(b) The fidelity between ⇢ and ZiZj⇢ZiZj saturates
to a finite constant as |i � j| ! 1, i.e.,
lim|i�j|!1 F (⇢d, ZiZj⇢dZiZj) = c > 0.

⇢d satisfies (a) because tr(⇢dZiZj) = tr(Ed[⇢]ZiZj) =
tr(⇢Ed[ZiZj ]) = 0, where, in the last equality, we have
used Ed[ZiZj ] = 0 8i, j due to Ising symmetry. On the
other hand, ⇢d satisfies (b) due to the data-processing
inequality:

F (⇢, ZiZj⇢ZiZj)  F (Ed[⇢], Ed[ZiZj⇢ZiZj ])

= F (⇢d, ZiZj⇢dZiZj) (10)

where we have used Ed[ZiZj(·)ZiZj ] = ZiZjEd[·]ZiZj

in the second step. Since ⇢(J) = | (J)ih (J)|
is a pure state, the left-hand side of Eq. (10)
satisfies lim|i�j|!1 F (⇢(J), ZiZj⇢(J)ZiZj) =
lim|i�j|!1 |h (J)|ZiZj | (J)i|2 6= 0 for J > Jc.
Therefore, the diagonal density matrix ⇢d is an SW-SSB
state for J > Jc.
More generally, one can apply the following channel

Er to the ground state ⇢(J) of TFIM, which interpolates

 SW-SSB   SW-SSBρ ⇒ ρd
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FIG. 5. (a) The phase diagram for the perturbed toric code
in Eq.(30) under phase-flip channel based on the quantities
related to log(tr ⇢n)/(1 � n) with n = 2. The central charge
along the red line is c = 1, while that along the blue lines is
c = 1/2. (b) Conjectured phase diagram for the limit n ! 1.
The location of the green circle along the h = 0 line is known
from Refs. [16, 50], the location of the blue circle along the
p = 0 line is known from Ref.[51], while the location of the
other blue circle is determined in Appendix C.

| (h)i =
Y

e

(1 + hZe)| 0i / eK
P

e Ze | 0i (30)

subjected to the phase-flip channel, E [·] =
Q

e
Ee[·], where

Ee[·] = (1� p)⇢+ pZe⇢Ze. Interestingly, this case is ana-
lytically tractable and we provide the details in Appendix
C. The resulting phase diagram is schematically shown
in Fig.5. One finds a rather rich phase diagram for the
double state, with three phases, namely, a phase where
both copies are separately topologically ordered (so that
topological entanglement entropy (TEE) is 2 log(2)), a
phase where eē is condensed (so that TEE is log(2)), and
a phase without any topological order.

Besides the unconventional phase transition out of the
topologically ordered phase, perhaps the most striking
feature in our phase diagram is the presence of a critical
phase for a whole range of parameters (Fig.4). It is worth
examining this phase and related aspects from the per-
spective of an e↵ective field theory. Let us start with the
pure-state limit in the absence of decoherence (i.e. p =
0). The normalization h⇢|⇢i = h (h)| (h)ih ̄(h)| ̄(h)i
can be written as a path integral whose Lagrangian cor-
responds to two decoupled sine-Gordon fields [11]:

LsG =
h 1

2⇡K
((@⌧�)

2 + (@x�)
2) + � sin(4�)

i
+

h
� $ �̄

i
,

(31)

where K is the Luttinger parameter that depends on h,
and �(�̄) denotes the bosonic field in H(H̄). The connec-
tion between � and the classical Ising spins zv, tv that en-
ter the partition function h⇢|⇢i is through the Majorana
spinors �R + i⌘R ⇠ ei(�+✓), �L + i⌘L ⇠ e�i(��✓), where
✓ is the field dual to �. Here � = (�L, �R) [⌘ = (⌘L, ⌘R)]
correspond to the Ising spins zv(tv) in the standard

way [52, 53]: the transfer matrix for the critical Ising
model corresponds to a (1+1)-D transverse field Ising
model at criticality, which can be fermionized via the
Jordan-Wigner transformation. Similar relations hold for
�̄ and z̄v, t̄v. EMD symmetry corresponds to the lattice
translation for Majorana fermions, which in the contin-
uum limit acts as (�L, ⌘L, �̄L, ⌘̄L) ! �(�L, ⌘L, �̄L, ⌘̄L)
while the right-moving Majorana fermions remain in-
variant. The gapless regime h 2 [

p
2 � 1, 1] corre-

sponds to K 2 [1/2, 1] such that the scaling dimension
of sin(4�) = 4K < 2, and thus this term is irrelevant.
In particular, the free-fermion limit K = 1 corresponds
to h = 1, as N (h) =

Q
e
(I + h�e) becomes a projec-

tor that decouples �(�̄) and ⌘(⌘̄). On the other hand,
the double topologically ordered phase corresponds to
K < 1/2 (i.e. 0  h <

p
2 � 1) and � > 0 such that

sin(2�) ⇠ i(�L⌘R � ⌘L�R) and ⇠ i(�̄L⌘̄R � ⌘̄L�̄R) are
pinned to ±1. This can be seen by recalling that the
double topological phase corresponds to the double par-
tial order phase in the statistical model (see Sec.III), and
the partial order phase can be detected by the opera-
tor that is even under the simultaneous spin-flip action
�, ⌘ ! ��,�⌘ but odd under the single spin-flip opera-
tion � ! �� or ⌘ ! �⌘.
Next, let’s discuss the physics of the critical phase

(Fig.4). As discussed above, numerically we find that
the central charge of the statistical mechanics model for
the second Renyi entropy tr ⇢2 = h⇢|⇢i throughout the
critical phase equals two within our numerical accuracy.
Our expectation is that the low-energy theory in this
phase is again described by Eq.(31) where the Luttinger
parameter will generically be a function of the decoher-
ence rate p and the parameter h that defines the pure
state (Eq.(26)). Here we encounter a puzzle whose res-
olution we don’t fully understand. The decohered den-
sity matrix only respects the EMD symmetry that acts
on both copies simultaneously, i.e., U†

D
⇢UD = ⇢ where

UD = UDŪD (see Eq.(2) for the definition of UD). There-
fore, one might expect that the following operator, which
is invariant under UD but odd under UD and ŪD, is al-
lowed:

�L = �0(�L�R + ⌘L⌘R)(�̄L�̄R + ⌘̄L⌘̄R). (32)

After bosonizing Eq.(32), �L = �0 cos(2�) cos
�
2�̄

�
,

which has scaling dimension dim[cos(2�) cos
�
2�̄

�
] = 2K.

When p = 0 and h 2 [
p
2 � 1, 1), one finds that

K 2 [1/2, 1) and thus �L is relevant. This will lead to
spontaneous symmetry breaking resulting in cos(2�) =
cos

�
2�̄

�
= ±1. This is at variance with our numerical

observation that the critical phase is in fact stable every-
where in the phase diagram outside the topological phase.
First, let’s briefly consider the consequences for the low-
energy physics if �L were indeed present in the e↵ective
field theory. One expects that �L being relevant will
pin the system to a state that breaks the EMD symme-
try spontaneously, and satisfies cos(2�) = cos

�
2�̄

�
= ±1

double state phase diagram (Chen, TG 2024)

[Castelnovo, Chamon 2008]
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Figure 5. (a)-(c) E[CID], dE[CID]/dq, and d2E[CID]/d2q as functions of the tuning parameter q obtained by smoothing the
raw data. The insets show the original data. (d)-(f) Same quantities as (a)-(c) with E[CID] replaced by the diagonal entropy
density sd. (g) The system on the dual lattice of size L⇥L with L = 7. Here the Ising vortices reside on plaquettes, and there
are (L+ 1)⇥ (L+ 1) spins on the dual lattice. The blue cross indicates the creation of the isolated Ising vortex at the center,
which can be implemented by flipping the bonds labeled in the blue color. The red squares indicate the locations ĩ and j̃ when
computing the disorder-averaged spin-spin correlation function [hsĩsj̃i]. (h) The disorder-averaged free energy cost [he��Fl/2i]
as a function of perturbed strength q.

| (q)i =
Y

hi,ji

[(1� q)I + qZiZj ]|xj = 1i (18)

and then subject it to the following strongly symmetric
channel on all edges:

Ehi,ji(p)[·] = (1� p)(·) + pZiZj(·)ZiZj . (19)

The resulting density matrix ⇢(q, p) =Q
hi,ji Ehi,ji(p)[| (q)ih (q)|] then depends on two

tuning parameters. Similar to Sec. III, since we are
interested in the relationship between the “target mixed
state” ⇢(p, q) and the diagonal mixed state ⇢d, obtained
from it through a maximal dephasing channel in the
Pauli-X basis, it is again useful to consider a more gen-
eral three-parameter mixed state �(p, q, r) = Er[⇢(p, q)],
where the channel Er is given by Eq. (9). Thus, the
r = 0 and r = 0.5 planes correspond to ⇢(p, q) and
⇢d(p, q), respectively.

In the following, we will provide arguments that the
phase diagram of the state �(p, q, r) is the one shown in
Fig.4(a). In particular, we will see that all yellow solid
points along the phase boundaries are known through ex-
act mapping to appropriate classical statistical mechan-
ics models. We will first consider the r = 0 plane, which
corresponds to the target mixed state ⇢(q, p) = �(q, p, 0),
and then use a combination of statistical mechanics map-
pings, quantum information inequalities, and perturba-
tive arguments to discuss the three-dimensional global
phase diagram.

Phase diagram in the r = 0 plane: The conjec-
tured phase diagram for the target mixed state ⇢(q, p)

has been discussed in Ref.[47] (more precisely, [47] stud-
ied the phase diagram of the Wegner dual of ⇢(q, p)).
Along the p = 0 line, ⇢(q, 0) = | (q)ih (q)| is the ground
state of a Rokhsar-Kivelson type Hamiltonian [48], and
the paramagnetic to ferromagnetic transition (which oc-

curs at qc = (1�
pp

2� 1)/2 ⇡ 0.178) is described by the
(2+0)-D Ising universality (and not 3+0-D Ising model)
– the dimensional reduction being a common feature of
‘conformal quantum critical points’ [49]. When q > qc,
the system is in the standard SSB phase characterized by
the long-range order in the two-point correlation function
(lim|i�j|!1 tr(⇢ZiZj) = c > 0). On the other hand, the
q = 0 line corresponds to subjecting the zero correlation
length paramagnet state to decoherence, which has al-
ready been studied in Ref.[5]. When p > pc ⇡ 0.109, the
system is in the SW-SSB phase characterized by the long-
range order in the fidelity correlator without the long-
range order in the two-point correlations [11]. From the
results along the lines p = 0 and q = 0, it is then nat-
ural to expect that the system in the whole (q, p)-plane
exhibits three phases: symmetric (Sym), SW-SSB, and
SSB phases. The phase boundary between the SSB phase
and the SW-SSB phase is straight because non-maximal
local decoherence cannot change long-distance correla-
tions of local operators (and therefore, the correlations
along the line q = qc must decay as power-law). The
r = 0 plane in Fig.4(a) shows the conjectured phase dia-
gram. We emphasize that the straight yellow boundary
at q = qc is determined exactly by the long-range order
of the two-point correlation function, while the curved
yellow line is drawn only schematically.

Phase diagram for r 6= 0: Given the understand-
ing of the r = 0 plane, one can now use the prop-
erty that �(q, p, r) = Er[⇢(q, p)] to deduce the topol-

Field theory calculation predicts

diagonal entropy  sd ∼ t2 log(1/ | t | )

(t = |1 − q/qc | )

First consider p = 0 line:
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Figure 4. (a) The three-dimensional phase diagram for the mixed state �(p, q, r) = Er[⇢(p, q)], where Er[·] =
Q

j Ej,r[·],
Ej,r[·] = (1 � r)[·] + rXj [·]Xj (see Eqs. 20,21). The target mixed state ⇢ and the diagonal mixed state ⇢d corresponds to the
r = 0 and r = 0.5 plane, respectively. (b) The phase boundaries for ⇢ (solid line) and ⇢d (dashed lines). Note that ⇢ exhibit
three phases (Sym, SSB, and SW-SSB phase) while ⇢d only exhibit two phases (Sym and SW-SSB phase). (c) The phase
diagram of ⇢(q, p = 0, r). Note that the SW-SSB phase only exists along the r = 0.5 line with q > qc. (d) The typical images
xj based on the probability distribution ⇢xj(q, p) at (q, p) = (0.1, 0), (0.25, 0), (0, 0.05), and (0, 0.15).

the special case r = 0.5 (which corresponds to the di-
agonal mixed state ⇢d), the channel Er=0.5[·] completely
eliminates the two-point correlations. This implies that
the system in the r = 0.5 plane will never exhibit an SSB
phase. On the other hand, it can also be shown that the
fidelity F (�, ZiZj�ZiZj) is an upper bound of the fidelity
F (⇢, ZiZj⇢ZiZj), using the same argument as in Sec. III.
It follows that the transition of �(p, q, r > 0) out of the
symmetric phase cannot occur before the transition of
⇢(p, q) = �(p, q, r = 0) out of the symmetric phase.

We now elaborate on the relationship between the diag-
onal mixed state ⇢d(q, p) = �(q, p, r = 0.5) and the target
mixed state ⇢(q, p). First, consider these density matri-
ces at q = 0: ⇢(q = 0, p) /

P
xj s.t.

Q
j
xj=1 Zxj(p)|xjihxj|

[26], where Zxj(p) =
P

s
ĩ

e�
P

hĩ,j̃i Jhĩ,j̃isĩsj̃ , tanh(�) =
1� 2p is the partition function of the random bond Ising
model on the dual lattice ĩ, with {Jh̃i,j̃i} representing any
bond configuration satisfying

Q
h̃i,j̃i2j

Jh̃i,j̃i = xj . Since
this density matrix is already diagonal in the Pauli-X ba-
sis, it follows that ⇢(0, p) = ⇢d(0, p), and thus the diago-
nal entropy is exactly equal to the von Neumann entropy
S(⇢) = � tr(⇢ log ⇢) of the target mixed state. Further-
more, S(p, q) = Sd(p, q) + O(q2) for small q. This fol-
lows from the symmetry S(p, q) = S(p,�q), and similarly
Sd(p,�q) = Sd(p, q). This symmetry is implemented by
the unitary operator

Q
i2A

Xi, where i 2 A denotes sites
on the A sublattice of the square lattice. Thus, the phase
boundaries determined by the singularities of S and Sd

have zero slope at (p = pc, q = 0) and coincide at linear
order in q.

Remarkably, the diagonal entropy also correctly cap-
tures the transition for ⇢ when p = 0, i.e., along
the pure-state transition line. This can be seen by
expressing the eigenvalues of ⇢d analytically: ⇢xj =

|hxj| i|2 = |hxj = 1|
Q

j
Z

(1�xj)/2
j

| i|2 / |hxj =

1|
Q

j
Z

(1�xj)/2
j

eK
P

hi,ji ZiZj |xj = 1i|2, where tanh(K) =
q/(1 � q). By inserting a complete Pauli-Z basis I =P

zj
|zjihzj| between eK

P
hi,ji ZiZj and |xj = 1i, we ob-

tain

⇢xj / |
X

zj

Y

j

z
(1�xj)/2
j

eK
P

hi,ji zizj |2 (22)

/ |
X

s
ĩ

e�
P

hĩ,j̃i Jhĩ,j̃isĩsj̃ |2 = Z2
xj
(q). (23)

Here, tanh(�) = 1 � 2q, and {Jh̃i,j̃i} represents
any bond configuration satisfying

Q
h̃i,j̃i2j

Jh̃i,j̃i =
xj . Note that Eq. (23) follows from the standard
Kramers–Wannier duality. By comparing ⇢(0, p) /P

xj s.t.
Q

j
xj=1 Zxj(p)|xjihxj| with Eq. (23), we find that

⇢d(q, 0) = ⇢2(0, p = q)/ tr
⇥
⇢2(0, p = q)

⇤
is proportional

to the square of the fixed-point paramagnetic state un-
der decoherence. Ref. [29] shows that the density ma-
trix ⇢2(0, p)/ tr

⇥
⇢2(0, p)

⇤
undergoes a separability tran-

sition at p = qc, where it can (cannot) be expressed
as a convex sum of GHZ states for p > qc (p < qc).
This serves as a signature of SW-SSB, leading to the
conclusion that the SSB transition in the pure state
⇢(q, 0) = | (q)ih (q)| manifests as the SW-SSB tran-
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Figure 4. (a) The three-dimensional phase diagram for the mixed state �(p, q, r) = Er[⇢(p, q)], where Er[·] =
Q

j Ej,r[·],
Ej,r[·] = (1 � r)[·] + rXj [·]Xj (see Eqs. 20,21). The target mixed state ⇢ and the diagonal mixed state ⇢d corresponds to the
r = 0 and r = 0.5 plane, respectively. (b) The phase boundaries for ⇢ (solid line) and ⇢d (dashed lines). Note that ⇢ exhibit
three phases (Sym, SSB, and SW-SSB phase) while ⇢d only exhibit two phases (Sym and SW-SSB phase). (c) The phase
diagram of ⇢(q, p = 0, r). Note that the SW-SSB phase only exists along the r = 0.5 line with q > qc. (d) The typical images
xj based on the probability distribution ⇢xj(q, p) at (q, p) = (0.1, 0), (0.25, 0), (0, 0.05), and (0, 0.15).

the special case r = 0.5 (which corresponds to the di-
agonal mixed state ⇢d), the channel Er=0.5[·] completely
eliminates the two-point correlations. This implies that
the system in the r = 0.5 plane will never exhibit an SSB
phase. On the other hand, it can also be shown that the
fidelity F (�, ZiZj�ZiZj) is an upper bound of the fidelity
F (⇢, ZiZj⇢ZiZj), using the same argument as in Sec. III.
It follows that the transition of �(p, q, r > 0) out of the
symmetric phase cannot occur before the transition of
⇢(p, q) = �(p, q, r = 0) out of the symmetric phase.

We now elaborate on the relationship between the diag-
onal mixed state ⇢d(q, p) = �(q, p, r = 0.5) and the target
mixed state ⇢(q, p). First, consider these density matri-
ces at q = 0: ⇢(q = 0, p) /

P
xj s.t.

Q
j
xj=1 Zxj(p)|xjihxj|

[26], where Zxj(p) =
P

s
ĩ

e�
P

hĩ,j̃i Jhĩ,j̃isĩsj̃ , tanh(�) =
1� 2p is the partition function of the random bond Ising
model on the dual lattice ĩ, with {Jh̃i,j̃i} representing any
bond configuration satisfying

Q
h̃i,j̃i2j

Jh̃i,j̃i = xj . Since
this density matrix is already diagonal in the Pauli-X ba-
sis, it follows that ⇢(0, p) = ⇢d(0, p), and thus the diago-
nal entropy is exactly equal to the von Neumann entropy
S(⇢) = � tr(⇢ log ⇢) of the target mixed state. Further-
more, S(p, q) = Sd(p, q) + O(q2) for small q. This fol-
lows from the symmetry S(p, q) = S(p,�q), and similarly
Sd(p,�q) = Sd(p, q). This symmetry is implemented by
the unitary operator

Q
i2A

Xi, where i 2 A denotes sites
on the A sublattice of the square lattice. Thus, the phase
boundaries determined by the singularities of S and Sd

have zero slope at (p = pc, q = 0) and coincide at linear
order in q.

Remarkably, the diagonal entropy also correctly cap-
tures the transition for ⇢ when p = 0, i.e., along
the pure-state transition line. This can be seen by
expressing the eigenvalues of ⇢d analytically: ⇢xj =

|hxj| i|2 = |hxj = 1|
Q

j
Z

(1�xj)/2
j

| i|2 / |hxj =

1|
Q
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Z

(1�xj)/2
j

eK
P

hi,ji ZiZj |xj = 1i|2, where tanh(K) =
q/(1 � q). By inserting a complete Pauli-Z basis I =P

zj
|zjihzj| between eK

P
hi,ji ZiZj and |xj = 1i, we ob-

tain

⇢xj / |
X

zj

Y

j

z
(1�xj)/2
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eK
P

hi,ji zizj |2 (22)

/ |
X

s
ĩ

e�
P

hĩ,j̃i Jhĩ,j̃isĩsj̃ |2 = Z2
xj
(q). (23)

Here, tanh(�) = 1 � 2q, and {Jh̃i,j̃i} represents
any bond configuration satisfying

Q
h̃i,j̃i2j

Jh̃i,j̃i =
xj . Note that Eq. (23) follows from the standard
Kramers–Wannier duality. By comparing ⇢(0, p) /P

xj s.t.
Q

j
xj=1 Zxj(p)|xjihxj| with Eq. (23), we find that

⇢d(q, 0) = ⇢2(0, p = q)/ tr
⇥
⇢2(0, p = q)

⇤
is proportional

to the square of the fixed-point paramagnetic state un-
der decoherence. Ref. [29] shows that the density ma-
trix ⇢2(0, p)/ tr

⇥
⇢2(0, p)

⇤
undergoes a separability tran-

sition at p = qc, where it can (cannot) be expressed
as a convex sum of GHZ states for p > qc (p < qc).
This serves as a signature of SW-SSB, leading to the
conclusion that the SSB transition in the pure state
⇢(q, 0) = | (q)ih (q)| manifests as the SW-SSB tran-
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Figure 3. (a) E[CID] as a function of the tuning parameter J for the ground state of the (1 + 1)-D TFIM in Eq.(7).
(b) The derivative dE[CID]/dJ as a function of J estimated using the finite-di↵erence method. (c) The subleading term
�E[CID] = 2L[E[CID](2L)�E[CID](L)] for L = 32, 64 as a function of J . (d)-(f) Same quantities as (a)-(c) with E[CID] replaced
by the diagonal entropy density sd = �

P
xj

⇢xj log ⇢xj/N ⇡ �
P

xj2samples log
�
⇢xj

�
/N . All the insets show the results obtained

from smoothing the raw data by locally averaging the nearby data points (see the main text for details).

Figure 4. (a) The three-dimensional phase diagram for the mixed state �(p, q, r) = Er[⇢(p, q)], where Er[·] =
Q

j Ej,r[·],
Ej,r[·] = (1� r)[·] + rXj [·]Xj . The target mixed state ⇢ and the diagonal mixed state ⇢d corresponds to the r = 0 and r = 0.5
plane, respectively. (b) The phase boundaries for ⇢ (solid line) and ⇢d (dashed lines). Note that ⇢ exhibit three phases (Sym,
SSB, and SW-SSB phase) while ⇢d only exhibit two phases (Sym and SW-SSB phase). (c) The phase diagram of ⇢(q, p = 0, r).
Note that the SW-SSB phase only exists along the r = 0.5 line with q > qc. (d) The typical images xj based on the probability
distribution ⇢xj(q, p) at (q, p) = (0.1, 0), (0.25, 0), (0, 0.05), and (0, 0.15). Shall we remove (d)?

trix in the symmetric basis. We will then use this con-
nection to probe the phase diagram using E[CID] and the
diagonal entropy SD.

The Hilbert space of our model consists of qubits on
the vertices of the 2d square lattice. The state of our

interest is obtained as follows: we start with the pure
state

Paramagnet

Ferromagnet

(conventional


SSB)

Diagonal density matrix along p = 0
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sition in the diagonal mixed state ⇢d(q, 0).
Based on (i) the fact that the slopes of the phase

boundaries for ⇢d and ⇢ are the same at (q, p) = (0, pc),
(ii) the co-occurrence of the transition points for ⇢d
and ⇢ at q = qc, and (iii) the absence of a sponta-
neous symmetry-breaking (SSB) phase in ⇢d, we plot the
schematic phase boundaries of ⇢ and ⇢d in Fig. 4(b) us-
ing solid and dashed lines, respectively. We emphasize
that the constraints we derived does not rule out the
possibility that the dashed and solid lines overlap along
finite segments. Furthermore, since ⇢d along the p = 0
line remains in the symmetric phase for q < qc, it im-
mediately follows that �(p = 0, q < qc, r) is also in the
symmetric phase (recall that �(q, p, r) = Er[⇢(q, p)]). If
�(p = 0, q < qc, r) were in an SSB or SW-SSB phase, it
would imply that ⇢d = �(p = 0, q < qc, r = 0.5) is in
an SW-SSB phase, which contradicts our earlier discus-
sion. Combined with the fact that ⇢(q > qc, 0, 0) is in
an SW-SSB phase, this allows us to plot the exact phase
diagram of � in the p = 0 plane, as shown in Fig. 4(c).

An interesting question concerns the location of the
phase boundary and the corresponding universality class
of the transition between the symmetric and SW-SSB
phases when moving away from the q = 0 plane. It is
plausible that this transition continues to be described
by the Nishimori critical point, though we are not aware
of any rigorous results. Notably, the entire r = 0.5
plane (corresponding to the diagonal mixed state ⇢d) can
be e�ciently simulated using hybrid tensor network and
Monte Carlo methods with a bond dimension of � = 4.
Along the p = 0.5 and q = 0 lines, the bond dimension
can be further reduced to � = 2, which is the primary
focus of this work. A comprehensive investigation of the
entire r = 0.5 plane is left for future work.

A. p = 0 line: pure state subjected to maximal
Pauli-X dephasing

1. Universal scaling behavior of diagonal entropy

Before using Lempel-Ziv to numerically estimate Sd,
let us first analytically analyze Sd along the p = 0 line.
We emphasize that, while both the (1 + 1)-D TFIM and
the current (2 + 0)-D deformed paramagnetic state can
be mapped to the 2D Ising model, their correspond-
ing diagonal entropies are not equivalent. This distinc-
tion is already evident in the subtle di↵erences between
Eq. (13) and Eq. (22). Although both probability dis-
tributions are mapped to the correlators of the 2D �4

theory, Eq. (13) involves correlators solely on the 1D
temporal boundary, whereas Eq. (22) involves correla-
tors on the 2D temporal boundary. We will demonstrate
that, due to this subtle di↵erence, the singular part of
Sd scales as (q � qc)2 log(|q � qc|). In other words, two
derivatives are required to observe the logarithmic diver-
gence, which contrasts with the single derivative required
in the (1 + 1)-D TFIM.

Similar to Sec. III B, we employ the replica trick to
study Sd:

Sd = lim
n!1

log
⇣P

xj
⇢n
xj

⌘

1� n
= lim

n!1

F (2n)� nF (2)

1� n
, (24)

where F (2n) ⌘ log
⇣P

xj
Z2n

xj

⌘
with Z2n

xj
given in

Eq. (22). We note that the corresponding statistical
mechanical model for general half-integral n has already
been derived in Ref. [27]. Furthermore, it is well known
that F (2) is equivalent to the free energy of the 2D Ising
model. However, F (2 + 2�) with � ⌧ 1 has not been
discussed and is crucial for understanding the behavior
of the diagonal entropy. We now briefly derive the sta-
tistical mechanical model for F (2n), following Ref. [27].
We then use e↵ective field theory to study the behavior
of Sd closed to the critical point. Since our approach is
fairly general and can be applied to the Ising model in
any dimension (in other words, it is applicable to study-
ing the diagonal entropy in the Pauli-X basis of the pure
state | (q)i =

Q
hi,ji[(1 � q)I + qZiZj ]|xj = 1i in any

dimension), we will first consider the problem in general
D-dimensions and later restrict to D = 2.

Unlike the (1 + 1)-D TFIM case, the multi-point cor-
relations in Eq. (22) now exist on all sites instead of
being confined to a single line. This facilitates a di-
rect calculation in the original model without applying
Kramers-Wannier transformation. In particular, using
Eq.(22) and the property that z(1�x)/2 = x(1�z)/2 for
x, z = ±1, one finds

Z2n
xj

=
X

z
(↵)
j

(
Y

j

x
P

↵
(1�z

(↵)
j

)/2

j
)eK

P
hi,ji(

P
↵
z
(↵)
i

z
(↵)
j

). (25)

It follows that the terms surviving after summing over xj

are constrained to satisfy
Q2n

↵=1 z
(↵)
j

= 1, 8j. Therefore,

one can parameterize z2n
j

=
Q2n�1

↵=1 z(↵)
j

and write

X

xj

Z2n
xj

=
X

z
(↵)
j

eK
P

hi,ji

�P2n�1
↵=1 s

(↵)
i

s
(↵)
j

+
Q2n�1

↵=1 s
(↵)
i

s
(↵)
j

�
.

(26)

Eq.(26) implies F (2n) = log
⇣P

xj
Z2n
xj

⌘
is equiva-

lent to (2n � 1) copies of Ising model H(↵)
Ising =

�K
P

hi,ji s
(↵)
i

s(↵)
j

interacting with one another through

Hint = �K
P

hi,ji(
Q2n�1

↵=1 s(↵)
i

s(↵)
j

). The analytical un-
derstanding of Sd can then be obtained by studying
the e↵ect of Hint on the decoupled Ising model H0 =P

↵
H(↵)

Ising near the Ising critical point. Specifically, by

expanding s(↵)
i

s(↵)
j

⇠ 1 + ✏(↵)(r), where ✏(↵)(r) is the
energy operator of the ↵-th Ising model, and retaining
the most relevant and second most relevant terms, one
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sition in the diagonal mixed state ⇢d(q, 0).
Based on (i) the fact that the slopes of the phase

boundaries for ⇢d and ⇢ are the same at (q, p) = (0, pc),
(ii) the co-occurrence of the transition points for ⇢d
and ⇢ at q = qc, and (iii) the absence of a sponta-
neous symmetry-breaking (SSB) phase in ⇢d, we plot the
schematic phase boundaries of ⇢ and ⇢d in Fig. 4(b) us-
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focus of this work. A comprehensive investigation of the
entire r = 0.5 plane is left for future work.

A. p = 0 line: pure state subjected to maximal
Pauli-X dephasing

1. Universal scaling behavior of diagonal entropy
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A. p = 0 line: pure state subjected to maximal
Pauli-X dephasing

1. Universal scaling behavior of diagonal entropy

Before using Lempel-Ziv to numerically estimate Sd,
let us first analytically analyze Sd along the p = 0 line.
We emphasize that, while both the (1 + 1)-D TFIM and
the current (2 + 0)-D deformed paramagnetic state can
be mapped to the 2D Ising model, their correspond-
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Eq. (13) and Eq. (22). Although both probability dis-
tributions are mapped to the correlators of the 2D �4

theory, Eq. (13) involves correlators solely on the 1D
temporal boundary, whereas Eq. (22) involves correla-
tors on the 2D temporal boundary. We will demonstrate
that, due to this subtle di↵erence, the singular part of
Sd scales as (q � qc)2 log(|q � qc|). In other words, two
derivatives are required to observe the logarithmic diver-
gence, which contrasts with the single derivative required
in the (1 + 1)-D TFIM.

Similar to Sec. III B, we employ the replica trick to
study Sd:

Sd = lim
n!1

log
⇣P

xj
⇢n
xj

⌘

1� n
= lim

n!1

F (2n)� nF (2)

1� n
, (24)

where F (2n) ⌘ log
⇣P

xj
Z2n

xj

⌘
with Z2n

xj
given in

Eq. (22). We note that the corresponding statistical
mechanical model for general half-integral n has already
been derived in Ref. [27]. Furthermore, it is well known
that F (2) is equivalent to the free energy of the 2D Ising
model. However, F (2 + 2�) with � ⌧ 1 has not been
discussed and is crucial for understanding the behavior
of the diagonal entropy. We now briefly derive the sta-
tistical mechanical model for F (2n), following Ref. [27].
We then use e↵ective field theory to study the behavior
of Sd closed to the critical point. Since our approach is
fairly general and can be applied to the Ising model in
any dimension (in other words, it is applicable to study-
ing the diagonal entropy in the Pauli-X basis of the pure
state | (q)i =

Q
hi,ji[(1 � q)I + qZiZj ]|xj = 1i in any

dimension), we will first consider the problem in general
D-dimensions and later restrict to D = 2.

Unlike the (1 + 1)-D TFIM case, the multi-point cor-
relations in Eq. (22) now exist on all sites instead of
being confined to a single line. This facilitates a di-
rect calculation in the original model without applying
Kramers-Wannier transformation. In particular, using
Eq.(22) and the property that z(1�x)/2 = x(1�z)/2 for
x, z = ±1, one finds

Z2n
xj
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X
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(↵)
j

(
Y

j

x
P

↵
(1�z

(↵)
j

)/2

j
)eK

P
hi,ji(

P
↵
z
(↵)
i

z
(↵)
j

). (25)

It follows that the terms surviving after summing over xj

are constrained to satisfy
Q2n

↵=1 z
(↵)
j

= 1, 8j. Therefore,

one can parameterize z2n
j

=
Q2n�1

↵=1 z(↵)
j

and write

X

xj

Z2n
xj

=
X

z
(↵)
j

eK
P

hi,ji

�P2n�1
↵=1 s

(↵)
i
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(↵)
j

+
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(↵)
i
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�
.

(26)

Eq.(26) implies F (2n) = log
⇣P

xj
Z2n
xj

⌘
is equiva-

lent to (2n � 1) copies of Ising model H(↵)
Ising =

�K
P

hi,ji s
(↵)
i

s(↵)
j

interacting with one another through

Hint = �K
P

hi,ji(
Q2n�1

↵=1 s(↵)
i

s(↵)
j

). The analytical un-
derstanding of Sd can then be obtained by studying
the e↵ect of Hint on the decoupled Ising model H0 =P

↵
H(↵)

Ising near the Ising critical point. Specifically, by

expanding s(↵)
i

s(↵)
j

⇠ 1 + ✏(↵)(r), where ✏(↵)(r) is the
energy operator of the ↵-th Ising model, and retaining
the most relevant and second most relevant terms, one
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Figure 5. Numerical results for the pure state ⇢(p = 0, q) (see Fig. 4 for the phase diagram). (a)-(c) show E[CID], dE[CID]/dq,
and d2E[CID]/d2q as functions of the tuning parameter q, obtained by smoothing the raw data. The insets show the original
data. (d)-(f) show the same quantities as (a)-(c) with E[CID] replaced by the diagonal entropy density sd. (g) depicts the
system on the dual lattice of size L⇥L with L = 7. Here the Ising vortices reside on plaquettes, and there are (L+1)⇥ (L+1)
spins on the dual lattice. The blue cross indicates an isolated Ising vortex at the center, which can be created by flipping the
bonds labeled in the blue color. The red squares indicate the locations ĩ and j̃ when computing the disorder-averaged spin-spin
correlation function [hsĩsj̃i]. (h) shows the disorder-averaged free energy cost [he��Fl/2i] as a function of q.

finds that the e↵ect of Hint is described by the following
action:

Sint =

Z
dDr

⇣
�0

X

↵

✏(↵)(r)+�
X

↵ 6=�

✏(↵)(r)✏(�)(r)
⌘
. (27)

The �0 term is proportional to the local energy density
and only shifts the value of Kc without modifying the
universal behavior. The renormalization group equation
for � has been discussed in Ref.[83] and takes the form:

d�

dl
=

✓
2

⌫
�D

◆
�+

�
4(2n� 3) + 2C2

�
�2+O(�3), (28)

where ⌫ is the correlation-length exponent and C is the
coe�cient in the following operator product expansion
(OPE):

✏(↵)✏(�) ⇠ �↵,� + C�↵,�✏
(↵) + · · · . (29)

The coe�cient linear in � is determined by the scal-
ing dimension of E, �E = 2/⌫. On the other
hand, the coe�cient quadratic in � is determined from
the OPE (

P
↵ 6=�

✏(↵)(r)✏(�)(r))(
P

� 6=�
✏(�)(r)✏(�)(r)) ⇠�

4(2n� 3) + 2C2
�P

↵ 6=�
✏(↵)(r)✏(�)(r) + · · · , which can

be obtained using Eq.(29).

We now restrict to the D = 2 situation. Since ⌫ = 2,
one finds (2/⌫)�D = 0, and thus the � term is a marginal
interaction. To determine whether it’s marginally rele-
vant or irrelevant, we consider the second-order term in
Eq.(28). Interestingly, the self-duality of the 2D Ising
model implies C = 0, as Eq. (29) should be invariant

under ✏(↵) ! �✏(↵). Therefore, when n = 1 + �, with
� ⌧ 1, one finds 4(2n � 3) + 2C2 ⇡ �4 + 8� < 0,
implying that the � term is marginally irrelevant. Fur-
thermore, the � term cannot be dangerously irrelevant,
as the limit � ! 0 corresponds to the case of decou-
pled Ising models. Therefore, we expect the singular
part of F (2 + 2�) to exhibit the same scaling form as
the singular part of F (2), i.e. 2D Ising model’s free en-
ergy. This implies F (2+2�) = c2+2�(q�qc)2 log(|q � qc|),
where c2+2� is a non-universal coe�cient. Following es-
sentially the same logic as Eq. (19), one finds that the
singular part of the diagonal entropy density scales as
s1,sing
d

⇡ c02(q� qc)2| log(|q � qc|)|. This implies that two
derivatives are required to locate the critical point, in
contrast to the case of (1 + 1)-D TFIM (Sec.III) where
only one derivative was needed.

2. Numerical estimation

We now numerically study E[CID] and sd for the mixed
state obtained by measuring the pure state along the
p = 0 line in the Pauli-X basis. To generate sam-
ples with the Born probability distribution, we employ
a tensor-network-based approach that computes ⇢xj us-
ing the dual model in Eq.(23) (see App.B for details).
We note that in the dual model, the Ising vortices re-

side on the plaquettes, and there are (L+1)⇥(L+1) spins
on the dual lattice. Moreover, we don’t enforce the con-
straint

Q
j
xj = 1, as it does not a↵ect the entropy den-

sity. With access to ⇢xj , we generate samples using the
Metropolis-Hasting algorithm, similar to Sec.III. Fig.4(d)
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⇒  marginally irrelevant for D = 2 Ising model since  (Ising self-duality) and .λ C = 0 ν = 1

⇒ the leading singularity is the same as in the 2D Ising free energy, i.e., .t2 log( | t | )

(calculation mapped to Cardy’s book’s

 Chapter 8.3 on random bond Ising model)
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Figure 5. (a)-(c) E[CID], dE[CID]/dq, and d2E[CID]/d2q as functions of the tuning parameter q obtained by smoothing the
raw data. The insets show the original data. (d)-(f) Same quantities as (a)-(c) with E[CID] replaced by the diagonal entropy
density sd. (g) The system on the dual lattice of size L⇥L with L = 7. Here the Ising vortices reside on plaquettes, and there
are (L+ 1)⇥ (L+ 1) spins on the dual lattice. The blue cross indicates the creation of the isolated Ising vortex at the center,
which can be implemented by flipping the bonds labeled in the blue color. The red squares indicate the locations ĩ and j̃ when
computing the disorder-averaged spin-spin correlation function [hsĩsj̃i]. (h) The disorder-averaged free energy cost [he��Fl/2i]
as a function of perturbed strength q.

| (q)i =
Y

hi,ji

[(1� q)I + qZiZj ]|xj = 1i (18)

and then subject it to the following strongly symmetric
channel on all edges:

Ehi,ji(p)[·] = (1� p)(·) + pZiZj(·)ZiZj . (19)

The resulting density matrix ⇢(q, p) =Q
hi,ji Ehi,ji(p)[| (q)ih (q)|] then depends on two

tuning parameters. Similar to Sec. III, since we are
interested in the relationship between the “target mixed
state” ⇢(p, q) and the diagonal mixed state ⇢d, obtained
from it through a maximal dephasing channel in the
Pauli-X basis, it is again useful to consider a more gen-
eral three-parameter mixed state �(p, q, r) = Er[⇢(p, q)],
where the channel Er is given by Eq. (9). Thus, the
r = 0 and r = 0.5 planes correspond to ⇢(p, q) and
⇢d(p, q), respectively.

In the following, we will provide arguments that the
phase diagram of the state �(p, q, r) is the one shown in
Fig.4(a). In particular, we will see that all yellow solid
points along the phase boundaries are known through ex-
act mapping to appropriate classical statistical mechan-
ics models. We will first consider the r = 0 plane, which
corresponds to the target mixed state ⇢(q, p) = �(q, p, 0),
and then use a combination of statistical mechanics map-
pings, quantum information inequalities, and perturba-
tive arguments to discuss the three-dimensional global
phase diagram.

Phase diagram in the r = 0 plane: The conjec-
tured phase diagram for the target mixed state ⇢(q, p)

has been discussed in Ref.[47] (more precisely, [47] stud-
ied the phase diagram of the Wegner dual of ⇢(q, p)).
Along the p = 0 line, ⇢(q, 0) = | (q)ih (q)| is the ground
state of a Rokhsar-Kivelson type Hamiltonian [48], and
the paramagnetic to ferromagnetic transition (which oc-

curs at qc = (1�
pp

2� 1)/2 ⇡ 0.178) is described by the
(2+0)-D Ising universality (and not 3+0-D Ising model)
– the dimensional reduction being a common feature of
‘conformal quantum critical points’ [49]. When q > qc,
the system is in the standard SSB phase characterized by
the long-range order in the two-point correlation function
(lim|i�j|!1 tr(⇢ZiZj) = c > 0). On the other hand, the
q = 0 line corresponds to subjecting the zero correlation
length paramagnet state to decoherence, which has al-
ready been studied in Ref.[5]. When p > pc ⇡ 0.109, the
system is in the SW-SSB phase characterized by the long-
range order in the fidelity correlator without the long-
range order in the two-point correlations [11]. From the
results along the lines p = 0 and q = 0, it is then nat-
ural to expect that the system in the whole (q, p)-plane
exhibits three phases: symmetric (Sym), SW-SSB, and
SSB phases. The phase boundary between the SSB phase
and the SW-SSB phase is straight because non-maximal
local decoherence cannot change long-distance correla-
tions of local operators (and therefore, the correlations
along the line q = qc must decay as power-law). The
r = 0 plane in Fig.4(a) shows the conjectured phase dia-
gram. We emphasize that the straight yellow boundary
at q = qc is determined exactly by the long-range order
of the two-point correlation function, while the curved
yellow line is drawn only schematically.

Phase diagram for r 6= 0: Given the understand-
ing of the r = 0 plane, one can now use the prop-
erty that �(q, p, r) = Er[⇢(q, p)] to deduce the topol-

8

Figure 3. (a) E[CID] as a function of the tuning parameter J for the ground state of the (1 + 1)-D TFIM in Eq.(7).
(b) The derivative dE[CID]/dJ as a function of J estimated using the finite-di↵erence method. (c) The subleading term
�E[CID] = 2L[E[CID](2L)�E[CID](L)] for L = 32, 64 as a function of J . (d)-(f) Same quantities as (a)-(c) with E[CID] replaced
by the diagonal entropy density sd = �

P
xj

⇢xj log ⇢xj/N ⇡ �
P

xj2samples log
�
⇢xj

�
/N . All the insets show the results obtained

from smoothing the raw data by locally averaging the nearby data points (see the main text for details).

Figure 4. (a) The three-dimensional phase diagram for the mixed state �(p, q, r) = Er[⇢(p, q)], where Er[·] =
Q

j Ej,r[·],
Ej,r[·] = (1� r)[·] + rXj [·]Xj . The target mixed state ⇢ and the diagonal mixed state ⇢d corresponds to the r = 0 and r = 0.5
plane, respectively. (b) The phase boundaries for ⇢ (solid line) and ⇢d (dashed lines). Note that ⇢ exhibit three phases (Sym,
SSB, and SW-SSB phase) while ⇢d only exhibit two phases (Sym and SW-SSB phase). (c) The phase diagram of ⇢(q, p = 0, r).
Note that the SW-SSB phase only exists along the r = 0.5 line with q > qc. (d) The typical images xj based on the probability
distribution ⇢xj(q, p) at (q, p) = (0.1, 0), (0.25, 0), (0, 0.05), and (0, 0.15). Shall we remove (d)?

trix in the symmetric basis. We will then use this con-
nection to probe the phase diagram using E[CID] and the
diagonal entropy SD.

The Hilbert space of our model consists of qubits on
the vertices of the 2d square lattice. The state of our

interest is obtained as follows: we start with the pure
state

Lempel-Ziv

Exact

(tensor-network

contraction)
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phase diagram of the state �(p, q, r) is the one shown in
Fig.4(a). In particular, we will see that all yellow solid
points along the phase boundaries are known through ex-
act mapping to appropriate classical statistical mechan-
ics models. We will first consider the r = 0 plane, which
corresponds to the target mixed state ⇢(q, p) = �(q, p, 0),
and then use a combination of statistical mechanics map-
pings, quantum information inequalities, and perturba-
tive arguments to discuss the three-dimensional global
phase diagram.

Phase diagram in the r = 0 plane: The conjec-
tured phase diagram for the target mixed state ⇢(q, p)

has been discussed in Ref.[47] (more precisely, [47] stud-
ied the phase diagram of the Wegner dual of ⇢(q, p)).
Along the p = 0 line, ⇢(q, 0) = | (q)ih (q)| is the ground
state of a Rokhsar-Kivelson type Hamiltonian [48], and
the paramagnetic to ferromagnetic transition (which oc-

curs at qc = (1�
pp

2� 1)/2 ⇡ 0.178) is described by the
(2+0)-D Ising universality (and not 3+0-D Ising model)
– the dimensional reduction being a common feature of
‘conformal quantum critical points’ [49]. When q > qc,
the system is in the standard SSB phase characterized by
the long-range order in the two-point correlation function
(lim|i�j|!1 tr(⇢ZiZj) = c > 0). On the other hand, the
q = 0 line corresponds to subjecting the zero correlation
length paramagnet state to decoherence, which has al-
ready been studied in Ref.[5]. When p > pc ⇡ 0.109, the
system is in the SW-SSB phase characterized by the long-
range order in the fidelity correlator without the long-
range order in the two-point correlations [11]. From the
results along the lines p = 0 and q = 0, it is then nat-
ural to expect that the system in the whole (q, p)-plane
exhibits three phases: symmetric (Sym), SW-SSB, and
SSB phases. The phase boundary between the SSB phase
and the SW-SSB phase is straight because non-maximal
local decoherence cannot change long-distance correla-
tions of local operators (and therefore, the correlations
along the line q = qc must decay as power-law). The
r = 0 plane in Fig.4(a) shows the conjectured phase dia-
gram. We emphasize that the straight yellow boundary
at q = qc is determined exactly by the long-range order
of the two-point correlation function, while the curved
yellow line is drawn only schematically.

Phase diagram for r 6= 0: Given the understand-
ing of the r = 0 plane, one can now use the prop-
erty that �(q, p, r) = Er[⇢(q, p)] to deduce the topol-
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Figure 5. (a)-(c) E[CID], dE[CID]/dq, and d2E[CID]/d2q as functions of the tuning parameter q obtained by smoothing the
raw data. The insets show the original data. (d)-(f) Same quantities as (a)-(c) with E[CID] replaced by the diagonal entropy
density sd. (g) The system on the dual lattice of size L⇥L with L = 7. Here the Ising vortices reside on plaquettes, and there
are (L+ 1)⇥ (L+ 1) spins on the dual lattice. The blue cross indicates the creation of the isolated Ising vortex at the center,
which can be implemented by flipping the bonds labeled in the blue color. The red squares indicate the locations ĩ and j̃ when
computing the disorder-averaged spin-spin correlation function [hsĩsj̃i]. (h) The disorder-averaged free energy cost [he��Fl/2i]
as a function of perturbed strength q.

| (q)i =
Y

hi,ji

[(1� q)I + qZiZj ]|xj = 1i (18)

and then subject it to the following strongly symmetric
channel on all edges:

Ehi,ji(p)[·] = (1� p)(·) + pZiZj(·)ZiZj . (19)

The resulting density matrix ⇢(q, p) =Q
hi,ji Ehi,ji(p)[| (q)ih (q)|] then depends on two

tuning parameters. Similar to Sec. III, since we are
interested in the relationship between the “target mixed
state” ⇢(p, q) and the diagonal mixed state ⇢d, obtained
from it through a maximal dephasing channel in the
Pauli-X basis, it is again useful to consider a more gen-
eral three-parameter mixed state �(p, q, r) = Er[⇢(p, q)],
where the channel Er is given by Eq. (9). Thus, the
r = 0 and r = 0.5 planes correspond to ⇢(p, q) and
⇢d(p, q), respectively.

In the following, we will provide arguments that the
phase diagram of the state �(p, q, r) is the one shown in
Fig.4(a). In particular, we will see that all yellow solid
points along the phase boundaries are known through ex-
act mapping to appropriate classical statistical mechan-
ics models. We will first consider the r = 0 plane, which
corresponds to the target mixed state ⇢(q, p) = �(q, p, 0),
and then use a combination of statistical mechanics map-
pings, quantum information inequalities, and perturba-
tive arguments to discuss the three-dimensional global
phase diagram.

Phase diagram in the r = 0 plane: The conjec-
tured phase diagram for the target mixed state ⇢(q, p)

has been discussed in Ref.[47] (more precisely, [47] stud-
ied the phase diagram of the Wegner dual of ⇢(q, p)).
Along the p = 0 line, ⇢(q, 0) = | (q)ih (q)| is the ground
state of a Rokhsar-Kivelson type Hamiltonian [48], and
the paramagnetic to ferromagnetic transition (which oc-

curs at qc = (1�
pp

2� 1)/2 ⇡ 0.178) is described by the
(2+0)-D Ising universality (and not 3+0-D Ising model)
– the dimensional reduction being a common feature of
‘conformal quantum critical points’ [49]. When q > qc,
the system is in the standard SSB phase characterized by
the long-range order in the two-point correlation function
(lim|i�j|!1 tr(⇢ZiZj) = c > 0). On the other hand, the
q = 0 line corresponds to subjecting the zero correlation
length paramagnet state to decoherence, which has al-
ready been studied in Ref.[5]. When p > pc ⇡ 0.109, the
system is in the SW-SSB phase characterized by the long-
range order in the fidelity correlator without the long-
range order in the two-point correlations [11]. From the
results along the lines p = 0 and q = 0, it is then nat-
ural to expect that the system in the whole (q, p)-plane
exhibits three phases: symmetric (Sym), SW-SSB, and
SSB phases. The phase boundary between the SSB phase
and the SW-SSB phase is straight because non-maximal
local decoherence cannot change long-distance correla-
tions of local operators (and therefore, the correlations
along the line q = qc must decay as power-law). The
r = 0 plane in Fig.4(a) shows the conjectured phase dia-
gram. We emphasize that the straight yellow boundary
at q = qc is determined exactly by the long-range order
of the two-point correlation function, while the curved
yellow line is drawn only schematically.

Phase diagram for r 6= 0: Given the understand-
ing of the r = 0 plane, one can now use the prop-
erty that �(q, p, r) = Er[⇢(q, p)] to deduce the topol-

subjected to decoherence
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Figure 3. (a) E[CID] as a function of the tuning parameter J for the ground state of the (1 + 1)-D TFIM in Eq.(7).
(b) The derivative dE[CID]/dJ as a function of J estimated using the finite-di↵erence method. (c) The subleading term
�E[CID] = 2L[E[CID](2L)�E[CID](L)] for L = 32, 64 as a function of J . (d)-(f) Same quantities as (a)-(c) with E[CID] replaced
by the diagonal entropy density sd = �

P
xj

⇢xj log ⇢xj/N ⇡ �
P

xj2samples log
�
⇢xj

�
/N . All the insets show the results obtained

from smoothing the raw data by locally averaging the nearby data points (see the main text for details).

Figure 4. (a) The three-dimensional phase diagram for the mixed state �(p, q, r) = Er[⇢(p, q)], where Er[·] =
Q

j Ej,r[·],
Ej,r[·] = (1� r)[·] + rXj [·]Xj . The target mixed state ⇢ and the diagonal mixed state ⇢d corresponds to the r = 0 and r = 0.5
plane, respectively. (b) The phase boundaries for ⇢ (solid line) and ⇢d (dashed lines). Note that ⇢ exhibit three phases (Sym,
SSB, and SW-SSB phase) while ⇢d only exhibit two phases (Sym and SW-SSB phase). (c) The phase diagram of ⇢(q, p = 0, r).
Note that the SW-SSB phase only exists along the r = 0.5 line with q > qc. (d) The typical images xj based on the probability
distribution ⇢xj(q, p) at (q, p) = (0.1, 0), (0.25, 0), (0, 0.05), and (0, 0.15). Shall we remove (d)?

trix in the symmetric basis. We will then use this con-
nection to probe the phase diagram using E[CID] and the
diagonal entropy SD.

The Hilbert space of our model consists of qubits on
the vertices of the 2d square lattice. The state of our

interest is obtained as follows: we start with the pure
state

on square lattice
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Strong-to-
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Next consider q = 0 line:
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Correlation functions of local operators completely analytic across the transition!

[Dennis, Kitaev, Landahl, Preskill 2001; Fan, Bao, Altman, Vishwanath 2023; Lee, Jian, Xu 2023,…]

Requires observables non-linear in the density matrix.

Brief detour on decoherence-induced topological transitions



For a mixed-state , defineρ

where the minimum is taken over all possible decompositions
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is the partition function of the 2d Ising model with Ising interactions determined by {xe}. Thus, ⇢ /
P

xe
Z2d Ising,xe |⌦xeih⌦xe |,

where |⌦xei /
Q

v
(I +

Q
e3v

Ze)|xei are nothing but a subset of toric code eigenstates. Note that in this derivation,
the 2d Ising model emerges due to the he terms in the parent cluster Hamiltonian, and ultimately, this will lead to the
relation between the separability transition and the statistical mechanics of the 2d random-bond Ising model (RBIM)
that also describes the error-recovery transition [31]. We note that the above spectral representation of ⇢ in terms
of toric code eigenstates has also previously appeared in Ref.[13], using a di↵erent derivation. Since non-contractible
cycles of the torus will play an important role below, let us note that distinct eigenstates |⌦xei can be uniquely
specified by two labels: the first label corresponds to the set of local Z2 fluxes fp =

Q
e2p

xe through elementary
plaquettes p, while the second label L = (Lx = ±1, Ly = ±1) with Lx =

Q
e2`,ekx̂

xe, Ly =
Q

e2`,ekŷ
xe and ` a

non-contractible loop along x̂/ŷ direction, specifies the topological sector (‘Logical data’) in which |⌦xei lives.
We now probe the mixed state ⇢ using the separability criteria, i.e., we ask whether it can be decomposed as a

convex sum of SRE states. Clearly, the aforementioned spectral representation is not a useful decomposition since it
involves toric code eigenstates which are all LRE. Taking cue from the argument for separability of the Gibbs state
of toric codes [43], we decompose ⇢ as

⇢ =
X

ze

p
⇢|zei| {z }
| mi

hze|
p
⇢ ⌘

X

m

| mih m| (20)

⇢ =
X

ze

p
⇢|zeihze|

p
⇢ (21)

where {ze} are a complete set of product states in the Pauli-Z basis, and | mi = ⇢
1/2|zei. Generically, to determine

whether ⇢ is an SRE mixed state, one needs to determine whether each | mi is SRE. However, for the current case
of interest, it su�ces to consider only | i = ⇢

1/2|m0i with |m0i = |ze = 1i. The reason is as follows. The Gauss’s
law (

Q
e3v

Ze = 1) implies that the Hilbert space only contains states that are closed loops in the Z basis. Therefore,
one may write |mi = gx|m0i where gx is a product of single-site Pauli-Xs forming closed loops. Since [gx, ⇢] = 0, this
implies that

| 
m
i = Ugx | (p)i (22)

and therefore, if | i is SRE (LRE), so is | gxi. ⇢(�) may then be written as:

⇢(p) =
X

gx

Ugx | (p)ih (p)|U†

gx
(23)

CMImin = inf
X

i

piI(A : B|C) i (24)

⇢ =
X

i

pi| iih i| (25)

. Now, using the aforementioned spectral representation of ⇢, the (non-normalized) state | i = ⇢
1/2|ze = 1i is:

p
⇢|ze = 1i /

X

xe

[Z2d Ising,xe(p)]
1/2|xei (26)

|p⇢i = p
⇢
H
⌦ IH̄|�iH⌦H̄ (27)

co(QCMI) = “long-range part of mixed-state entanglement”.


Equals zero if and only if  admits decomposition in terms of pure states with zero TEE.ρ

Separability transitions in topological states induced by local decoherence

Yu-Hsueh Chen and Tarun Grover
Department of Physics, University of California at San Diego, La Jolla, California 92093, USA

We study states with intrinsic topological order subjected to local decoherence from the perspective
of separability, i.e., whether a decohered mixed state can be expressed as an ensemble of short-range
entangled (SRE) pure states. We focus on toric codes and the X-cube fracton state and provide
evidence for the existence of decoherence-induced separability transitions that precisely coincide with
the threshold for the feasibility of active error correction. A key insight is that local decoherence
acting on the ‘parent’ cluster states of these models results in a Gibbs state. As an example, for
the 2d (3d) toric code subjected to bit-flip errors, we show that the decohered density matrix can
be written as a convex sum of SRE states for p > pc, where pc is related to the paramagnetic-
ferromagnetic transition in the 2d (3d) random-field bond Ising model along the Nishimori line.

In this work we will explore aspects of many-body
topological states subjected to decoherence from the per-
spective of separability, i.e., whether the resulting mixed
state can be expressed as a convex sum of short-range
entangled (SRE) states [1–3]. This criteria is central
to the definition of what constitutes an SRE or long-
range entangled (LRE) mixed state, and various mea-
sures of mixed-state entanglement, such as negativity[3–
8] and entanglement of formation [9], are defined so as to
quantify non-separability. We will be particularly inter-
ested in decoherence-induced “separability transitions”,
i.e., transitions tuned by decoherence such that the den-
sity matrix in one regime is expressible as a convex sum
of SRE states, and in the other regime, it is not. One
salient distinction between pure state versus mixed-state
dynamics is that although a short-depth unitary evolu-
tion cannot change long-range entanglement encoded in
a pure state, a short-depth local channel can fundamen-
tally alter long-range mixed-state entanglement. There-
fore, even the limited class of mixed states that are ob-
tained by the action of local short-depth channels on
an entangled pure state o↵er an opportunity to explore
mixed-state phases and phase transitions [10–22]. We
will focus on mixed states that are obtained via subject-
ing several well-understood topologically ordered phases
of matter to short-depth quantum channels.

Error-threshold theorems [24–29] suggest a topologi-
cally ordered pure state is perturbatively stable against
decoherence from a short-depth, local quantum channel,
leading to the possibility of a phase transition as a func-
tion of the decoherence rate [30]. Such transitions were
originally studied from the perspective of quantum error
correction (QEC) in Refs.[31, 32] and more recently us-
ing mixed-state entanglement measures such as topolog-
ical negativity [14], and other non-linear functions of the
density matrix (Refs.[13–15]). These approaches clearly
establish at least two di↵erent mixed-state phases: one
where the topological qubit can be decoded, and the
other where it can’t. However, it is not obvious if the
density matrix in the regime where decoding fails can be
expressed as a convex sum of SRE pure states, which, fol-
lowing Refs.[1, 2], we will take as the definition of an SRE
mixed state. Our main result is that for several topo-

FIG. 1. (a) Topological orders under local decoherence can
undergo a separability transition, where only above a certain
critical error rate, the decohered mixed state ⇢dec can be writ-
ten as a convex sum of SRE pure states. The bottom depicts
the parent cluster states and their o↵spring models obtained
by appropriate measurements (indicated by an arrow) (b) 2d
cluster Hamiltonian and 2d toric code, (c) 3d cluster Hamil-
tonian and 3d toric code, and (d) “Cluster-X” Hamiltonian
[23] and the X-cube Hamiltonian.

logically ordered phases subjected to local decoherence,
which are relevant for quantum computing [31–33], one
can explicitly write down the decohered mixed state as a
convex sum of pure states which we argue all undergo a
topological phase transition, from being long-ranged en-
tangled to short-ranged entangled, at a threshold that
precisely corresponds to the optimal threshold for QEC.
We find that the universality class of such a separability
transition also coincides with that corresponding to the
QEC error-recovery transition. Therefore, in these ex-
amples, we argue that the error-recovery transition does
indeed coincide with a many-body separability transi-
tion. As discussed below, our method also provides a new
route to obtain the statistical mechanics models relevant

co(QCMI) ≠ 0 co(QCMI) = 0

Entanglement across decoherence induced topological transitions

[Yu-Hsueh, TG, 2023

Wang, Song, Meng, TG, 2024]

and  is the topological entanglement entropy for the state  γ( |ψi⟩ |ψi⟩

|⇢i =
X

|⇢i =
X

|⇢i = |Toric codei ⌦ |Toric codei (1)

Condense e1e2���������!

| (h)i =
Y

e

(1 + h(Xe + Ze)/
p
2)|Toric Codei

Ee[⇢] = (1� p)(⇢) + p�e(✓)(⇢)�e(✓)
co(QCMI) = min(

P
i pi�(| ii))

1
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FIG. 1. Contrast in entanglement scaling between pure-state transition (driven by a transverse field of strength h, panel
(a)), and mixed-state transition (driven by decoherence at rate p, panel (b)) in the 2d toric code. The bottom of panel (a)
schematically shows the scaling of QCMI S(A : B|C) in the perturbed toric code ground state close to the topological transition
when approaching the critical point from the topological side. The diverging correlation length is denoted as ⇠, and the linear
length of all regions A,B,C that define QCMI is proportional to `. When `/⇠ � 1, QCMI probes the topological phase, and
therefore approaches TEE, i.e., log(2). On the other hand, when `/⇠ ⌧ 1, i.e., when QCMI probes the critical regime, one
receives an additional positive contribution ��CFT from the critical degrees of freedom. In contrast, when the topological order
is destroyed by onsite phase-flip/bit-flip decoherence (panel (b)), on general grounds the mixed-state entanglement captured
by co(QCMI) (Eq. (1)) cannot exceed TEE (=log(2)) in the critical regime (`/⇠ ⌧ 1) as discussed in Sec. III and schematically
shown at the bottom of panel (b). The geometry used to define co(QCMI) is the same as the one for QCMI shown in panel
(a). In fact, numerically, we find evidence that the value �0 for the co(QCMI) in the critical regime is zero within the error-bar
of our numerical simulations (Sec. IV, Fig. 6).

a given state if only local operations are allowed. One
might anticipate that in this setting an LRE state can-
not be obtained from an SRE state. If so, it is natural to
ask if one can define analogs of entanglement monotones
in such a setting that are sensitive only to long-range
entanglement, and in a sense more universal.

Since we are interested in finding a measure of long-
range entanglement for mixed states, let us recall that for
a bipartite Hilbert space HA⌦HB , a mixed state has zero
bipartite entanglement (‘separable’) if it admits a repre-
sentation of the form ⇢ =

P
i pi| iih i|, where each of the

pure states | ii is bipartite unentangled, i.e., takes the
form | ii = |�Ai i ⌦ |�Bi i [50]. Clearly, the von Neumann
entanglement SA equals zero for each | ii. One entangle-
ment measure that directly captures bipartite separabil-
ity of a mixed state is entanglement of formation EF [36],
which is defined as EF = inf{

P
i pi SA(| ii)}, where the

infimum is taken over all possible pure state decomposi-

tions of the density matrix ⇢ as ⇢ =
P

i pi| iih i|, where
pi � 0, and

P
i pi = 1. More generally, given a function

f from pure states to real numbers, the convex-roof ex-
tension of f , denoted as co(f), is a function from density
matrices to real numbers, and is defined as [36, 39, 51, 52]:

co(f)[⇢] =

inf

 
X

i

pi f(| ii)
��� ⇢ =

X

i

pi| iih i|, pi � 0,
X

i

pi = 1

!
.

Therefore, in this nomenclature, EF is the convex-roof
extension of von Neumann entanglement [36]. Our aim
is to find a measure that detects whether a mixed state
is SRE or not, i.e., if it admits a decomposition of the
form

P
i pi|SREiihSREi|, where {|SREii} are SRE pure

states [53]. One way to achieve this is by considering
the convex-roof extension of any pure state entanglement
measure that captures long-range entanglement. This is
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updating scheme from Sec. IV B, we generate configura-
tions from the joint probability ZxA,xBZx0

A,x0
B
. The ac-

ceptance probability is the ratio of g (xe, x0
e,�) (Eq. (11))

between the new and the old bond configurations. As a
result, we can sample under the distribution Q(�). For
each TMC calculation, one gradually increases � from
0 to 1, and compute the work done dW accumulated
at each step. The final EE is simply S2 = � ln(heW i).
Previous works argued that scaling the number of dis-
cretization steps with system size leads to a polynomial
time algorithm for calculating EE while keeping the rel-
ative error fixed [34, 35, 101]. In this work however,
we use a fixed but sufficiently large number of discretiza-
tion steps (= 105), independent of the system size. This
choice gives a satisfactory relative error for TEE close to
the critical point for the system sizes studied, as we now
discuss.

D. Results for Rényi TEE

We now discuss the numerical results for the Rényi
TEE of the state | (�)i obtained using the aforemen-
tioned TMC method. The Levin-Wen partition to define
TEE is shown in Fig. 5 with Rényi TEE given by � =
S2(A : B|C) = S2(AC) + S2(BC) � S2(C) � S2(ABC).
To perform finite-size scaling, we maintain the shapes of
the regions A, B, C and scale the total system size so that
each of the regions A,B,C scale with L. We simulated
the linear system sizes L = 5, 10, 15 and the temperature
T 2 [0.25, 1.25] with data points that lie on the either side
of the critical point Tc = 0.954(6) which is determined
from the anyon condensation operator in Fig. 4.
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FIG. 6. Result for Rényi TEE � using Levin-Wen
scheme. Rényi TEE � for the state | (�)i (Eq.6) against
temperature T (= ��1) and the rescaled temperature (T �
Tc)L

1/⌫̃ (inset) with Tc = 0.951 and ⌫̃ ⇡ 3.2.

Fig. 6 shows the numerically obtained Rényi TEE �.
Again recall that the temperature T is related to the de-

coherence rate p via tanh(1/T ) = 1 � 2p. The overall
trends are as follows. � ⇡ ln 2 at low temperatures for
all system sizes, � is monotonically non-increasing as p
increases, and it tends towards zero as T ! Tc. Further,
as the system size is increased, � tends towards log(2)
at a relatively higher temperature and is also non-zero
up till a relatively higher temperature (i.e., the range
of decoherence rate over which the topological phase is
visible in a finite system increases). These numerical
results rule out scenarios (b) and (d) in Fig. 2 for the
Rényi co(QCMI), which is consistent with the analytical
arguments in Sec. III and Ref. [25]. Perhaps more in-
terestingly, they strongly suggest that as one approaches
the critical point, so that L ⌧ ⇠, Rényi co(QCMI) ap-
proaches zero. Assuming that the von Neumann TEE
has the same qualitative behavior as the Rényi TEE [96–
98], this indicates that the von Neumann co(QCMI) also
approaches zero as p ! pc (recall that the TEE of the
state | (�)i puts an upper bound on the co(QCMI), and
the von Neumann TEE is necessarily non-negative due to
strong subadditivity). This is in strong contrast to (pure)
ground state phase transition in toric code that is driven
by a magnetic field, where in the critical regime, QCMI
exceeds the TEE of the topological phase. See Fig. 1
for a contrast between the pure state transition and the
decoherence induced transition. Overall, our results are
consistent with the scenario (a) in Fig. 2 in the thermo-
dynamic limit, in line with the analytical arguments in
Sec. III and our conjecture relating TEE of | (�)i to the
co(QCMI) of the decohered state (Eq. (7)).

We also attempted finite-size scaling for TEE with the
scaling form �(T, L) = f

�
(T � Tc)L1/⌫̃

�
. We found that

� obtained for different system sizes collapses well when
we choose ⌫̃ ⇡ 3.2, see the inset of Fig. 6. This value is
much larger than the critical exponent ⌫ for the Nishi-
mori critical point (namely ⌫ ⇡ 1.5, which agrees well
with the exponent obtained from anyon condensation or-
der parameter from the same wavefunction, as discussed
in Sec. IV B). We suspect this discrepancy is partly be-
cause the system sizes for which we can access TEE is
still limited, and perhaps the finite-size effects for TEE
are also relatively larger compared to those for the anyon
condensation order parameter. Furthermore, in the crit-
ical regime (L/⇠ ⌧ 1), we only have a few data points.
Nonetheless, the data collapse is suggestive that TEE is
a function only of L/⇠, where ⇠ is the diverging correla-
tion length. Although we don’t have an analytical un-
derstanding of TEE close to the transition, arguments in
Ref. [25] imply that the TEE is related to the domain-wall
free energy in the RBIM along the Nishimori line, which
scales as (L/⇠)1/⌫ close to the transition [92]. This mo-
tivates a scaling ansatz in the critical regime (L ⌧ ⇠) of

the form �(L/⇠) = log(2)

✓
1� log(1+ae�b(L/⇠)1/⌫ )

log(1+a)

◆
where

a, b are some numbers. Such a scaling form is also sug-
gested from previous works on topological entanglement
negativity in thermal or decoherence driven topological
transitions [32, 81]. Taylor expanding such an expression
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with a Fermi surface, S(A : B|C) will be generically non-
zero, and can be used to obtain universal data (see, e.g.,
[76]).

Our aim is to define a quantity that captures long-
range entanglement in mixed states. Unlike pure states,
for which von Neumann entanglement is essentially a
unique measure of bipartite entanglement, there ex-
ist several different entanglement measures for mixed
states. One proposal is to define a combination anal-
ogous to S(A : B|C) by replacing each of the terms
S(AC), S(BC), S(C), S(ABC) with a measure of bipar-
tite mixed-state entanglement such as negativity [22, 77–
81]. One potential issue with negativity is that it is not a
faithful measure of mixed-state entanglement: there exist
states that are entangled but have zero negativity. Here,
we will follow a different approach by introducing a mea-
sure that is closer in spirit to TEE. We will construct a
measure that is zero if and only if the mixed state ad-
mits a decomposition in terms of pure states that have
zero TEE. Consider a mixed state ⇢ over a tetrapartite
Hilbert space A ⌦ B ⌦ C ⌦ D, where A,B,C have the
same geometry as the one used to define Levin-Wen TEE,
and D denotes the complement of ABC. We define the
co(QCMI) of ⇢ABCD as,

co(QCMI)[⇢ABCD] = inf{
X

i

pi �(| iiABCD)} (1)

where �(| iiABCD) = 1
2S(A : B|C) and the infimum is

taken over all possible pure-state decompositions of the
mixed state ⇢ as ⇢ =

P
i pi| iih i|. Thus, co(QCMI) is

the convex-roof extension of � to mixed states, just as
the entanglement of formation is the convex-roof exten-
sion of von Neumann entanglement for bipartite states
[36, 39, 40]. Due to strong subadditivity, co(QCMI)[⇢] �
0. It is worth noting that unlike entanglement of forma-
tion, co(QCMI) is generically not an entanglement mono-
tone under LOCC operations. This is because QCMI is
neither a concave nor a convex function of density matri-
ces [39, 82]. Indeed, LOCC operations allow one to obtain
LRE states from SRE states, via short-depth channels
due to the possibility of non-local classical communica-
tion [41–49]. However, a mixed-state phase of matter is
defined via the equivalence class of states related to each
other via finite-depth local channels [16–18], and there-
fore, it is desirable to seek a measure of long-range entan-
glement that is monotonic when only finite-depth local
operations are allowed. As we will discuss in the next
section, co(QCMI) is monotonic under at least a class of
local finite-depth channels that are of our interest.

One may also define a Rényi version of co(QCMI),
by replacing � = 1

2S(A : B|C) in Eq.(1)
by its Rényi version, namely, �n = 1

2Sn(A :
B|C) = (Sn(AC) + Sn(BC)� Sn(C)� Sn(ABC)),
where Sn(X) = �

1
n�1 log (tr (⇢

n
X)) is the Rényi entropy

for the density matrix ⇢X in the state | ii. This quan-
tity shares several features with co(QCMI) as discussed
in Sec. III and is potentially more amenable to numeri-

cal simulations. We will employ it in the tensor-assisted
Monte Carlo computation in Sec. IV.

III. CONSTRAINTS ON CO(QCMI) FOR
DECOHERENCE DRIVEN TOPOLOGICAL

TRANSITIONS

In this section, we will discuss some of the salient
properties of co(QCMI) (Eq.(1)). Our focus will pri-
marily be pure topologically ordered states that are be-
ing subjected to local decoherence [17–32]. A paradig-
matic example is 2d toric code in the presence of phase-
flip or bit-flip noise. For concreteness, we will focus
on this example, and discuss along the way which fea-
tures generalize. We write 2d toric code as H2d toric =
�
P

v(
Q

e2v Ze) �
P

p(
Q

e2p Xe). We subject a (pure)
ground state ⇢0 of H2d toric to phase-flip channel acting
on an edge e as: Ee[⇢0] = pZe⇢0Ze + (1 � p)⇢0 where
p � 0 is the decoherence strength. The full dynamics
corresponds to the composition of the map Ee[·] on all
edges, and we will denote its action simply as E [·]. It is
well known that this system undergoes a phase transi-
tion as a function of the decoherence rate p [19–23]. For
p < pc ⇡ 0.11, the system retains quantum memory of
the undecohered toric code ground state while the quan-
tum memory is lost for p > pc and one enters a “classical
memory” phase. Ref. [25] argued that for p � pc, the den-
sity matrix can be expressed as a convex sum of states
that have zero TEE, which would imply that co(QCMI)
is zero for p > pc. It was also conjectured that such a de-
composition is not possible for p < pc, although a proof
so far is lacking. Motivated by these considerations, let
us ask a few questions:

0 pc

p

0

ln 2

co
(Q

C
M

I) (a)

(b)

(c) (d)

(e)

FIG. 2. Possible scenarios of co(QCMI) across the de-
coherence transition in 2d noisy toric code. We discuss
the scenarios (a) – (e) in addressing the questions #1 – #4
below, and provide arguments that rule out scenarios (b), (c),
(d) and (e).

ℓ

dγ/dℓ ≤ 0 (F-theorem)
γcritical = γCFT + TEE > TEE

dγ/dℓ > 0 (for local decoherence)

γcritical = 0!
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Figure 6. The disorder averaged spin-spin correlation function [hsĩsj̃i] (a) and the free energy cost [he��Fl/2i] (b) as functions
of the tuning parameter p. The vertical line in each figure indicates the estimated critical point p⇤c , extracted from the data
collapse in a window u = (p� p⇤c)L

1/⌫ = [�0.4, 0.4], using autoScale.py [51]. (c) A similar figure to (b), but for smaller system
sizes, which can be estimated using the direct tomography approach.

Figure 7. (a)-(d) E[CID], dE[CID]/dp, d2E[CID]/d2p, and d3E[CID]/d3p as functions of the tuning parameter q obtained by
smoothing the raw data. The insets show the original data. (e)-(h) Same quantities as (a)-(d) with E[CID] replaced by the
diagonal entropy density sd.

[hs
ĩ
s
j̃
i], we fix ĩ = (0, L) and j̃ = ([L/2], [L/2]), where

[x] is a floor function that outputs the greatest integer
less than or equal to x (see Fig.5(g) for the system of
L⇥ L Ising vortices with L = 7).

Fig.4(d) shows the typical images xj based on the prob-
ability distribution ⇢xj(0, p) / Zxj(p) at p = 0.05 and
p = 0.15. To obtain quantitative results from these im-
ages, we compute E[CID] and their corresponding deriva-
tives. The results are shown in Fig.7(a)-(d), where the
main figures show the results after smoothing the data it-
eratively three times while the insets show the raw data.
Di↵erent from previous situations, we do not see a sharp
peak closed to the the critical point in the third derivative
of CID. To see whether this is due to the limitation of ap-
proximating sd using E[CID], we also compute sd and its
corresponding derivatives [see Fig.7(e)-(h)]. We find that
the results are similar to the ones in CID, and it’s not
obvious to locate the critical point from the third deriva-
tives of sd. One di↵erence between sd and E[CID] we
observe in our data is that the fluctuations in the deriva-

tives of sd seems to be stronger when p < pc, especially
for the small system size, which may indicate the singular
behavior in the subleasing term of the free energy. On the
other hand, this phenomena is less obvious from looking
at the derivatives of E[CID]. Nonetheless, both E[CID]
and sd exhibit similar behaviors for the largest system
size (L = 19) that we consider. Therefore, we conclude
that along the q = 0 line, the CID is also an excellent ap-
proximation for the diagonal entropy density. Besides, as
mentioned earlier, the probability distribution ⇢xj / Zxj

can be generated e�ciently without directly computing
Zxj . This allows us to study the CID for very large sys-
tem sizes. In Fig.7 (a)-(d), we also compute E[CID] and
its derivatives for L = 256, and the results are similar
to those for smaller system sizes. Therefore, we believe
the absence of the peak in the third derivative of both sd
and E[CID] is not due to finite-size e↵ects but may re-
sult from extremely large noise caused by finite-di↵erence
di↵erentiation.

Not sure whether we really need this paragraph and
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Figure 3. (a) E[CID] as a function of the tuning parameter J for the ground state of the (1 + 1)-D TFIM in Eq.(7).
(b) The derivative dE[CID]/dJ as a function of J estimated using the finite-di↵erence method. (c) The subleading term
�E[CID] = 2L[E[CID](2L)�E[CID](L)] for L = 32, 64 as a function of J . (d)-(f) Same quantities as (a)-(c) with E[CID] replaced
by the diagonal entropy density sd = �

P
xj

⇢xj log ⇢xj/N ⇡ �
P

xj2samples log
�
⇢xj

�
/N . All the insets show the results obtained

from smoothing the raw data by locally averaging the nearby data points (see the main text for details).

Figure 4. (a) The three-dimensional phase diagram for the mixed state �(p, q, r) = Er[⇢(p, q)], where Er[·] =
Q

j Ej,r[·],
Ej,r[·] = (1� r)[·] + rXj [·]Xj . The target mixed state ⇢ and the diagonal mixed state ⇢d corresponds to the r = 0 and r = 0.5
plane, respectively. (b) The phase boundaries for ⇢ (solid line) and ⇢d (dashed lines). Note that ⇢ exhibit three phases (Sym,
SSB, and SW-SSB phase) while ⇢d only exhibit two phases (Sym and SW-SSB phase). (c) The phase diagram of ⇢(q, p = 0, r).
Note that the SW-SSB phase only exists along the r = 0.5 line with q > qc. (d) The typical images xj based on the probability
distribution ⇢xj(q, p) at (q, p) = (0.1, 0), (0.25, 0), (0, 0.05), and (0, 0.15). Shall we remove (d)?

trix in the symmetric basis. We will then use this con-
nection to probe the phase diagram using E[CID] and the
diagonal entropy SD.

The Hilbert space of our model consists of qubits on
the vertices of the 2d square lattice. The state of our

interest is obtained as follows: we start with the pure
state

15

Figure 8. (a)-(c) E[CID], dE[CID]/d�, and d2E[CID]/d2�, as functions of the tuning parameter � obtained by smoothing the
raw data. The insets show the original data. (d)-(f) Same quantities as (a)-(d) with E[CID] replaced by the diagonal entropy
density sd. (g) The disorder-averaged free energy cost [he��Fl/2i] as a function of �.

Figure 9. CID error and complexity of the 1+1-D example from Sec.III with J = 0.6. (a) �CID as a function of the number
of sample Ns for di↵erent system size L (b) ✏ = |E[CID]� sd| as a function of the system size L with Ns = 2000. (c) N⇤

s , the
minimum number of samples such that �CID(L,N

⇤
s )  ↵ · ✏(L), as a function of L for di↵erent values of ↵.

Figure 10. Plots analogous to Figs. 9(a) and (b) for the
RBIM along the Nishimori line with p = 0.1.

nite number of samples, which we denote as �CID(L,Ns),
is much less than the deviation between CID and sd due
to finite L. Therefore, it is reasonable to assume that
✏(L,Ns = 2000) ⇡ ✏(L,Ns ! 1) and simply drop the
Ns dependence in ✏ as long as the system size L  128.

In practice, for a given system size L, one may want
to minimize the number of samples needed to obtain a

reliable estimate sd instead of taking Ns to be arbitrarily
large. This motivates the following question: what’s the
minimum Ns such that �CID(L,Ns)  ↵ ·✏(L) for a given
L, where ↵ is a tunable O(1) value parameter? When this
condition is satisfied, the limiting factor in estimating sd
is the finite system size, and not the finite number of
samples. As just mentioned, when L ⇡ 128, then Ns ⇡
2000 is su�cient to gaurantee that �(L,Ns) ⌧ ↵ · ✏(L),
but let’s say, if L was 50, then one may want to know the
number of samples one needs so that sampling is not the
limiting factor. Therefore, one needs a more systematic
approach.

Let’s first investigate �CID as a function of the num-
ber of samples Ns for di↵erent system sizes L [Fig.9(a)].
Here, �CID is obtained by calculating the standard devi-
ation of CID among the samples and then dividing it byp
Ns. As expected, increasing Ns reduces �CID. The in-

set displays the log-log plot of the main figure, revealing
that �CID ⇠ 1/

p
Ns regardless of the system size L. A

notable property shown in Fig. 9(a) is that for a fixed

Lempel-Ziv

Exact

Lempel-Ziv works for the diagonal

 entropy density, but not subleading terms.
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Figure 5. (a)-(c) E[CID], dE[CID]/dq, and d2E[CID]/d2q as functions of the tuning parameter q obtained by smoothing the
raw data. The insets show the original data. (d)-(f) Same quantities as (a)-(c) with E[CID] replaced by the diagonal entropy
density sd. (g) The system on the dual lattice of size L⇥L with L = 7. Here the Ising vortices reside on plaquettes, and there
are (L+ 1)⇥ (L+ 1) spins on the dual lattice. The blue cross indicates the creation of the isolated Ising vortex at the center,
which can be implemented by flipping the bonds labeled in the blue color. The red squares indicate the locations ĩ and j̃ when
computing the disorder-averaged spin-spin correlation function [hsĩsj̃i]. (h) The disorder-averaged free energy cost [he��Fl/2i]
as a function of perturbed strength q.

| (q)i =
Y

hi,ji

[(1� q)I + qZiZj ]|xj = 1i (18)

and then subject it to the following strongly symmetric
channel on all edges:

Ehi,ji(p)[·] = (1� p)(·) + pZiZj(·)ZiZj . (19)

The resulting density matrix ⇢(q, p) =Q
hi,ji Ehi,ji(p)[| (q)ih (q)|] then depends on two

tuning parameters. Similar to Sec. III, since we are
interested in the relationship between the “target mixed
state” ⇢(p, q) and the diagonal mixed state ⇢d, obtained
from it through a maximal dephasing channel in the
Pauli-X basis, it is again useful to consider a more gen-
eral three-parameter mixed state �(p, q, r) = Er[⇢(p, q)],
where the channel Er is given by Eq. (9). Thus, the
r = 0 and r = 0.5 planes correspond to ⇢(p, q) and
⇢d(p, q), respectively.

In the following, we will provide arguments that the
phase diagram of the state �(p, q, r) is the one shown in
Fig.4(a). In particular, we will see that all yellow solid
points along the phase boundaries are known through ex-
act mapping to appropriate classical statistical mechan-
ics models. We will first consider the r = 0 plane, which
corresponds to the target mixed state ⇢(q, p) = �(q, p, 0),
and then use a combination of statistical mechanics map-
pings, quantum information inequalities, and perturba-
tive arguments to discuss the three-dimensional global
phase diagram.

Phase diagram in the r = 0 plane: The conjec-
tured phase diagram for the target mixed state ⇢(q, p)

has been discussed in Ref.[47] (more precisely, [47] stud-
ied the phase diagram of the Wegner dual of ⇢(q, p)).
Along the p = 0 line, ⇢(q, 0) = | (q)ih (q)| is the ground
state of a Rokhsar-Kivelson type Hamiltonian [48], and
the paramagnetic to ferromagnetic transition (which oc-

curs at qc = (1�
pp

2� 1)/2 ⇡ 0.178) is described by the
(2+0)-D Ising universality (and not 3+0-D Ising model)
– the dimensional reduction being a common feature of
‘conformal quantum critical points’ [49]. When q > qc,
the system is in the standard SSB phase characterized by
the long-range order in the two-point correlation function
(lim|i�j|!1 tr(⇢ZiZj) = c > 0). On the other hand, the
q = 0 line corresponds to subjecting the zero correlation
length paramagnet state to decoherence, which has al-
ready been studied in Ref.[5]. When p > pc ⇡ 0.109, the
system is in the SW-SSB phase characterized by the long-
range order in the fidelity correlator without the long-
range order in the two-point correlations [11]. From the
results along the lines p = 0 and q = 0, it is then nat-
ural to expect that the system in the whole (q, p)-plane
exhibits three phases: symmetric (Sym), SW-SSB, and
SSB phases. The phase boundary between the SSB phase
and the SW-SSB phase is straight because non-maximal
local decoherence cannot change long-distance correla-
tions of local operators (and therefore, the correlations
along the line q = qc must decay as power-law). The
r = 0 plane in Fig.4(a) shows the conjectured phase dia-
gram. We emphasize that the straight yellow boundary
at q = qc is determined exactly by the long-range order
of the two-point correlation function, while the curved
yellow line is drawn only schematically.

Phase diagram for r 6= 0: Given the understand-
ing of the r = 0 plane, one can now use the prop-
erty that �(q, p, r) = Er[⇢(q, p)] to deduce the topol-
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Figure 5. (a)-(c) E[CID], dE[CID]/dq, and d2E[CID]/d2q as functions of the tuning parameter q obtained by smoothing the
raw data. The insets show the original data. (d)-(f) Same quantities as (a)-(c) with E[CID] replaced by the diagonal entropy
density sd. (g) The system on the dual lattice of size L⇥L with L = 7. Here the Ising vortices reside on plaquettes, and there
are (L+ 1)⇥ (L+ 1) spins on the dual lattice. The blue cross indicates the creation of the isolated Ising vortex at the center,
which can be implemented by flipping the bonds labeled in the blue color. The red squares indicate the locations ĩ and j̃ when
computing the disorder-averaged spin-spin correlation function [hsĩsj̃i]. (h) The disorder-averaged free energy cost [he��Fl/2i]
as a function of perturbed strength q.

| (q)i =
Y

hi,ji

[(1� q)I + qZiZj ]|xj = 1i (18)

and then subject it to the following strongly symmetric
channel on all edges:

Ehi,ji(p)[·] = (1� p)(·) + pZiZj(·)ZiZj . (19)

The resulting density matrix ⇢(q, p) =Q
hi,ji Ehi,ji(p)[| (q)ih (q)|] then depends on two

tuning parameters. Similar to Sec. III, since we are
interested in the relationship between the “target mixed
state” ⇢(p, q) and the diagonal mixed state ⇢d, obtained
from it through a maximal dephasing channel in the
Pauli-X basis, it is again useful to consider a more gen-
eral three-parameter mixed state �(p, q, r) = Er[⇢(p, q)],
where the channel Er is given by Eq. (9). Thus, the
r = 0 and r = 0.5 planes correspond to ⇢(p, q) and
⇢d(p, q), respectively.

In the following, we will provide arguments that the
phase diagram of the state �(p, q, r) is the one shown in
Fig.4(a). In particular, we will see that all yellow solid
points along the phase boundaries are known through ex-
act mapping to appropriate classical statistical mechan-
ics models. We will first consider the r = 0 plane, which
corresponds to the target mixed state ⇢(q, p) = �(q, p, 0),
and then use a combination of statistical mechanics map-
pings, quantum information inequalities, and perturba-
tive arguments to discuss the three-dimensional global
phase diagram.

Phase diagram in the r = 0 plane: The conjec-
tured phase diagram for the target mixed state ⇢(q, p)

has been discussed in Ref.[47] (more precisely, [47] stud-
ied the phase diagram of the Wegner dual of ⇢(q, p)).
Along the p = 0 line, ⇢(q, 0) = | (q)ih (q)| is the ground
state of a Rokhsar-Kivelson type Hamiltonian [48], and
the paramagnetic to ferromagnetic transition (which oc-

curs at qc = (1�
pp

2� 1)/2 ⇡ 0.178) is described by the
(2+0)-D Ising universality (and not 3+0-D Ising model)
– the dimensional reduction being a common feature of
‘conformal quantum critical points’ [49]. When q > qc,
the system is in the standard SSB phase characterized by
the long-range order in the two-point correlation function
(lim|i�j|!1 tr(⇢ZiZj) = c > 0). On the other hand, the
q = 0 line corresponds to subjecting the zero correlation
length paramagnet state to decoherence, which has al-
ready been studied in Ref.[5]. When p > pc ⇡ 0.109, the
system is in the SW-SSB phase characterized by the long-
range order in the fidelity correlator without the long-
range order in the two-point correlations [11]. From the
results along the lines p = 0 and q = 0, it is then nat-
ural to expect that the system in the whole (q, p)-plane
exhibits three phases: symmetric (Sym), SW-SSB, and
SSB phases. The phase boundary between the SSB phase
and the SW-SSB phase is straight because non-maximal
local decoherence cannot change long-distance correla-
tions of local operators (and therefore, the correlations
along the line q = qc must decay as power-law). The
r = 0 plane in Fig.4(a) shows the conjectured phase dia-
gram. We emphasize that the straight yellow boundary
at q = qc is determined exactly by the long-range order
of the two-point correlation function, while the curved
yellow line is drawn only schematically.

Phase diagram for r 6= 0: Given the understand-
ing of the r = 0 plane, one can now use the prop-
erty that �(q, p, r) = Er[⇢(q, p)] to deduce the topol-
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Figure 6. The disorder averaged spin-spin correlation function [hsĩsj̃i] (a) and the free energy cost [he��Fl/2i] (b) as functions
of the tuning parameter p. The vertical line in each figure indicates the estimated critical point p⇤c , extracted from the data
collapse in a window u = (p� p⇤c)L

1/⌫ = [�0.4, 0.4], using autoScale.py [51]. (c) A similar figure to (b), but for smaller system
sizes, which can be estimated using the direct tomography approach.

Figure 7. (a)-(d) E[CID], dE[CID]/dp, d2E[CID]/d2p, and d3E[CID]/d3p as functions of the tuning parameter q obtained by
smoothing the raw data. The insets show the original data. (e)-(h) Same quantities as (a)-(d) with E[CID] replaced by the
diagonal entropy density sd.

[hs
ĩ
s
j̃
i], we fix ĩ = (0, L) and j̃ = ([L/2], [L/2]), where

[x] is a floor function that outputs the greatest integer
less than or equal to x (see Fig.5(g) for the system of
L⇥ L Ising vortices with L = 7).

Fig.4(d) shows the typical images xj based on the prob-
ability distribution ⇢xj(0, p) / Zxj(p) at p = 0.05 and
p = 0.15. To obtain quantitative results from these im-
ages, we compute E[CID] and their corresponding deriva-
tives. The results are shown in Fig.7(a)-(d), where the
main figures show the results after smoothing the data it-
eratively three times while the insets show the raw data.
Di↵erent from previous situations, we do not see a sharp
peak closed to the the critical point in the third derivative
of CID. To see whether this is due to the limitation of ap-
proximating sd using E[CID], we also compute sd and its
corresponding derivatives [see Fig.7(e)-(h)]. We find that
the results are similar to the ones in CID, and it’s not
obvious to locate the critical point from the third deriva-
tives of sd. One di↵erence between sd and E[CID] we
observe in our data is that the fluctuations in the deriva-

tives of sd seems to be stronger when p < pc, especially
for the small system size, which may indicate the singular
behavior in the subleasing term of the free energy. On the
other hand, this phenomena is less obvious from looking
at the derivatives of E[CID]. Nonetheless, both E[CID]
and sd exhibit similar behaviors for the largest system
size (L = 19) that we consider. Therefore, we conclude
that along the q = 0 line, the CID is also an excellent ap-
proximation for the diagonal entropy density. Besides, as
mentioned earlier, the probability distribution ⇢xj / Zxj

can be generated e�ciently without directly computing
Zxj . This allows us to study the CID for very large sys-
tem sizes. In Fig.7 (a)-(d), we also compute E[CID] and
its derivatives for L = 256, and the results are similar
to those for smaller system sizes. Therefore, we believe
the absence of the peak in the third derivative of both sd
and E[CID] is not due to finite-size e↵ects but may re-
sult from extremely large noise caused by finite-di↵erence
di↵erentiation.

Not sure whether we really need this paragraph and
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Figure 6. The disorder averaged spin-spin correlation function [hsĩsj̃i] (a) and the free energy cost [he��Fl/2i] (b) as functions
of the tuning parameter p. The vertical line in each figure indicates the estimated critical point p⇤c , extracted from the data
collapse in a window u = (p� p⇤c)L

1/⌫ = [�0.4, 0.4], using autoScale.py [51]. (c) A similar figure to (b), but for smaller system
sizes, which can be estimated using the direct tomography approach.

Figure 7. (a)-(d) E[CID], dE[CID]/dp, d2E[CID]/d2p, and d3E[CID]/d3p as functions of the tuning parameter q obtained by
smoothing the raw data. The insets show the original data. (e)-(h) Same quantities as (a)-(d) with E[CID] replaced by the
diagonal entropy density sd.
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ĩ
s
j̃
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[x] is a floor function that outputs the greatest integer
less than or equal to x (see Fig.5(g) for the system of
L⇥ L Ising vortices with L = 7).

Fig.4(d) shows the typical images xj based on the prob-
ability distribution ⇢xj(0, p) / Zxj(p) at p = 0.05 and
p = 0.15. To obtain quantitative results from these im-
ages, we compute E[CID] and their corresponding deriva-
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Singularity expected in the third-derivative of .
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Further, Lempel-Ziv works for the diagonal

 entropy density, but not subleading terms :(
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Figure 3. (a) E[CID] as a function of the tuning parameter J for the ground state of the (1 + 1)-D TFIM in Eq.(7).
(b) The derivative dE[CID]/dJ as a function of J estimated using the finite-di↵erence method. (c) The subleading term
�E[CID] = 2L[E[CID](2L)�E[CID](L)] for L = 32, 64 as a function of J . (d)-(f) Same quantities as (a)-(c) with E[CID] replaced
by the diagonal entropy density sd = �

P
xj

⇢xj log ⇢xj/N ⇡ �
P

xj2samples log
�
⇢xj

�
/N . All the insets show the results obtained

from smoothing the raw data by locally averaging the nearby data points (see the main text for details).

Figure 4. (a) The three-dimensional phase diagram for the mixed state �(p, q, r) = Er[⇢(p, q)], where Er[·] =
Q

j Ej,r[·],
Ej,r[·] = (1� r)[·] + rXj [·]Xj . The target mixed state ⇢ and the diagonal mixed state ⇢d corresponds to the r = 0 and r = 0.5
plane, respectively. (b) The phase boundaries for ⇢ (solid line) and ⇢d (dashed lines). Note that ⇢ exhibit three phases (Sym,
SSB, and SW-SSB phase) while ⇢d only exhibit two phases (Sym and SW-SSB phase). (c) The phase diagram of ⇢(q, p = 0, r).
Note that the SW-SSB phase only exists along the r = 0.5 line with q > qc. (d) The typical images xj based on the probability
distribution ⇢xj(q, p) at (q, p) = (0.1, 0), (0.25, 0), (0, 0.05), and (0, 0.15). Shall we remove (d)?

trix in the symmetric basis. We will then use this con-
nection to probe the phase diagram using E[CID] and the
diagonal entropy SD.

The Hilbert space of our model consists of qubits on
the vertices of the 2d square lattice. The state of our

interest is obtained as follows: we start with the pure
state

9

Figure 5. (a)-(c) E[CID], dE[CID]/dq, and d2E[CID]/d2q as functions of the tuning parameter q obtained by smoothing the
raw data. The insets show the original data. (d)-(f) Same quantities as (a)-(c) with E[CID] replaced by the diagonal entropy
density sd. (g) The system on the dual lattice of size L⇥L with L = 7. Here the Ising vortices reside on plaquettes, and there
are (L+ 1)⇥ (L+ 1) spins on the dual lattice. The blue cross indicates the creation of the isolated Ising vortex at the center,
which can be implemented by flipping the bonds labeled in the blue color. The red squares indicate the locations ĩ and j̃ when
computing the disorder-averaged spin-spin correlation function [hsĩsj̃i]. (h) The disorder-averaged free energy cost [he��Fl/2i]
as a function of perturbed strength q.

| (q)i =
Y

hi,ji

[(1� q)I + qZiZj ]|xj = 1i (18)

and then subject it to the following strongly symmetric
channel on all edges:

Ehi,ji(p)[·] = (1� p)(·) + pZiZj(·)ZiZj . (19)

The resulting density matrix ⇢(q, p) =Q
hi,ji Ehi,ji(p)[| (q)ih (q)|] then depends on two

tuning parameters. Similar to Sec. III, since we are
interested in the relationship between the “target mixed
state” ⇢(p, q) and the diagonal mixed state ⇢d, obtained
from it through a maximal dephasing channel in the
Pauli-X basis, it is again useful to consider a more gen-
eral three-parameter mixed state �(p, q, r) = Er[⇢(p, q)],
where the channel Er is given by Eq. (9). Thus, the
r = 0 and r = 0.5 planes correspond to ⇢(p, q) and
⇢d(p, q), respectively.

In the following, we will provide arguments that the
phase diagram of the state �(p, q, r) is the one shown in
Fig.4(a). In particular, we will see that all yellow solid
points along the phase boundaries are known through ex-
act mapping to appropriate classical statistical mechan-
ics models. We will first consider the r = 0 plane, which
corresponds to the target mixed state ⇢(q, p) = �(q, p, 0),
and then use a combination of statistical mechanics map-
pings, quantum information inequalities, and perturba-
tive arguments to discuss the three-dimensional global
phase diagram.

Phase diagram in the r = 0 plane: The conjec-
tured phase diagram for the target mixed state ⇢(q, p)

has been discussed in Ref.[47] (more precisely, [47] stud-
ied the phase diagram of the Wegner dual of ⇢(q, p)).
Along the p = 0 line, ⇢(q, 0) = | (q)ih (q)| is the ground
state of a Rokhsar-Kivelson type Hamiltonian [48], and
the paramagnetic to ferromagnetic transition (which oc-

curs at qc = (1�
pp

2� 1)/2 ⇡ 0.178) is described by the
(2+0)-D Ising universality (and not 3+0-D Ising model)
– the dimensional reduction being a common feature of
‘conformal quantum critical points’ [49]. When q > qc,
the system is in the standard SSB phase characterized by
the long-range order in the two-point correlation function
(lim|i�j|!1 tr(⇢ZiZj) = c > 0). On the other hand, the
q = 0 line corresponds to subjecting the zero correlation
length paramagnet state to decoherence, which has al-
ready been studied in Ref.[5]. When p > pc ⇡ 0.109, the
system is in the SW-SSB phase characterized by the long-
range order in the fidelity correlator without the long-
range order in the two-point correlations [11]. From the
results along the lines p = 0 and q = 0, it is then nat-
ural to expect that the system in the whole (q, p)-plane
exhibits three phases: symmetric (Sym), SW-SSB, and
SSB phases. The phase boundary between the SSB phase
and the SW-SSB phase is straight because non-maximal
local decoherence cannot change long-distance correla-
tions of local operators (and therefore, the correlations
along the line q = qc must decay as power-law). The
r = 0 plane in Fig.4(a) shows the conjectured phase dia-
gram. We emphasize that the straight yellow boundary
at q = qc is determined exactly by the long-range order
of the two-point correlation function, while the curved
yellow line is drawn only schematically.

Phase diagram for r 6= 0: Given the understand-
ing of the r = 0 plane, one can now use the prop-
erty that �(q, p, r) = Er[⇢(q, p)] to deduce the topol-
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are (L+ 1)⇥ (L+ 1) spins on the dual lattice. The blue cross indicates the creation of the isolated Ising vortex at the center,
which can be implemented by flipping the bonds labeled in the blue color. The red squares indicate the locations ĩ and j̃ when
computing the disorder-averaged spin-spin correlation function [hsĩsj̃i]. (h) The disorder-averaged free energy cost [he��Fl/2i]
as a function of perturbed strength q.
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2� 1)/2 ⇡ 0.178) is described by the
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system is in the SW-SSB phase characterized by the long-
range order in the fidelity correlator without the long-
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and the SW-SSB phase is straight because non-maximal
local decoherence cannot change long-distance correla-
tions of local operators (and therefore, the correlations
along the line q = qc must decay as power-law). The
r = 0 plane in Fig.4(a) shows the conjectured phase dia-
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at q = qc is determined exactly by the long-range order
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Fig.6(c). From the above discussion, it is clear that one
drawback of sd is that it is not the order parameter dis-
tinguishing di↵erent phases, and the singular part of sd
at the critical point may be di�cult to extract due to the
presence of the non-singular part. However, we are not
aware of any scalable approach to estimate the order pa-
rameters of mixed-state transitions without prior knowl-
edge of the corresponding statistical mechanics model.
Therefore, from a practical point of view, it may be worth
exploring how the direct tomography approach works for
the small system size. This can be done by estimating the
probability distrubution through ⇢xj = Nxj/Ns, where
Ns is the number of samples and Nxj is the number of
times each outcome xj appears. The free energy cost
[he��Fl/2i] =

P
xj

p
⇢xj⇢xj,l can then be obtained by the

direct computation. We use this approach to study the
free energy cost for L = 3, 4, 5, and find that for L = 4,
around 222 ⇡ 4.2⇥106 samples are needed to get the con-
verged results. Fig.6(c) shows [he��Fl/2i] as a function
of p for L = 3, 4, and 5. The vertical line indicates the
estimated critical point p⇤

c
, extracted from the data col-

lapse (shown in the inset) performed using autoScale.py
[51].

V. EXAMPLE 3: PARAMAGNETIC STATE
UNDER LOCAL COHERENT ERROR

We now consider another example of decoherence-
induced transition whose universality class is expected
to be di↵erent from the examples discussed earlier [57].
The mixed state ⇢(�) as a function of the tuning pa-
rameter � can be described as subjecting the fixed-point
paramagnet |xj = 1ihxj = 1| to the strongly symmet-
ric finite-depth channel Ed[U(�)(·)U†(�)], where U(�) =

ei�
P

hi,ji ZiZj . One can regard U(�) as a unitary opera-
tor that creates coherent errors on top of the fixed-point
paramagnet. Such an error can be perfectly recovered by
applying the inverse unitary operator U†(�). However,
if one is unaware of the noise and directly measures the
system in the Pauli-X basis, the observer will obtain the
mixed state ⇢(�). The gauged version of this model has
been studied in Ref.[57], and the system can be mapped
to the (2+0)-D RBIM with complex couplings along the
Nishimori line. Ref. [57] also numerically showed that
a phase transition occurs at � = �c ⇡ 0.14⇡ using free-
fermion techniques. Their results, when translated to
the ungauged model of our interest, imply the existence
of two phases that can be distinguished by the behavior
of the fidelity F (⇢, ZiZj⇢ZiZj). When � < �c, the fi-
delity decayes exponentially as a function of |i � j|. On
the other hand, F (⇢, ZiZj⇢ZiZj) decayes polynomially
as |i � j| when � > �c. We note that this is di↵er-
ent from the SW-SSB state mentioned in Sec.III and IV
where lim|i�j|!1 F (⇢, ZiZj⇢ZiZj) saturates to a finite
constant, and therefore, the mixed state in the regime
� > �c can be regarded as possessing an algebraic/quasi-
long-range SW-SSB order.

Since ⇢(�) is diagonal in the Pauli-X basis for all �,
the diagonal entropy is equivalent to the von Neumann
entropy. The analytical expression of the spectrum can
then be expressed as ⇢xj = |hxj|U(�)|xj = 1i|2. Inserting
a complete Pauli-Z basis I =

P
zj
|zjihzj| between U(�)

and |xji, one finds

⇢xj = |
X

zj

Y

j

z
(1�xj)/2
j ei�

P
hi,ji zizj |2 (28)

/ |
X

s
ĩ

e�
P

hĩ,j̃i Jhĩ,j̃isĩsj̃ |2 = |Zxj(�)|2, (29)

where e2� = i tan(�) and {Jh̃i,j̃i} can be any bond
configurations satisfying

Q
h̃i,j̃i2j

Jh̃i,j̃i = xj . Similar
to Eq.(21), Eq.(29) can be derived from the standard
Kramers-Wannier duality.
Fig.8(a), (b), and (c) display sd, dsd/d�, and d2sd/d2�

respectively, as estimated by CID (after locally aver-
aging the data as previously described). The same
quantities estimated by the direct evalutaion sd ⇡
�
P

xj2samples log
�
⇢xj

�
/N are shown in Fig.8(d), (e), and

(f). In both calculations, we find a peak in the 2nd
derivative of sd at around � ⇡ 0.09. We also compute
log(D(⇢||ZiZj⇢ZiZj))/L, the logarithm of the relative
entropy divided by the length of the system, with the
location i and j being the same as the one employed in
Sec.IV, We find that log(D(⇢||ZcZ0⇢ZcZ0))/L becomes
close to zero close to � ⇡ 0.09, consistent with the peak
estimated from the second derivative of sd. We note that
the position of the critical point ⇡ 0.09 we found is lower
than the one estimate in Ref.[57] (�c ⇡ 0.14). We sus-
pect this discrepancy is due to the limited system size
and the challenge of numerically studying gapless nature
when � > �c using tensor network method.

VI. COMPLEXITY OF ESTIMATING CID

We now examine the complexity of using CID to esti-
mate the diagonal entropy density as a function of system
size L and the number of samples Ns. For simplicity, in
this section we will mainly use the 1+1-D example from
Sec.III with J = 0.6 to estimate CID error and complex-
ity (on a classical computer, generating samples with the
correct probability is the limiting factor, and amongst the
examples we studied, it is easiest to generate the samples
in the 1+1-D example). In all examples considered in the
previous subsections, we noticed that E[CID] approaches
sd as L tends to infinity (see Figs.3,5,7,8). How does
the di↵erence ✏(L) = |E[CID](L)� sd(L)| precisely scale
with the system size L? Strictly speaking, ✏(L) depends
also on Ns, as computing E[CID], requires repeating the
process of preparing the mixed state, performing mea-
surements, and calculating CID Ns times to obtain an
average. We find that when Ns & 2000, and L  128
(which is the maximum system size we consider in this
section), then the error made in estimating CID due to fi-

Subject to the following Ising-symmetry preserving unitary
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Fig.6(c). From the above discussion, it is clear that one
drawback of sd is that it is not the order parameter dis-
tinguishing di↵erent phases, and the singular part of sd
at the critical point may be di�cult to extract due to the
presence of the non-singular part. However, we are not
aware of any scalable approach to estimate the order pa-
rameters of mixed-state transitions without prior knowl-
edge of the corresponding statistical mechanics model.
Therefore, from a practical point of view, it may be worth
exploring how the direct tomography approach works for
the small system size. This can be done by estimating the
probability distrubution through ⇢xj = Nxj/Ns, where
Ns is the number of samples and Nxj is the number of
times each outcome xj appears. The free energy cost
[he��Fl/2i] =
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direct computation. We use this approach to study the
free energy cost for L = 3, 4, 5, and find that for L = 4,
around 222 ⇡ 4.2⇥106 samples are needed to get the con-
verged results. Fig.6(c) shows [he��Fl/2i] as a function
of p for L = 3, 4, and 5. The vertical line indicates the
estimated critical point p⇤
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drawback of sd is that it is not the order parameter dis-
tinguishing di↵erent phases, and the singular part of sd
at the critical point may be di�cult to extract due to the
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aware of any scalable approach to estimate the order pa-
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paramagnet |xj = 1ihxj = 1| to the strongly symmet-
ric finite-depth channel Ed[U(�)(·)U†(�)], where U(�) =

ei�
P

hi,ji ZiZj . One can regard U(�) as a unitary opera-
tor that creates coherent errors on top of the fixed-point
paramagnet. Such an error can be perfectly recovered by
applying the inverse unitary operator U†(�). However,
if one is unaware of the noise and directly measures the
system in the Pauli-X basis, the observer will obtain the
mixed state ⇢(�). The gauged version of this model has
been studied in Ref.[57], and the system can be mapped
to the (2+0)-D RBIM with complex couplings along the
Nishimori line. Ref. [57] also numerically showed that
a phase transition occurs at � = �c ⇡ 0.14⇡ using free-
fermion techniques. Their results, when translated to
the ungauged model of our interest, imply the existence
of two phases that can be distinguished by the behavior
of the fidelity F (⇢, ZiZj⇢ZiZj). When � < �c, the fi-
delity decayes exponentially as a function of |i � j|. On
the other hand, F (⇢, ZiZj⇢ZiZj) decayes polynomially
as |i � j| when � > �c. We note that this is di↵er-
ent from the SW-SSB state mentioned in Sec.III and IV
where lim|i�j|!1 F (⇢, ZiZj⇢ZiZj) saturates to a finite
constant, and therefore, the mixed state in the regime
� > �c can be regarded as possessing an algebraic/quasi-
long-range SW-SSB order.

Since ⇢(�) is diagonal in the Pauli-X basis for all �,
the diagonal entropy is equivalent to the von Neumann
entropy. The analytical expression of the spectrum can
then be expressed as ⇢xj = |hxj|U(�)|xj = 1i|2. Inserting
a complete Pauli-Z basis I =

P
zj
|zjihzj| between U(�)

and |xji, one finds

⇢xj = |
X

zj

Y

j

z
(1�xj)/2
j ei�

P
hi,ji zizj |2 (28)

/ |
X

s
ĩ

e�
P

hĩ,j̃i Jhĩ,j̃isĩsj̃ |2 = |Zxj(�)|2, (29)

where e2� = i tan(�) and {Jh̃i,j̃i} can be any bond
configurations satisfying

Q
h̃i,j̃i2j

Jh̃i,j̃i = xj . Similar
to Eq.(21), Eq.(29) can be derived from the standard
Kramers-Wannier duality.
Fig.8(a), (b), and (c) display sd, dsd/d�, and d2sd/d2�

respectively, as estimated by CID (after locally aver-
aging the data as previously described). The same
quantities estimated by the direct evalutaion sd ⇡
�
P

xj2samples log
�
⇢xj

�
/N are shown in Fig.8(d), (e), and

(f). In both calculations, we find a peak in the 2nd
derivative of sd at around � ⇡ 0.09. We also compute
log(D(⇢||ZiZj⇢ZiZj))/L, the logarithm of the relative
entropy divided by the length of the system, with the
location i and j being the same as the one employed in
Sec.IV, We find that log(D(⇢||ZcZ0⇢ZcZ0))/L becomes
close to zero close to � ⇡ 0.09, consistent with the peak
estimated from the second derivative of sd. We note that
the position of the critical point ⇡ 0.09 we found is lower
than the one estimate in Ref.[57] (�c ⇡ 0.14). We sus-
pect this discrepancy is due to the limited system size
and the challenge of numerically studying gapless nature
when � > �c using tensor network method.

VI. COMPLEXITY OF ESTIMATING CID

We now examine the complexity of using CID to esti-
mate the diagonal entropy density as a function of system
size L and the number of samples Ns. For simplicity, in
this section we will mainly use the 1+1-D example from
Sec.III with J = 0.6 to estimate CID error and complex-
ity (on a classical computer, generating samples with the
correct probability is the limiting factor, and amongst the
examples we studied, it is easiest to generate the samples
in the 1+1-D example). In all examples considered in the
previous subsections, we noticed that E[CID] approaches
sd as L tends to infinity (see Figs.3,5,7,8). How does
the di↵erence ✏(L) = |E[CID](L)� sd(L)| precisely scale
with the system size L? Strictly speaking, ✏(L) depends
also on Ns, as computing E[CID], requires repeating the
process of preparing the mixed state, performing mea-
surements, and calculating CID Ns times to obtain an
average. We find that when Ns & 2000, and L  128
(which is the maximum system size we consider in this
section), then the error made in estimating CID due to fi-

and then measure in the X-basis
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Figure 8. (a)-(c) E[CID], dE[CID]/d�, and d2E[CID]/d2�, as functions of the tuning parameter � obtained by smoothing the
raw data. The insets show the original data. (d)-(f) Same quantities as (a)-(d) with E[CID] replaced by the diagonal entropy
density sd. (g) The disorder-averaged free energy cost [he��Fl/2i] as a function of �.

Figure 9. CID error and complexity of the 1+1-D example from Sec.III with J = 0.6. (a) �CID as a function of the number
of sample Ns for di↵erent system size L (b) ✏ = |E[CID]� sd| as a function of the system size L with Ns = 2000. (c) N⇤

s , the
minimum number of samples such that �CID(L,N

⇤
s )  ↵ · ✏(L), as a function of L for di↵erent values of ↵.

Figure 10. Plots analogous to Figs. 9(a) and (b) for the
RBIM along the Nishimori line with p = 0.1.

nite number of samples, which we denote as �CID(L,Ns),
is much less than the deviation between CID and sd due
to finite L. Therefore, it is reasonable to assume that
✏(L,Ns = 2000) ⇡ ✏(L,Ns ! 1) and simply drop the
Ns dependence in ✏ as long as the system size L  128.

In practice, for a given system size L, one may want
to minimize the number of samples needed to obtain a

reliable estimate sd instead of taking Ns to be arbitrarily
large. This motivates the following question: what’s the
minimum Ns such that �CID(L,Ns)  ↵ ·✏(L) for a given
L, where ↵ is a tunable O(1) value parameter? When this
condition is satisfied, the limiting factor in estimating sd
is the finite system size, and not the finite number of
samples. As just mentioned, when L ⇡ 128, then Ns ⇡
2000 is su�cient to gaurantee that �(L,Ns) ⌧ ↵ · ✏(L),
but let’s say, if L was 50, then one may want to know the
number of samples one needs so that sampling is not the
limiting factor. Therefore, one needs a more systematic
approach.

Let’s first investigate �CID as a function of the num-
ber of samples Ns for di↵erent system sizes L [Fig.9(a)].
Here, �CID is obtained by calculating the standard devi-
ation of CID among the samples and then dividing it byp
Ns. As expected, increasing Ns reduces �CID. The in-

set displays the log-log plot of the main figure, revealing
that �CID ⇠ 1/

p
Ns regardless of the system size L. A

notable property shown in Fig. 9(a) is that for a fixed

Lempel-Ziv

Exact

Exploration limited by ability to generate images with Born rule: 

good opportunity for experiments!
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Figure 11. Plots analogous to Fig. 9(a) for the real and the
complex RBIM along the Nishimori line with p = 0.1 and
� = 0.1⇡, respectively. Here we fix Ns = 2000.

of Ns for di↵erent L. We find that for all system sizes,
�CID(L,Ns) ⇡ �0(L)/

p
Ns, which is the standard behav-

ior for a sampling error. The function �0(L) is a mono-
tonically decreasing function of L. When Ns is large
enough, the main source of deviation is finite L. This
motivates the following question: how many samples are
needed at a fixed L, such that �CID(L,Ns)  ↵✏(L,Ns),
where ↵ is some positive number. We denote the func-
tion that saturates this inequality as N↵

s
(L). When

the number of samples is bigger than N↵

s
(L), the lim-

iting factor is finite L. Fig.10(a) shows N↵

s
(L) for var-

ious ↵ as a function of L, and Fig. shows ✏↵(L) =
|E[CID](L,N↵

s
(L))�sd(L)|. Although the plots thus ob-

tained are more jagged than the ones for Ns ⇠ L, they
are suggestive that ✏↵(L) = |E[CID](L,N↵

s
(L)) � sd(L)|

decays to zero with a similar slope, while the asymptotic
behavior of N↵

s
(L) seems to grow slower than poly(L)

when ↵ & 0.3. These behaviors clearly illustrate the
advantage of E[CID] over a tomographic approach to es-
timate entropy: in tomography, the number of samples
required to achieve the same error increases exponentially
as the system size increases.

The aforementioned scaling behavior also underlines
why extracting subleading terms in the diagonal entropy
is not feasible using the image compression method. For
example, if Sd = s1

d
L + log(2) + O(1/L), then our nu-

merical results imply that the estimated diagonal entropy
equals LE[CID] = s1

d
L+O(L↵) where ↵ ⇡ 0.3. It is not

obvious that the exponent ↵ is universal, and one might
be able to improve upon it by using alternative variants of
the compression scheme, as briefly discussed in Sec.VII.

In addition to the 1+1-D TFIM, we also studied the
scaling behavior of ✏(L,Ns) for the following two states
(a) the state ⇢(p, q = 0) discussed in Sec. IVA2, whose
diagonal entropy corresponds to the disorder-averaged
free energy of the 2D RBIM along the Nishimori line with
real couplings. (b) the state ⇢(�) discussed in Sec.V,
whose diagonal entropy corresponds to the free energy
of the 2D RBIM along the Nishimori line with complex
couplings (in the latter case, we have access to images
for system sizes only up to L ⇡ 16). For simplicity, we
choose Ns = 2000, so that �CID(L,Ns) ⌧ ↵✏(L,Ns), and
the limiting factor is the finite system size (as an aside,
the plot for ✏(L,Ns = 2000) in the 1+1-D TFIM case

is essentially identical to the one shown in Fig.9(a) for
✏(L,Ns ⇠ L)). We find that for both the real and the
complex Nishimori cases, ✏(L,Ns = 2000) decays poly-
nomially with L at the system sizes accessible to us, see
Figs. 11(a), (b).
The above results also have implications for estimating

the derivatives of sd. Let us consider estimating dsd/dJ
using a finite-di↵erence scheme where J is a tuning pa-
rameter. Approximating dsd/dJ at J = J0 as

dsd
dJ

���
J=J0

⇡ sd(J +�J)� sd(J ��J)

2�J
, (32)

there are two sources of errors: (a) Error due to inaccu-
rate estimation of sd — this scales as ✏(L)/�J , where
we have assumed that the number of samples Ns is large
enough so that the limiting factor is finite system size.
(b) Truncation error due to non-zero �J — this scales as
|s(3)|(�J)2 where s(3) = d3sd/dJ3|J=J0 . The total error
then scales as ✏(L)/�J + |s(3)|(�J)2. This analysis im-
plies that the optimal value of �(J) ⇠ (✏(L)/|s(3)|)1/3.
Choosing this optimal value, the error itself scales as
✏(L)2/3|s(3)|1/3. Thus, as long as s(3) does not diverge
with the system size L, derivative estimates can be made
arbitrarily precise by considering larger systems. How-
ever, in the vicinity of a critical point, s(3) typically
does diverge, potentially limiting the accuracy of dsd/dJ .
A similar analysis can be carried out for higher deriva-
tives. A systematic numerical study using this optimal
approach is left for future work.

VII. DISCUSSION

In this paper we explored Lempel-Ziv’s lossless com-
pression algorithm as a scalable scheme to estimate the
Shannon entropy density of the probability distribution
corresponding to the outcomes of projective measure-
ments on a quantum state (“diagonal entropy”). We
verified the validity of this scheme for several problems,
some inspired by recent ideas in the phases of open quan-
tum systems, such as strong-to-weak symmetry breaking.
We also developed a renormalization group and replica-
based approach to diagonal entropy for certain problems
where we applied our scheme. Partly motivated from
our exploration of the diagonal entropy, we also stud-
ied the phase diagram of a 2+1-D quantum paramagnet
subjected to decoherence, and which exhibits a rich phase
diagram consisting of strong-to-weak symmetry breaking
as well as standard paramagnet to ferromagnet transition
(Fig.4).
A basic question is: when does the compression algo-

rithm lead to the asymptotically correct value of the diag-
onal entropy density sd? In all the examples we consider,
a measurement outcome xj = (x1, . . . , xN ) is closely tied
with its Born probability ⇢xj . Specifically, ⇢xj is pro-
portional to the multi-point correlator with respect to

(tensor-network)



An explicit example where the 
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a local action. If the measurement outcome itself is un-
correlated with the Born probability, then we expect that
the image compression will fail to provide an estimate for
the corresponding Shannon entropy. For instance, con-
sider the following mixed state for a system of N qubits:
⇢ = 1

2 (|xAihxA|+ |xBihxB |), where xA and xB are two
specific bit-strings in the Pauli-X basis that are gener-
ated as follows: on a given site i, xA(i) = 1 with probabil-
ity p, and �1 with probability 1�p. Similarly, xB(i) = 1
with probability p, and �1 with probability 1 � p. A
projective measurement on ⇢ in the Pauli-X basis will
always result in one of these two images (xA or xB) and
the Lempel-Ziv compression on either of these images will
result in a CID that equals �p log(p)� (1�p) log(1� p).
However, the diagonal entropy of this state is log(2), and
therefore, the compression scheme fails to obtain the cor-
rect diagonal entropy! The intuitive reason for this fail-
ure is that the Born probability of the images xA and xB

in this example (= 1/2) is completely unrelated to the
structure of bits encoded in the image. We conjecture
that if the Born probability distribution, hxj|⇢|xji, corre-
sponding to the measurement outcomes xj can be related
to the correlators of a local Hamiltonian (see Eq. (5)),
then the computable information density (CID) obtained
via Lempel-Ziv compression scheme will be a faithful ap-
proximation of the Shannon entropy density. Note that
the set of Gibbs states of local Hamiltonians is a proper
subset of such states — for example, the density matrix
corresponding to decohered toric code/paramagnet is not
a Gibbs state of a local Hamiltonian, but nonetheless, the
corresponding probability distribution can be related to
the correlator of a local theory (RBIM along the Nishi-
mori line), and correspondingly, the compression scheme
works in this case (see Fig.11). It is notable that in the
example considered in Sec.V, the action, though local, is
not even real. It would be worthwhile to seek counterex-
amples to this conjecture to sharpen it further.

For testing our scheme, we picked examples where we
were able to calculate the diagonal entropy by other
means, either due to exact solvability of the model (e.g.
1+1-D TFIM) or by using tensor network methods (e.g.
2+1-D paramagnet subjected to local decoherence). This
is primarily because our goal was to test the algorithm,
and also because we do not have access to a quantum
machine that can generate images of a many-body sys-
tem with Born probability. Relatedly, for 2+1-D sys-
tems, we were limited by system sizes for which images
can be generated with the correct Born distribution using
classical methods. Much more interesting are examples
where the images corresponding to the measurement out-
comes can be generated on quantum emulators such as
cold atomic systems (or for that matter, on a quantum
computer), but cannot be generated on a classical com-
puter, e.g., due to the presence of quantum Monte Carlo
sign problem [92, 93] or due to ergodicity issues even in
the absence of sign problem [94–96]. However, in the ab-
sence of another scalable algorithm for estimating sd in
these systems, it might be di�cult to test whether an

image compression algorithm’s result truly converges to
the correct sd in the thermodynamic limit.

It is interesting to speculate about a potential relation
between the singularity of the diagonal entropy and the
ability to perform error correction using measurement
outcomes. For example, as discussed in Ref.[97], one can
perform error correction in the 1+1-D TFIM using mea-
surement outcomes of operators ZiZi+1 (the stabilizers
of the repetition code), right upto the critical point (see
also Ref.[98] for related ideas). Could it be that the non-
singular nature of the diagonal entropy associated with
Pauli-X measurements for J < Jc = 1/2 is an indication
that such a recovery should be possible? (note that from
the low-energy perspective the operators Xi and ZiZi+1

are indistinguishable as they are both Ising symmetric).

Another aspect worth closer investigation is the na-
ture of singularity of the free energy in the RBIM along
the Nishimori line. Although it is well established that
the subleading terms in the free energy (such as domain
wall free energy) are singular across the Nishimori crit-
ical point, it is not clear that the free energy density
(i.e. the coe�cient of the volume-law term in the free
energy) itself is singular. A striking and unusual feature
of this problem is that the expectation value of any local
operator or correlation functions of local operators are
non-singular across the critical point. Although we were
able to accurately estimate sd, which showed no singu-
lar behavior in the vicinity of the transition, we found
estimating its derivatives with respect to the tuning pa-
rameter rather challenging. It might be interesting to
calculate the derivatives of sd using tensor networks as-
sisted by automatic di↵erentiation methods [99].

Another notable aspect is the replica calculation of
the diagonal entropy. In the examples we studied, the
couplings between various replicas were irrelevant in the
replica limit, and therefore, it is reasonable to assume
that the replica limit gives the correct answer for the di-
agonal entropy. However, this need not be the case for
other problems. For example, in the 3+1-D version of the
decohered paramagnet (Eq.20) subjected to maximal de-
phasing, the coupling between replicas is relevant (Eq.28
with D = 3, and ⌫ ⇡ 0.62). It is not obvious if this im-
plies that the diagonal entropy is determined by a new,
non-Ising fixed point, or whether it signals a potential
issue with the replica limit.

Finally, our implementation of the Lempel-Ziv algo-
rithm employed a raster scan, similar to Ref.[65]. This
method is best suited for 1+1-D systems. Nonetheless,
it was adequate for our purposes, as demonstrated by
the monotonic, power-law decay of ✏(L) = |E[CID](L)�
sd(L)| across all studied systems, including those in
2+1-D. As mentioned in Ref.[91], in higher dimensions
a “pattern-matching” scheme to implement Lempel-Ziv
may work better than a raster scan. It will be interesting
to implement such a scheme to estimate diagonal entropy
of quantum systems in two or higher dimensions.

Consider

 are two distinct product states generated as follows: with probability , ,


 and with probability , . Same procedure for .

|xA⟩, |xB⟩ p xA(i) = 1
1 − p xA(i) = − 1 |xB⟩

Clearly, , 


but Lempel-Ziv’s CID

Sd = log(2) ⇒ sd = log(2)/N ≈ 0
= − p log(p) − (1 − p)log(1 − p)

Reason: lack of translational invariance (“stationarity”).



When does the method work? 


[Wyner, Ziv 1993] showed that Lempel-Ziv works for stationary, ergodic processes. 
This seemingly implies that the method gives the correct diagonal entropy density if


the state is translationally invariant, and bit-strings generated do not 

have non-trivial subsequences of non-zero probability that are translationally invariant. 


Even non-Markov chains can be stationary and ergodic. Therefore, even if the 
conditional mutual information in the diagonal density matrix does not decay 

exponentially (while satisfying stationarity and ergodicity), then the method likely 
continues to work. Our numerics results are consistent with this expectation (e.g. the 

Nishimori critical point) but we are limited by size.


More work needed to analytically understand these conditions for physical states.



Summary and questions

We motivated image compression method to efficiently estimate diagonal

 entropy of a quantum state — it seems to track diagonal entropy density


 rather well in the physical examples we tried.

Cold atoms are a natural platform for imaging, but can other methods also work, e.g., 
simultaneous NV-sensing of  N >> 1 spins in a chosen basis?


One may not need single-site resolution — a course grained image 

may also work to extract universal physics.

Image compression methods to estimate relative entropy between

two distributions? (guess: use one image as a “dictionary” for another).

RG/field-theory understanding of Lempel-Ziv compression?

If there exists no other method to estimate diagonal entropy,

how would one know that it has been estimated correctly in an experiment?


Can one encode NP hard problems in the estimation of diagonal entropy?



log(ϵ) ≈ − 0.42 log(L) − 0.5

Scaling of  at 

the 1+1-D TFIM critical point

ϵ = |sd − CID |


