
Separability as a window into 
many-body mixed states

Tarun Grover
(UCSD)

Yu-Hsueh Chen 
(UCSD)

2309.11879 (PRL 132, 170602, 2024), 

2310.07286, 2403.06553



Quantum Phases of Matter beyond pure states?
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Correctable phase

Phase diagram of 2D toric code in the

presence of decoherence

Non-correctable phase

p = error rate
[Dennis, Kitaev, 

Landahl, Preskill 2001]
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Quantum Phases of Matter beyond pure states?

Several interesting developments:


Equivalence between mixed-state phases [Coser, Perez-Garcia ’19; Rakovszky, Gopalakrishnan, Keyserlingk ’23; 
Koenig, Pastawski ’13; Hastings ’11].

Renormalization group approach and quantum error correction [Sang, Zou, Hsieh ’23; Sang, Hsieh ’24;

Lavasani, Vijay ’24].

Weak vs strong symmetries, corresponding SSB, and mixed-state SPTs [de Groot, Turzillo, Schuch ’22; Ma, 
Wang ’22; Li, Jian, Xu ’23; Ma et al ’23, Lessa et al ’24; Sala et al ’24,…].

Various entanglement measures [Lu, Hsieh, TG ’20; Fan, Bao, Altman, Vishwanath ’23,…].

Replica-based approach [Bao, Fan, Altman, Vishwanath ’23; Li, Jian, Xu ’23; Zou, Sang, Hsieh ’23, Li, Mong ’24,…].

Intrinsically mixed topological states, and higher-form symmetries [Wang, Wu, Wang ’23; Sohal, Prem ’24; 
Ellison, Cheng ’24; Li, Lee, Yoshida ’24,…].

LSM constraints/anomalies [Kawabata, Sohal, Ryu ’23; Zhou, Li, Li, Gu ’23; Hsin, Luo, Sun ’23; Lessa, Cheng, Wang 
’24; Wang, Li ’24,…].
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Zeroth Order question:


When is a mixed state unentangled (“separable”)?

In this talk we will employ a rather coarse characterization based

 on mixed-state entanglement, and discuss a few examples.



Separable (= Unentangled) Mixed States
Iff a density matrix  admits a decompositionρ

ρ = ∑
i

pi |ψi⟩⟨ψi | , with pi > 0

where each  is unentangled between parties A and B i.e. 
, then  is bipartite separable (i.e. unentangled).

|ψi⟩
|ψi⟩ = |ϕi,A⟩ ⊗ |ϕi,B⟩ ρ

[Werner 1989]



Separable (= Unentangled) Mixed States

1�
2
(| �� | �� � | �� | ��)

separable non-separable

0 1/3 1 p

Example:

where

Many-body analogs?

Iff a density matrix  admits a decompositionρ

ρ = ∑
i

pi |ψi⟩⟨ψi | , with pi > 0

where each  is unentangled between parties A and B i.e. 
, then  is bipartite separable (i.e. unentangled).

|ψi⟩
|ψi⟩ = |ϕi,A⟩ ⊗ |ϕi,B⟩ ρ

[Werner 1989]
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FIG. 1. (a) Topological orders under local decoherence can undergo a separability transition, where only above a certain
critical error rate, the decohered mixed state ⇢dec can be written as a convex sum of SRE pure states. The bottom depicts the
parent cluster states and their o↵spring models obtained by appropriate measurements (indicated by an arrow) (b) 2d cluster
Hamiltonian and 2d toric code, (c) 3d cluster Hamiltonian and 3d toric code, and (d) “Cluster-X” Hamiltonian [23] and the
X-cube Hamiltonian.
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If a density matrix admits a decomposition  where each


  is short-ranged entangled (i.e. can be prepared via a finite-depth, local, unitary 
circuit), then we will call  a “short-ranged entangled (SRE) mixed-state”.

ρ = ∑
i

pi |ψi⟩⟨ψi |

|ψi⟩
ρ

Short-ranged entangled (SRE) mixed states 
= generalization of separability to many-body setup

|ψ1⟩ |ψ2⟩

probability p1 probability p2

…

circuit depth

= constant

= L0

L

[Hastings 1106.6026]



Infinitely many decompositions of a density matrix into pure states (!)

Separability transitions in topological states induced by local decoherence

Yu-Hsueh Chen and Tarun Grover
Department of Physics, University of California at San Diego, La Jolla, California 92093, USA

We study states with intrinsic topological order subjected to local decoherence from the perspective
of separability, i.e., whether a decohered mixed state can be expressed as an ensemble of short-range
entangled (SRE) pure states. We focus on toric codes and the X-cube fracton state and provide
evidence for the existence of decoherence-induced separability transitions that precisely coincide with
the threshold for the feasibility of active error correction. A key insight is that local decoherence
acting on the ‘parent’ cluster states of these models results in a Gibbs state. As an example, for
the 2d (3d) toric code subjected to bit-flip errors, we show that the decohered density matrix can
be written as a convex sum of SRE states for p > pc, where pc is related to the paramagnetic-
ferromagnetic transition in the 2d (3d) random-field bond Ising model along the Nishimori line.

In this work we will explore aspects of many-body topological states subjected to decoherence from the perspective
of separability, i.e., whether the resulting mixed state can be expressed as a convex sum of short-range entangled (SRE)
states [1–3]. This criteria is central to the definition of what constitutes an SRE or long-range entangled (LRE) mixed
state, and various measures of mixed-state entanglement, such as negativity[3–8] and entanglement of formation [9],
are defined so as to quantify non-separability. We will be particularly interested in decoherence-induced “separability
transitions”, i.e., transitions tuned by decoherence such that the density matrix in one regime is expressible as a convex
sum of SRE states, and in the other regime, it is not. One salient distinction between pure state versus mixed-state
dynamics is that although a short-depth unitary evolution cannot change long-range entanglement encoded in a pure
state, a short-depth local channel can fundamentally alter long-range mixed-state entanglement. Therefore, even the
limited class of mixed states that are obtained by the action of local short-depth channels on an entangled pure state
o↵er an opportunity to explore mixed-state phases and phase transitions [10–22]. We will focus on mixed states that
are obtained via subjecting several well-understood topologically ordered phases of matter to short-depth quantum
channels.
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Error-threshold theorems [24–29] suggest a topologically ordered pure state is perturbatively stable against deco-
herence from a short-depth, local quantum channel, leading to the possibility of a phase transition as a function of
the decoherence rate [30]. Such transitions were originally studied from the perspective of quantum error correction
(QEC) in Refs.[31, 32] and more recently using mixed-state entanglement measures such as topological negativity [14],
and other non-linear functions of the density matrix (Refs.[13–15]). These approaches clearly establish at least two
di↵erent mixed-state phases: one where the topological qubit can be decoded, and the other where it can’t. However,
it is not obvious if the density matrix in the regime where decoding fails can be expressed as a convex sum of SRE
pure states, which, following Refs.[1, 2], we will take as the definition of an SRE mixed state. Our main result is that
for several topologically ordered phases subjected to local decoherence, which are relevant for quantum computing
[31–33], one can explicitly write down the decohered mixed state as a convex sum of pure states which we argue all
undergo a topological phase transition, from being long-ranged entangled to short-ranged entangled, at a threshold
that precisely corresponds to the optimal threshold for QEC. We find that the universality class of such a separability
transition also coincides with that corresponding to the QEC error-recovery transition. Therefore, in these exam-
ples, we argue that the error-recovery transition does indeed coincide with a many-body separability transition. As
discussed below, our method also provides a new route to obtain the statistical mechanics models relevant for the
quantum error-correcting codes [14, 31, 32, 34].

Let us begin by considering the ground state of the 2d toric code (see Fig.1(b)) with Hamiltonian H2d toric =

No general algorithm to determine if it is SRE/LRE.



A few useful tools:

• Explicit demonstration that a density matrix is SRE (for simple models).


• Lieb-Robinson bounds to show LRE (= long-range entangled i.e. not SRE).


• Anomaly (e.g. Lieb-Schultz-Mattis) based arguments.


• (Heuristic) Mixed-state entanglement measures such as negativity.

Infinitely many decompositions of a density matrix into pure states (!)
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Quantum entanglement vs classical long-range correlations

Coser, Perez-Garcia (1810.05092): Two mixed states in the same phase if they can 
be connected via finite time, local Lindbladian evolution.

Example: |00...0⟩⟨00...0 | 1
2 ( |00...0⟩⟨00...0 | + |11...1⟩⟨11...1 |)

belong to different phases of matter due to long-range classical 
correlations in (b).

However, both states are unentangled, and hence “trivial” from separability perspective.

One may also define an SRE mixed state as one that has an SRE purification 
(e.g. Ma, Wang 2209.02723). In this definition, classical correlations will again 
be regarded as non-trivial (e.g. state (b) has no SRE purification).

(a) (b)



Outline

• Decoherence induced separability transitions.


A. Topological ordered states.


B. SPT states.


C. Chiral states.


• Separability transitions in Gibbs states.



Decoding transition as a separability transition
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• Logical qubit lost to environment for p  pc (as detected via “coherent information”).


• Renyi negativity also shows a phase transition from log(2) to zero.


• “Markov length” diverges at p = pc  [Sang, Hsieh 2024].

≥

Recent works, in particular, Fan, Bao, Altman, Vishwanath [2301.05689; 2301.05687], 
and Lee, Jian, Xu [2301.05238] have formulated decoding transition as an intrinsic 

transition for the decohered mixed-state.

pc

Correctable phase Non-correctable phase

p = error rate

Can one show that the density matrix is SRE in the non-correctable phase?

Decoding transition as a separability transition



Decohered density matrix

4

is the partition function of the 2d Ising model with Ising interactions determined by {xe}. Thus, ⇢ /
P

xe
Z2d Ising,xe |⌦xeih⌦xe |,

where |⌦xei /
Q

v
(I +

Q
e3v

Ze)|xei are nothing but a subset of toric code eigenstates. Note that in this derivation,
the 2d Ising model emerges due to the he terms in the parent cluster Hamiltonian, and ultimately, this will lead to the
relation between the separability transition and the statistical mechanics of the 2d random-bond Ising model (RBIM)
that also describes the error-recovery transition [31]. We note that the above spectral representation of ⇢ in terms
of toric code eigenstates has also previously appeared in Ref.[13], using a di↵erent derivation. Since non-contractible
cycles of the torus will play an important role below, let us note that distinct eigenstates |⌦xei can be uniquely
specified by two labels: the first label corresponds to the set of local Z2 fluxes fp =

Q
e2p

xe through elementary
plaquettes p, while the second label L = (Lx = ±1, Ly = ±1) with Lx =

Q
e2`,ekx̂

xe, Ly =
Q

e2`,ekŷ
xe and ` a

non-contractible loop along x̂/ŷ direction, specifies the topological sector (‘Logical data’) in which |⌦xei lives.
We now probe the mixed state ⇢ using the separability criteria, i.e., we ask whether it can be decomposed as a

convex sum of SRE states. Clearly, the aforementioned spectral representation is not a useful decomposition since it
involves toric code eigenstates which are all LRE. Taking cue from the argument for separability of the Gibbs state
of toric codes [43], we decompose ⇢ as
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| mi

hze|
p
⇢ ⌘

X

m

| mih m| (20)
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where {ze} are a complete set of product states in the Pauli-Z basis, and | mi = ⇢
1/2|zei. Generically, to determine

whether ⇢ is an SRE mixed state, one needs to determine whether each | mi is SRE. However, for the current case
of interest, it su�ces to consider only | i = ⇢

1/2|m0i with |m0i = |ze = 1i. The reason is as follows. The Gauss’s
law (

Q
e3v

Ze = 1) implies that the Hilbert space only contains states that are closed loops in the Z basis. Therefore,
one may write |mi = gx|m0i where gx is a product of single-site Pauli-Xs forming closed loops. Since [gx, ⇢] = 0, this
implies that

| 
m
i = Ugx | (p)i (22)

and therefore, if | i is SRE (LRE), so is | gxi. ⇢(�) may then be written as:

⇢(p) =
X

gx

Ugx | (p)ih (p)|U†

gx
(23)

. Now, using the aforementioned spectral representation of ⇢, the (non-normalized) state | i = ⇢
1/2|ze = 1i is:

p
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Error-threshold theorems [24–29] suggest a topologically ordered pure state is perturbatively stable against deco-
herence from a short-depth, local quantum channel, leading to the possibility of a phase transition as a function of
the decoherence rate [30]. Such transitions were originally studied from the perspective of quantum error correction
(QEC) in Refs.[31, 32] and more recently using mixed-state entanglement measures such as topological negativity [14],
and other non-linear functions of the density matrix (Refs.[13–15]). These approaches clearly establish at least two
di↵erent mixed-state phases: one where the topological qubit can be decoded, and the other where it can’t. However,
it is not obvious if the density matrix in the regime where decoding fails can be expressed as a convex sum of SRE
pure states, which, following Refs.[1, 2], we will take as the definition of an SRE mixed state. Our main result is that
for several topologically ordered phases subjected to local decoherence, which are relevant for quantum computing
[31–33], one can explicitly write down the decohered mixed state as a convex sum of pure states which we argue all
undergo a topological phase transition, from being long-ranged entangled to short-ranged entangled, at a threshold
that precisely corresponds to the optimal threshold for QEC. We find that the universality class of such a separability
transition also coincides with that corresponding to the QEC error-recovery transition. Therefore, in these exam-
ples, we argue that the error-recovery transition does indeed coincide with a many-body separability transition. As
discussed below, our method also provides a new route to obtain the statistical mechanics models relevant for the
quantum error-correcting codes [14, 31, 32, 34].

Let us begin by considering the ground state of the 2d toric code (see Fig.1(b)) with Hamiltonian H2d toric =
�
P

v
(
Q

e2v
Ze) �

P
p
(
Q

e2p
Xe) subjected to phase-flip errors. The Hilbert space consists of qubits residing on the

edges (denoted as ‘e’) of a square lattice and we assume periodic boundary conditions. Denoting the ground state
as ⇢0, the Kraus map corresponding to the phase-flip errors act on an edge e as: Ee[⇢0] = pZe⇢0Ze + (1 � p)⇢0, and
the full map is given by the composition of this map over all edges. The key first step is to utilize the idea of duality
[35–39] by identifying the corresponding ‘parent’ cluster Hamiltonian (in the sense of Refs.[23, 40–42]). Interestingly,
the application of the aforementioned Kraus map to its ground state results in a Gibbs state. For the problem at
hand, consider H2d cluster =

P
v
hv +

P
e
he where hv = �Xv(

Q
e3v

Ze) and he = �Xe(
Q

v2e
Zv) whose Hilbert space

consists of qubits both on the vertices and the edges of the square lattice (Fig.1(b)). The ground state density matrix
⇢0 of the 2d toric code can be written as ⇢0 / hxv = 1|⇢C,0|xv = 1i, where |xv = 1i = ⌦v|xv = 1i is the product state
in the Pauli-X basis, and ⇢C,0 (/

Q
e
(I � he)

Q
v
(I � hv)) is the ground state of H2d cluster. The projection selects

one specific ground state of the toric code that is an eigenvector of the non-contractible Wilson loops W` =
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Xe

with eigenvalue +1 along both cycles ` of the torus. A simple calculation shows that Ee[⇢C,0] / e
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where
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This implies that the decohered density matrix ⇢ of the toric code is ⇢ / hxv = 1|e��
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local channel:
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Error-threshold theorems [24–29] suggest a topologically ordered pure state is perturbatively stable against deco-
herence from a short-depth, local quantum channel, leading to the possibility of a phase transition as a function of
the decoherence rate [30]. Such transitions were originally studied from the perspective of quantum error correction
(QEC) in Refs.[31, 32] and more recently using mixed-state entanglement measures such as topological negativity [14],
and other non-linear functions of the density matrix (Refs.[13–15]). These approaches clearly establish at least two
di↵erent mixed-state phases: one where the topological qubit can be decoded, and the other where it can’t. However,
it is not obvious if the density matrix in the regime where decoding fails can be expressed as a convex sum of SRE
pure states, which, following Refs.[1, 2], we will take as the definition of an SRE mixed state. Our main result is that
for several topologically ordered phases subjected to local decoherence, which are relevant for quantum computing
[31–33], one can explicitly write down the decohered mixed state as a convex sum of pure states which we argue all
undergo a topological phase transition, from being long-ranged entangled to short-ranged entangled, at a threshold
that precisely corresponds to the optimal threshold for QEC. We find that the universality class of such a separability
transition also coincides with that corresponding to the QEC error-recovery transition. Therefore, in these exam-
ples, we argue that the error-recovery transition does indeed coincide with a many-body separability transition. As
discussed below, our method also provides a new route to obtain the statistical mechanics models relevant for the
quantum error-correcting codes [14, 31, 32, 34].

Let us begin by considering the ground state of the 2d toric code (see Fig.1(b)) with Hamiltonian H2d toric =
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Xe) subjected to phase-flip errors. The Hilbert space consists of qubits residing on the

edges (denoted as ‘e’) of a square lattice and we assume periodic boundary conditions. Denoting the ground state
as ⇢0, the Kraus map corresponding to the phase-flip errors act on an edge e as: Ee[⇢0] = pZe⇢0Ze + (1 � p)⇢0, and
the full map is given by the composition of this map over all edges. The key first step is to utilize the idea of duality
[35–39] by identifying the corresponding ‘parent’ cluster Hamiltonian (in the sense of Refs.[23, 40–42]). Interestingly,
the application of the aforementioned Kraus map to its ground state results in a Gibbs state. For the problem at
hand, consider H2d cluster =
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he where hv = �Xv(
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Ze) and he = �Xe(
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Zv) whose Hilbert space

consists of qubits both on the vertices and the edges of the square lattice (Fig.1(b)). The ground state density matrix
⇢0 of the 2d toric code can be written as ⇢0 / hxv = 1|⇢C,0|xv = 1i, where |xv = 1i = ⌦v|xv = 1i is the product state
in the Pauli-X basis, and ⇢C,0 (/
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(I � hv)) is the ground state of H2d cluster. The projection selects
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��

P
e he

Q
v
(I � hv)

where

tanh(�) = 1� 2p (18)

This implies that the decohered density matrix ⇢ of the toric code is ⇢ / hxv = 1|e��
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for the quantum error-correcting codes [14, 31, 32, 34].
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is the partition function of the 2d Ising model
with Ising interactions determined by {xe}. Thus,
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e3v
Ze)|xei are nothing but a subset of toric code

eigenstates. Note that in this derivation, the 2d Ising
model emerges due to the he terms in the parent clus-
ter Hamiltonian, and ultimately, this will lead to the re-
lation between the separability transition and the sta-
tistical mechanics of the 2d random-bond Ising model
(RBIM) that also describes the error-recovery transition
[31]. We note that the above spectral representation of
⇢ in terms of toric code eigenstates has also previously
appeared in Ref.[13], using a di↵erent derivation. Since
non-contractible cycles of the torus will play an impor-
tant role below, let us note that distinct eigenstates |⌦xei
can be uniquely specified by two labels: the first label
corresponds to the set of local Z2 fluxes fp =

Q
e2p

xe

through elementary plaquettes p, while the second label
L = (Lx = ±1, Ly = ±1) with Lx =

Q
e2`,ekx̂ xe, Ly =

Q
e2`,ekŷ xe and ` a non-contractible loop along x̂/ŷ di-

rection, specifies the topological sector (‘Logical data’)
in which |⌦xei lives.

We now probe the mixed state ⇢ using the separabil-
ity criteria, i.e., we ask whether it can be decomposed
as a convex sum of SRE states. Clearly, the aforemen-
tioned spectral representation is not a useful decompo-
sition since it involves toric code eigenstates which are
all LRE. Taking cue from the argument for separabil-
ity of the Gibbs state of toric codes [43], we decompose
⇢ as ⇢ =

P
ze
⇢
1/2|zeihze|⇢1/2 ⌘

P
m
| mih m| where

{ze} are a complete set of product states in the Pauli-
Z basis, and | mi = ⇢

1/2|zei. Generically, to determine
whether ⇢ is an SRE mixed state, one needs to determine
whether each | mi is SRE. However, for the current case
of interest, it su�ces to consider only | i = ⇢

1/2|m0i
with |m0i = |ze = 1i. The reason is as follows. The
Gauss’s law (

Q
e3v

Ze = 1) implies that the Hilbert space
only contains states that are closed loops in the Z ba-
sis. Therefore, one may write |mi = gx|m0i where gx is
a product of single-site Pauli-Xs forming closed loops.
Since [gx, ⇢] = 0, this implies that | 

m
i ⌘ | gxi = gx| i,

and therefore, if | i is SRE (LRE), so is | gxi. ⇢(�) may
then be written as:

⇢(p) =
X

gx

U
†
gx
| (p)ih (p)|Ugx (2)

. Now, using the aforementioned spectral representa-
tion of ⇢, the (non-normalized) state | i = ⇢

1/2|ze = 1i
is:

| (p)i /
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[Z2d Ising,xe(p)]
1/2|xei, (3)

It is easy to see that when � = 1, | i / |⌦0i, the non-
decohered toric code ground state, while when � = 0,
| i / |ze = 1i is a product state. This suggests a phase
transition for | (�)i from being an LRE state to an SRE
state as we increase the error rate p (i.e. decrease �). We
will now show that this is indeed the case.

We first consider the expectation value of the ‘anyon
condensation operator’ (also known as ‘t Hooft loop) in
state | (�)i, defined as [15, 44–46] T˜̀=

Q
e2˜̀Ze, where ˜̀

denotes a homologically non-contractible loop on the dual
lattice (in the language of Z2 gauge theory [46, 47], Ze ⇠
e
i⇡(Electric field)e). Physically, hT˜̀i ⌘ h |T˜̀| i/h | i is
the amplitude of tunneling from one logical subspace to
an orthogonal one, and therefore it is zero in the Z2

topologically ordered phase, and non-zero in the topo-
logically trivial phase (=anyon condensed phase) [48].
Indeed, one may easily verify that hT˜̀i = 0 (1) when
� = 1 (� = 0). Using Eq.(3), T˜̀ flips spins along the

curve ˜̀ (i.e., xe ! �xe, 8e 2 ˜̀), and we denote the
corresponding configuration as x˜̀,e. While x˜̀,e and xe

have the same flux through every elementary plaque-
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Xe) subjected to phase-flip

errors. The Hilbert space consists of qubits residing
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ground state as ⇢0, the Kraus map corresponding to
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pZe⇢0Ze + (1 � p)⇢0, and the full map is given by the
composition of this map over all edges. The key first
step is to utilize the idea of duality [35–39] by identifying
the corresponding ‘parent’ cluster Hamiltonian (in the
sense of Refs.[23, 40–42]). Interestingly, the application
of the aforementioned Kraus map to its ground state re-
sults in a Gibbs state. For the problem at hand, consider
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he where hv = �Xv(
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e3v
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and he = �Xe(
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Zv) whose Hilbert space consists
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hxv = 1|⇢C,0|xv = 1i, where |xv = 1i = ⌦v|xv = 1i
is the product state in the Pauli-X basis, and ⇢C,0 (/Q

e
(I �he)

Q
v
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(RBIM) that also describes the error-recovery transition
[31]. We note that the above spectral representation of
⇢ in terms of toric code eigenstates has also previously
appeared in Ref.[13], using a di↵erent derivation. Since
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| i / |ze = 1i is a product state. This suggests a phase
transition for | (�)i from being an LRE state to an SRE
state as we increase the error rate p (i.e. decrease �). We
will now show that this is indeed the case.

We first consider the expectation value of the ‘anyon
condensation operator’ (also known as ‘t Hooft loop) in
state | (�)i, defined as [15, 44–46] T˜̀=
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e2˜̀Ze, where ˜̀
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the amplitude of tunneling from one logical subspace to
an orthogonal one, and therefore it is zero in the Z2
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is the partition function of the 2d Ising model with Ising interactions determined by {xe}. Thus, ⇢ /
P

xe
Z2d Ising,xe |⌦xeih⌦xe |,
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the 2d Ising model emerges due to the he terms in the parent cluster Hamiltonian, and ultimately, this will lead to the
relation between the separability transition and the statistical mechanics of the 2d random-bond Ising model (RBIM)
that also describes the error-recovery transition [31]. We note that the above spectral representation of ⇢ in terms
of toric code eigenstates has also previously appeared in Ref.[13], using a di↵erent derivation. Since non-contractible
cycles of the torus will play an important role below, let us note that distinct eigenstates |⌦xei can be uniquely
specified by two labels: the first label corresponds to the set of local Z2 fluxes fp =
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non-contractible loop along x̂/ŷ direction, specifies the topological sector (‘Logical data’) in which |⌦xei lives.
We now probe the mixed state ⇢ using the separability criteria, i.e., we ask whether it can be decomposed as a

convex sum of SRE states. Clearly, the aforementioned spectral representation is not a useful decomposition since it
involves toric code eigenstates which are all LRE. Taking cue from the argument for separability of the Gibbs state
of toric codes [43], we decompose ⇢ as
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where {ze} are a complete set of product states in the Pauli-Z basis, and | mi = ⇢
1/2|zei. Generically, to determine

whether ⇢ is an SRE mixed state, one needs to determine whether each | mi is SRE. However, for the current case
of interest, it su�ces to consider only | i = ⇢

1/2|m0i with |m0i = |ze = 1i. The reason is as follows. The Gauss’s
law (

Q
e3v

Ze = 1) implies that the Hilbert space only contains states that are closed loops in the Z basis. Therefore,
one may write |mi = gx|m0i where gx is a product of single-site Pauli-Xs forming closed loops. Since [gx, ⇢] = 0, this
implies that
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and therefore, if | i is SRE (LRE), so is | gxi. ⇢(�) may then be written as:
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(23)

. Now, using the aforementioned spectral representation of ⇢, the (non-normalized) state | i = ⇢
1/2|ze = 1i is:
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Error-threshold theorems [24–29] suggest a topologically ordered pure state is perturbatively stable against deco-
herence from a short-depth, local quantum channel, leading to the possibility of a phase transition as a function of
the decoherence rate [30]. Such transitions were originally studied from the perspective of quantum error correction
(QEC) in Refs.[31, 32] and more recently using mixed-state entanglement measures such as topological negativity [14],
and other non-linear functions of the density matrix (Refs.[13–15]). These approaches clearly establish at least two
di↵erent mixed-state phases: one where the topological qubit can be decoded, and the other where it can’t. However,
it is not obvious if the density matrix in the regime where decoding fails can be expressed as a convex sum of SRE
pure states, which, following Refs.[1, 2], we will take as the definition of an SRE mixed state. Our main result is that
for several topologically ordered phases subjected to local decoherence, which are relevant for quantum computing
[31–33], one can explicitly write down the decohered mixed state as a convex sum of pure states which we argue all
undergo a topological phase transition, from being long-ranged entangled to short-ranged entangled, at a threshold
that precisely corresponds to the optimal threshold for QEC. We find that the universality class of such a separability
transition also coincides with that corresponding to the QEC error-recovery transition. Therefore, in these exam-
ples, we argue that the error-recovery transition does indeed coincide with a many-body separability transition. As
discussed below, our method also provides a new route to obtain the statistical mechanics models relevant for the
quantum error-correcting codes [14, 31, 32, 34].

Let us begin by considering the ground state of the 2d toric code (see Fig.1(b)) with Hamiltonian H2d toric =
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v
(
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e2v
Ze) �

P
p
(
Q

e2p
Xe) subjected to phase-flip errors. The Hilbert space consists of qubits residing on the

edges (denoted as ‘e’) of a square lattice and we assume periodic boundary conditions. Denoting the ground state
as ⇢0, the Kraus map corresponding to the phase-flip errors act on an edge e as: Ee[⇢0] = pZe⇢0Ze + (1 � p)⇢0, and
the full map is given by the composition of this map over all edges. The key first step is to utilize the idea of duality
[35–39] by identifying the corresponding ‘parent’ cluster Hamiltonian (in the sense of Refs.[23, 40–42]). Interestingly,
the application of the aforementioned Kraus map to its ground state results in a Gibbs state. For the problem at
hand, consider H2d cluster =

P
v
hv +

P
e
he where hv = �Xv(

Q
e3v

Ze) and he = �Xe(
Q

v2e
Zv) whose Hilbert space

consists of qubits both on the vertices and the edges of the square lattice (Fig.1(b)). The ground state density matrix
⇢0 of the 2d toric code can be written as ⇢0 / hxv = 1|⇢C,0|xv = 1i, where |xv = 1i = ⌦v|xv = 1i is the product state
in the Pauli-X basis, and ⇢C,0 (/

Q
e
(I � he)

Q
v
(I � hv)) is the ground state of H2d cluster. The projection selects

one specific ground state of the toric code that is an eigenvector of the non-contractible Wilson loops W` =
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e2`
Xe

with eigenvalue +1 along both cycles ` of the torus. A simple calculation shows that Ee[⇢C,0] / e
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e he
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where

tanh(�) = 1� 2p (18)

This implies that the decohered density matrix ⇢ of the toric code is ⇢ / hxv = 1|e��
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where ⇢e =
P

xe
Z2d Ising,xe |xeihxe| and

Z2d Ising,xe(p) =
X

zv

e
�
P

e xe
Q

v2e zv (19)

local channel:

3

H = H2D toric code + h

X

i

Xi (14)

H = H3D toric code + h

X

i

Xi (15)

H = H4D toric code + h

X

i

Xi (16)

⇢ =
1

Z

X

m

e
��H/2|mihm|e��H/2 =

1

Z

X

m

|�mih�m| (17)

Error-threshold theorems [24–29] suggest a topologically ordered pure state is perturbatively stable against deco-
herence from a short-depth, local quantum channel, leading to the possibility of a phase transition as a function of
the decoherence rate [30]. Such transitions were originally studied from the perspective of quantum error correction
(QEC) in Refs.[31, 32] and more recently using mixed-state entanglement measures such as topological negativity [14],
and other non-linear functions of the density matrix (Refs.[13–15]). These approaches clearly establish at least two
di↵erent mixed-state phases: one where the topological qubit can be decoded, and the other where it can’t. However,
it is not obvious if the density matrix in the regime where decoding fails can be expressed as a convex sum of SRE
pure states, which, following Refs.[1, 2], we will take as the definition of an SRE mixed state. Our main result is that
for several topologically ordered phases subjected to local decoherence, which are relevant for quantum computing
[31–33], one can explicitly write down the decohered mixed state as a convex sum of pure states which we argue all
undergo a topological phase transition, from being long-ranged entangled to short-ranged entangled, at a threshold
that precisely corresponds to the optimal threshold for QEC. We find that the universality class of such a separability
transition also coincides with that corresponding to the QEC error-recovery transition. Therefore, in these exam-
ples, we argue that the error-recovery transition does indeed coincide with a many-body separability transition. As
discussed below, our method also provides a new route to obtain the statistical mechanics models relevant for the
quantum error-correcting codes [14, 31, 32, 34].

Let us begin by considering the ground state of the 2d toric code (see Fig.1(b)) with Hamiltonian H2d toric =
�
P

v
(
Q

e2v
Ze) �

P
p
(
Q

e2p
Xe) subjected to phase-flip errors. The Hilbert space consists of qubits residing on the

edges (denoted as ‘e’) of a square lattice and we assume periodic boundary conditions. Denoting the ground state
as ⇢0, the Kraus map corresponding to the phase-flip errors act on an edge e as: Ee[⇢0] = pZe⇢0Ze + (1 � p)⇢0, and
the full map is given by the composition of this map over all edges. The key first step is to utilize the idea of duality
[35–39] by identifying the corresponding ‘parent’ cluster Hamiltonian (in the sense of Refs.[23, 40–42]). Interestingly,
the application of the aforementioned Kraus map to its ground state results in a Gibbs state. For the problem at
hand, consider H2d cluster =

P
v
hv +

P
e
he where hv = �Xv(

Q
e3v

Ze) and he = �Xe(
Q

v2e
Zv) whose Hilbert space

consists of qubits both on the vertices and the edges of the square lattice (Fig.1(b)). The ground state density matrix
⇢0 of the 2d toric code can be written as ⇢0 / hxv = 1|⇢C,0|xv = 1i, where |xv = 1i = ⌦v|xv = 1i is the product state
in the Pauli-X basis, and ⇢C,0 (/

Q
e
(I � he)

Q
v
(I � hv)) is the ground state of H2d cluster. The projection selects

one specific ground state of the toric code that is an eigenvector of the non-contractible Wilson loops W` =
Q

e2`
Xe

with eigenvalue +1 along both cycles ` of the torus. A simple calculation shows that Ee[⇢C,0] / e
��

P
e he

Q
v
(I � hv)

where

tanh(�) = 1� 2p (18)

This implies that the decohered density matrix ⇢ of the toric code is ⇢ / hxv = 1|e��
P

e he |xv = 1iPZ where
PZ =

Q
v
(I +

Q
e3v

Ze). By inserting a complete set of states, one may simplify the above expression as ⇢ / PZ⇢ePZ

where ⇢e =
P

xe
Z2d Ising,xe |xeihxe| and

Z2d Ising,xe(p) =
X

zv

e
�
P

e xe
Q

v2e zv (19)

Z

Z
Z

Z X

X

X

X

3

H = H2D toric code + h

X

i

Xi (14)

H = H3D toric code + h

X

i

Xi (15)

H = H4D toric code + h

X

i

Xi (16)

⇢ =
1

Z

X

m

e
��H/2|mihm|e��H/2 =

1

Z

X

m

|�mih�m| (17)

Error-threshold theorems [24–29] suggest a topologically ordered pure state is perturbatively stable against deco-
herence from a short-depth, local quantum channel, leading to the possibility of a phase transition as a function of
the decoherence rate [30]. Such transitions were originally studied from the perspective of quantum error correction
(QEC) in Refs.[31, 32] and more recently using mixed-state entanglement measures such as topological negativity [14],
and other non-linear functions of the density matrix (Refs.[13–15]). These approaches clearly establish at least two
di↵erent mixed-state phases: one where the topological qubit can be decoded, and the other where it can’t. However,
it is not obvious if the density matrix in the regime where decoding fails can be expressed as a convex sum of SRE
pure states, which, following Refs.[1, 2], we will take as the definition of an SRE mixed state. Our main result is that
for several topologically ordered phases subjected to local decoherence, which are relevant for quantum computing
[31–33], one can explicitly write down the decohered mixed state as a convex sum of pure states which we argue all
undergo a topological phase transition, from being long-ranged entangled to short-ranged entangled, at a threshold
that precisely corresponds to the optimal threshold for QEC. We find that the universality class of such a separability
transition also coincides with that corresponding to the QEC error-recovery transition. Therefore, in these exam-
ples, we argue that the error-recovery transition does indeed coincide with a many-body separability transition. As
discussed below, our method also provides a new route to obtain the statistical mechanics models relevant for the
quantum error-correcting codes [14, 31, 32, 34].

Let us begin by considering the ground state of the 2d toric code (see Fig.1(b)) with Hamiltonian H2d toric =
�
P

v
(
Q

e2v
Ze) �

P
p
(
Q

e2p
Xe) subjected to phase-flip errors. The Hilbert space consists of qubits residing on the

edges (denoted as ‘e’) of a square lattice and we assume periodic boundary conditions. Denoting the ground state
as ⇢0, the Kraus map corresponding to the phase-flip errors act on an edge e as: Ee[⇢0] = pZe⇢0Ze + (1 � p)⇢0, and
the full map is given by the composition of this map over all edges. The key first step is to utilize the idea of duality
[35–39] by identifying the corresponding ‘parent’ cluster Hamiltonian (in the sense of Refs.[23, 40–42]). Interestingly,
the application of the aforementioned Kraus map to its ground state results in a Gibbs state. For the problem at
hand, consider H2d cluster =

P
v
hv +

P
e
he where hv = �Xv(

Q
e3v

Ze) and he = �Xe(
Q

v2e
Zv) whose Hilbert space

consists of qubits both on the vertices and the edges of the square lattice (Fig.1(b)). The ground state density matrix
⇢0 of the 2d toric code can be written as ⇢0 / hxv = 1|⇢C,0|xv = 1i, where |xv = 1i = ⌦v|xv = 1i is the product state
in the Pauli-X basis, and ⇢C,0 (/

Q
e
(I � he)

Q
v
(I � hv)) is the ground state of H2d cluster. The projection selects

one specific ground state of the toric code that is an eigenvector of the non-contractible Wilson loops W` =
Q

e2`
Xe

with eigenvalue +1 along both cycles ` of the torus. A simple calculation shows that Ee[⇢C,0] / e
��

P
e he

Q
v
(I � hv)

where

tanh(�) = 1� 2p (18)

This implies that the decohered density matrix ⇢ of the toric code is ⇢ / hxv = 1|e��
P

e he |xv = 1iPZ where
PZ =

Q
v
(I +

Q
e3v

Ze). By inserting a complete set of states, one may simplify the above expression as ⇢ / PZ⇢ePZ

where ⇢e =
P

xe
Z2d Ising,xe |xeihxe| and

Z2d Ising,xe(p) =
X

zv

e
�
P

e xe
Q

v2e zv (19)

3

H = H2D toric code + h

X

i

Xi (14)

H = H3D toric code + h

X

i

Xi (15)

H = H4D toric code + h

X

i

Xi (16)

⇢ =
1

Z

X

m

e
��H/2|mihm|e��H/2 =

1

Z

X

m

|�mih�m| (17)
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FIG. 1. (a) Topological orders under local decoherence can undergo a separability transition, where only above a certain
critical error rate, the decohered mixed state ⇢dec can be written as a convex sum of SRE pure states. The bottom depicts the
parent cluster states and their o↵spring models obtained by appropriate measurements (indicated by an arrow) (b) 2d cluster
Hamiltonian and 2d toric code, (c) 3d cluster Hamiltonian and 3d toric code, and (d) “Cluster-X” Hamiltonian [23] and the
X-cube Hamiltonian.
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Key idea: Write decohered  asρ

Claim: All  undergo transition from topological to trivial precisely at pc corresponding 

to the decoding transition. Topological Renyi entanglement of , as well as tunneling 
probability from one logical state to another relates to free energy cost of inserting a 

domain wall in 2d random-bond Ising model along the Nishimori line.

|ψm⟩
|ψm⟩

[Yu-Hsueh Chen, TG, 2309.11879]

2

Decoherence as a consequence of measurement.
Consider a situation where a many-body quantum system
is acted upon by local decoherence. Under decoherence,
the density matrix evolves as

⇢ !
X

↵

K↵⇢K
†
↵

(0.1)

, where {K↵} are a set of ‘Kraus operators’ that satisfyP
↵
K

†
↵
K↵ = 1 so that the evolution is trace-preserving.

We briefly review how decoherence can be realized by
locally coupling to ancillas and then tracing out the an-
cillas. In the story we want to tell, we are forced to trace
out the ancillas because we do not know the Mind of
God.

Consider, for purposes of exposition, a single qubit. To
realize the (phase-damping) channel ⇢ ! p⇢+(1�p)Z⇢Z,
we couple the qubit to an ancilla qubit. Starting in a
product state ⇢⌦ |0i h0|, evolve the combined system by
the Hamiltonian H = JZZa for a time t. The result is

e
�itJZZa⇢⌦ |0ih0|eitJZZ

a

. (0.2)

Using the identity e
�itJZZa = cos(tJ)1+sin(tJ)ZZ

a and
tracing out the ancilla then gives

⇢ ! cos2(tJ)⇢+ sin2(tJ)Z⇢Z ; (0.3)

this is of the indicated form with p = cos2(tJ). So the
probability of acting with the nontrivial Kraus operator
Z is determined by the strength of the coupling J .

The analogous many-body channel is instead realized
by coupling each qubit to its own ancilla, via H =P

i
JiZiZ

a

i
. These describe the Eyes of God. By vary-

ing the couplings Ji, we can vary the probabilities with
which we act with a given Zj . We do not comment on
whether God remembers the results of the measurements
She makes, or on the question of whether She can run out
of fresh ancillas4. For our purposes, what matters is that
we don’t know the outcome of these measurements.

Based on existing literature [cite passage about God
being perfect], it may seem natural to assume that God
does not make any measurement errors. However, we will
see that in fact the omniscient observer in our scenario
must be fallible in order to allow for the e↵ective theory
to be 3 + 1 dimensional. In the absence of measurement
errors, the critical field theory is only 3 + 0 dimensional
[? ].

[Comment on the choice of basis in which the mea-
surements are done, i.e. phase damping versus bit flip
channel.]

Reminder about Nishimori’s tuning phe-
nomenon. Here we review the phenomenon of fine-
tuning in critical field theories governing decoherence-
induced phase transitions.

4 The limited availability of fresh ancillas could provide a limit on
the possible number of efoldings of inflation.

FIG. 1: The first figure depicts the phase diagram of a model
such as the random-bond Ising model, as a function of

temperature and disorder strength. The arrows indicate the
direction of RG flow, towards the infrared. The orange circles
thus represent the generic critical behavior. When this model

arises as a result of forgetful measurements, the system lies on the
Nishimori line, determining T in terms of p. Thus, even though
the critical point (red circle) has two relevant operators, only one

parameter must be tuned to reach it. The other two pictures
depict scenarios F and ⇤ described above for how this mechanism

might provide some theological insight.

A key fact [? ? ? ] about decoherence in toric code
one is put directly on the Nishimori line of a statisti-
cal mechanics model [? ? ], where the probability of a
given disorder realization C is proportional to the parti-
tion function of the system with that disorder realization
Z(C). This happens because the probability here is de-
termined by the Born rule. As an example, consider 2d
Toric code under bit-flip or phase-flip decoherence. Un-
der either of these channels, when the measurements are
flawless, the statistical mechanics model corresponds to
the random bond Ising model (RBIM) along the ‘Nishi-
mori line’. Recall that in the phase diagram of the RBIM,
there are generically two relevant parameters: the tem-
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is the partition function of the 2d Ising model with Ising interactions determined by {xe}. Thus, ⇢ /
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where |⌦xei /
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Ze)|xei are nothing but a subset of toric code eigenstates. Note that in this derivation,
the 2d Ising model emerges due to the he terms in the parent cluster Hamiltonian, and ultimately, this will lead to the
relation between the separability transition and the statistical mechanics of the 2d random-bond Ising model (RBIM)
that also describes the error-recovery transition [31]. We note that the above spectral representation of ⇢ in terms
of toric code eigenstates has also previously appeared in Ref.[13], using a di↵erent derivation. Since non-contractible
cycles of the torus will play an important role below, let us note that distinct eigenstates |⌦xei can be uniquely
specified by two labels: the first label corresponds to the set of local Z2 fluxes fp =
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e2p

xe through elementary
plaquettes p, while the second label L = (Lx = ±1, Ly = ±1) with Lx =
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e2`,ekx̂

xe, Ly =
Q

e2`,ekŷ
xe and ` a

non-contractible loop along x̂/ŷ direction, specifies the topological sector (‘Logical data’) in which |⌦xei lives.
We now probe the mixed state ⇢ using the separability criteria, i.e., we ask whether it can be decomposed as a

convex sum of SRE states. Clearly, the aforementioned spectral representation is not a useful decomposition since it
involves toric code eigenstates which are all LRE. Taking cue from the argument for separability of the Gibbs state
of toric codes [43], we decompose ⇢ as
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where {ze} are a complete set of product states in the Pauli-Z basis, and | mi = ⇢
1/2|zei. Generically, to determine

whether ⇢ is an SRE mixed state, one needs to determine whether each | mi is SRE. However, for the current case
of interest, it su�ces to consider only | i = ⇢

1/2|m0i with |m0i = |ze = 1i. The reason is as follows. The Gauss’s
law (

Q
e3v

Ze = 1) implies that the Hilbert space only contains states that are closed loops in the Z basis. Therefore,
one may write |mi = gx|m0i where gx is a product of single-site Pauli-Xs forming closed loops. Since [gx, ⇢] = 0, this
implies that
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and therefore, if | i is SRE (LRE), so is | gxi. ⇢(�) may then be written as:
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for the quantum error-correcting codes [14, 31, 32, 34].

Let us begin by considering the ground state of the
2d toric code (see Fig.1(b)) with Hamiltonian H2d toric =
�
P

v
(
Q

e2v
Ze) �

P
p
(
Q

e2p
Xe) subjected to phase-flip

errors. The Hilbert space consists of qubits residing
on the edges (denoted as ‘e’) of a square lattice and
we assume periodic boundary conditions. Denoting the
ground state as ⇢0, the Kraus map corresponding to
the phase-flip errors act on an edge e as: Ee[⇢0] =
pZe⇢0Ze + (1 � p)⇢0, and the full map is given by the
composition of this map over all edges. The key first
step is to utilize the idea of duality [35–39] by identifying
the corresponding ‘parent’ cluster Hamiltonian (in the
sense of Refs.[23, 40–42]). Interestingly, the application
of the aforementioned Kraus map to its ground state re-
sults in a Gibbs state. For the problem at hand, consider
H2d cluster =

P
v
hv +

P
e
he where hv = �Xv(

Q
e3v

Ze)
and he = �Xe(

Q
v2e

Zv) whose Hilbert space consists
of qubits both on the vertices and the edges of the
square lattice (Fig.1(b)). The ground state density ma-
trix ⇢0 of the 2d toric code can be written as ⇢0 /
hxv = 1|⇢C,0|xv = 1i, where |xv = 1i = ⌦v|xv = 1i
is the product state in the Pauli-X basis, and ⇢C,0 (/Q

e
(I �he)

Q
v
(I �hv)) is the ground state of H2d cluster.

The projection selects one specific ground state of the
toric code that is an eigenvector of the non-contractible
Wilson loops W` =

Q
e2`

Xe with eigenvalue +1 along
both cycles ` of the torus. A simple calculation shows
that Ee[⇢C,0] / e

��
P

e he
Q

v
(I � hv) where tanh(�) =

1 � 2p. This implies that the decohered density matrix
⇢ of the toric code is ⇢ / hxv = 1|e��

P
e he |xv = 1iPZ

where PZ =
Q

v
(I +

Q
e3v

Ze). By inserting a complete
set of states, one may simplify the above expression as
⇢ / PZ⇢ePZ where ⇢e =

P
xe

Z2d Ising,xe |xeihxe| and

Z2d Ising,xe(p) =
X

zv

e
�
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e xe
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v2e zv (1)

is the partition function of the 2d Ising model
with Ising interactions determined by {xe}. Thus,
⇢ /
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xe

Z2d Ising,xe |⌦xeih⌦xe |, where |⌦xei /
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v
(I +Q

e3v
Ze)|xei are nothing but a subset of toric code

eigenstates. Note that in this derivation, the 2d Ising
model emerges due to the he terms in the parent clus-
ter Hamiltonian, and ultimately, this will lead to the re-
lation between the separability transition and the sta-
tistical mechanics of the 2d random-bond Ising model
(RBIM) that also describes the error-recovery transition
[31]. We note that the above spectral representation of
⇢ in terms of toric code eigenstates has also previously
appeared in Ref.[13], using a di↵erent derivation. Since
non-contractible cycles of the torus will play an impor-
tant role below, let us note that distinct eigenstates |⌦xei
can be uniquely specified by two labels: the first label
corresponds to the set of local Z2 fluxes fp =

Q
e2p

xe

through elementary plaquettes p, while the second label
L = (Lx = ±1, Ly = ±1) with Lx =

Q
e2`,ekx̂ xe, Ly =

Q
e2`,ekŷ xe and ` a non-contractible loop along x̂/ŷ di-

rection, specifies the topological sector (‘Logical data’)
in which |⌦xei lives.

We now probe the mixed state ⇢ using the separabil-
ity criteria, i.e., we ask whether it can be decomposed
as a convex sum of SRE states. Clearly, the aforemen-
tioned spectral representation is not a useful decompo-
sition since it involves toric code eigenstates which are
all LRE. Taking cue from the argument for separabil-
ity of the Gibbs state of toric codes [43], we decompose
⇢ as ⇢ =

P
ze
⇢
1/2|zeihze|⇢1/2 ⌘

P
m
| mih m| where

{ze} are a complete set of product states in the Pauli-
Z basis, and | mi = ⇢

1/2|zei. Generically, to determine
whether ⇢ is an SRE mixed state, one needs to determine
whether each | mi is SRE. However, for the current case
of interest, it su�ces to consider only | i = ⇢

1/2|m0i
with |m0i = |ze = 1i. The reason is as follows. The
Gauss’s law (

Q
e3v

Ze = 1) implies that the Hilbert space
only contains states that are closed loops in the Z ba-
sis. Therefore, one may write |mi = gx|m0i where gx is
a product of single-site Pauli-Xs forming closed loops.
Since [gx, ⇢] = 0, this implies that | 

m
i ⌘ | gxi = gx| i,

and therefore, if | i is SRE (LRE), so is | gxi. ⇢(�) may
then be written as:

⇢(p) =
X

gx

U
†
gx
| (p)ih (p)|Ugx (2)

. Now, using the aforementioned spectral representa-
tion of ⇢, the (non-normalized) state | i = ⇢

1/2|ze = 1i
is:

| (p)i /
X

xe

[Z2d Ising,xe(p)]
1/2|xei, (3)

It is easy to see that when � = 1, | i / |⌦0i, the non-
decohered toric code ground state, while when � = 0,
| i / |ze = 1i is a product state. This suggests a phase
transition for | (�)i from being an LRE state to an SRE
state as we increase the error rate p (i.e. decrease �). We
will now show that this is indeed the case.

We first consider the expectation value of the ‘anyon
condensation operator’ (also known as ‘t Hooft loop) in
state | (�)i, defined as [15, 44–46] T˜̀=

Q
e2˜̀Ze, where ˜̀

denotes a homologically non-contractible loop on the dual
lattice (in the language of Z2 gauge theory [46, 47], Ze ⇠
e
i⇡(Electric field)e). Physically, hT˜̀i ⌘ h |T˜̀| i/h | i is
the amplitude of tunneling from one logical subspace to
an orthogonal one, and therefore it is zero in the Z2

topologically ordered phase, and non-zero in the topo-
logically trivial phase (=anyon condensed phase) [48].
Indeed, one may easily verify that hT˜̀i = 0 (1) when
� = 1 (� = 0). Using Eq.(3), T˜̀ flips spins along the

curve ˜̀ (i.e., xe ! �xe, 8e 2 ˜̀), and we denote the
corresponding configuration as x˜̀,e. While x˜̀,e and xe

have the same flux through every elementary plaque-
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is the partition function of the 2d Ising model
with Ising interactions determined by {xe}. Thus,
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eigenstates. Note that in this derivation, the 2d Ising
model emerges due to the he terms in the parent clus-
ter Hamiltonian, and ultimately, this will lead to the re-
lation between the separability transition and the sta-
tistical mechanics of the 2d random-bond Ising model
(RBIM) that also describes the error-recovery transition
[31]. We note that the above spectral representation of
⇢ in terms of toric code eigenstates has also previously
appeared in Ref.[13], using a di↵erent derivation. Since
non-contractible cycles of the torus will play an impor-
tant role below, let us note that distinct eigenstates |⌦xei
can be uniquely specified by two labels: the first label
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ity criteria, i.e., we ask whether it can be decomposed
as a convex sum of SRE states. Clearly, the aforemen-
tioned spectral representation is not a useful decompo-
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1/2|zei. Generically, to determine
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One can also extract the constant term via the Levin-Wen scheme [4, 5].
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CMImin = “long-range part of mixed-state entanglement”

Separability transitions in topological states induced by local decoherence

Yu-Hsueh Chen and Tarun Grover
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We study states with intrinsic topological order subjected to local decoherence from the perspective
of separability, i.e., whether a decohered mixed state can be expressed as an ensemble of short-range
entangled (SRE) pure states. We focus on toric codes and the X-cube fracton state and provide
evidence for the existence of decoherence-induced separability transitions that precisely coincide with
the threshold for the feasibility of active error correction. A key insight is that local decoherence
acting on the ‘parent’ cluster states of these models results in a Gibbs state. As an example, for
the 2d (3d) toric code subjected to bit-flip errors, we show that the decohered density matrix can
be written as a convex sum of SRE states for p > pc, where pc is related to the paramagnetic-
ferromagnetic transition in the 2d (3d) random-field bond Ising model along the Nishimori line.

In this work we will explore aspects of many-body
topological states subjected to decoherence from the per-
spective of separability, i.e., whether the resulting mixed
state can be expressed as a convex sum of short-range
entangled (SRE) states [1–3]. This criteria is central
to the definition of what constitutes an SRE or long-
range entangled (LRE) mixed state, and various mea-
sures of mixed-state entanglement, such as negativity[3–
8] and entanglement of formation [9], are defined so as to
quantify non-separability. We will be particularly inter-
ested in decoherence-induced “separability transitions”,
i.e., transitions tuned by decoherence such that the den-
sity matrix in one regime is expressible as a convex sum
of SRE states, and in the other regime, it is not. One
salient distinction between pure state versus mixed-state
dynamics is that although a short-depth unitary evolu-
tion cannot change long-range entanglement encoded in
a pure state, a short-depth local channel can fundamen-
tally alter long-range mixed-state entanglement. There-
fore, even the limited class of mixed states that are ob-
tained by the action of local short-depth channels on
an entangled pure state o↵er an opportunity to explore
mixed-state phases and phase transitions [10–22]. We
will focus on mixed states that are obtained via subject-
ing several well-understood topologically ordered phases
of matter to short-depth quantum channels.

Error-threshold theorems [24–29] suggest a topologi-
cally ordered pure state is perturbatively stable against
decoherence from a short-depth, local quantum channel,
leading to the possibility of a phase transition as a func-
tion of the decoherence rate [30]. Such transitions were
originally studied from the perspective of quantum error
correction (QEC) in Refs.[31, 32] and more recently us-
ing mixed-state entanglement measures such as topolog-
ical negativity [14], and other non-linear functions of the
density matrix (Refs.[13–15]). These approaches clearly
establish at least two di↵erent mixed-state phases: one
where the topological qubit can be decoded, and the
other where it can’t. However, it is not obvious if the
density matrix in the regime where decoding fails can be
expressed as a convex sum of SRE pure states, which, fol-
lowing Refs.[1, 2], we will take as the definition of an SRE
mixed state. Our main result is that for several topo-

FIG. 1. (a) Topological orders under local decoherence can
undergo a separability transition, where only above a certain
critical error rate, the decohered mixed state ⇢dec can be writ-
ten as a convex sum of SRE pure states. The bottom depicts
the parent cluster states and their o↵spring models obtained
by appropriate measurements (indicated by an arrow) (b) 2d
cluster Hamiltonian and 2d toric code, (c) 3d cluster Hamil-
tonian and 3d toric code, and (d) “Cluster-X” Hamiltonian
[23] and the X-cube Hamiltonian.

logically ordered phases subjected to local decoherence,
which are relevant for quantum computing [31–33], one
can explicitly write down the decohered mixed state as a
convex sum of pure states which we argue all undergo a
topological phase transition, from being long-ranged en-
tangled to short-ranged entangled, at a threshold that
precisely corresponds to the optimal threshold for QEC.
We find that the universality class of such a separability
transition also coincides with that corresponding to the
QEC error-recovery transition. Therefore, in these ex-
amples, we argue that the error-recovery transition does
indeed coincide with a many-body separability transi-
tion. As discussed below, our method also provides a new
route to obtain the statistical mechanics models relevant

CMImin ≠ 0 CMImin = 0
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• Decoherence induced separability transitions.


A. Topological ordered states.


B. SPT states.


C. Chiral states.


• Separability transitions in Gibbs states.



Incorporating symmetries 

If a density matrix admits a decomposition  where each


  is short-ranged entangled, and can be prepared via a finite-depth, local, unitary 
circuit composed of symmetric gates, then we will call  a “sym-SRE mixed-state”.

ρ = ∑
i

pi |ψi⟩⟨ψi |

|ψi⟩
ρ

|ψ1⟩ |ψ2⟩

probability p1 probability p2

…

circuit depth

= constant

= L0

L

Each local gate  satisfies, [ , U] = 0, where U is the generator of the symmetry. 
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FIG. 1. Cluster states under decoherence in (a) 1d, (b) 2d, and (c) 3d. The first column depicts the Hamiltonian of cluster
states. The second column divides the decohered mixed state as a function of error rates into several regimes that have
qualitatively di↵erent behaviors. The white regions (region (iv)) in the three phase diagrams denote phases where the mixed
state is ‘sym-SRE’ (‘trivial’), i.e., it is expressible as a convex sum of symmetric, short-ranged entangled pure states. In contrast,
the colored regions or lines (regions (i), (ii), (iii)) denote phases where such a decomposition is not possible (‘sym-LRE’). There
can be phase transitions from one kind of sym-LRE phase to a di↵erent kind of sym-LRE phase as depicted by di↵erent
colors. The phase diagram is obtained by calculating objects of the form [hOi2] =

P
Q P (Q) (hOiQ)2 where O corresponds

to an appropriate observable that characterizes symmetry-enforced long-range entanglement, and P (Q) is the probability for
obtaining the symmetry charge q. The pc ⇡ 0.109 in the second row corresponds to the ferromagnetic to paramagnetic phase
transition in the 2d random-bond Ising model along the Nishimori line, while pc ⇡ 0.029 in third row corresponds to the critical
point in the 3d random plaquette gauge model along the Nishimori line. The third column shows the phase diagram obtained
by expressing ⇢ as a convex sum of symmetric states, where each symmetric state | mi = ⇢

1/2|mi with |mi the product state
in Pauli-X basis. See main text for more details.

spective and is an example of an ‘average-SPT’ phase
[26, 27, 29, 30]. In particular, it was shown in Ref.[27]
that this mixed state can not be purified to an SRE pure
state using a finite-depth local quantum channel. As dis-
cussed in Sec.II, our definition of SRE mixed state is a bit
di↵erent (namely, whether a mixed state can be written
as a convex sum of SRE pure states), and therefore, it is
worth examining whether this state continues to remain
an LRE mixed state using our definition.

When pa > 0, pb = 0, only the sector corresponding
to Qb = 0 survives, and in this sector, ⇢Qa,Qb /

Q
j
(I �

hb,j)e
��a

P
j ha,jPQa . We will now provide two separate

arguments that show that ⇢Qa,Qb is a sym-LRE (i.e. not
sym-SRE) mixed state when pa > 0, pb = 0.

First argument: We want to show that ⇢Qa,Qb /
Q

j
(I � hb,j)e

��a
P

j ha,jPQa can not be written asP
m
pm| mih m| where | mi are SRE states that can

be prepared via a short-depth circuit consisting of sym-
metric, local gates. We utilize the result in Ref.[39],
which shows that for an area-law entangled state in 1D
(which we will take to be | mi) which is symmetric un-
der an Ising symmetry (which we will take here to be
Ua =

Q
j
Xa,j), both order and disorder parameters can-

not vanish simultaneously. Note that we are assuming
that | mi has an area-law entanglement, as otherwise, it
is certainly not SRE and there is nothing more to prove.

Therefore, following the results in Ref.[39], | mi must
either (a) have a non-zero order parameter correspond-
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A relation between local and thermal decoherence

Systems with intrinsic topological order typically be-
have rather di↵erently when they are coupled to a ther-
mal bath, compared to when they are subjected to deco-
herence induced by a short-depth quantum channel. For
example, when 2d and 3d toric codes are embedded in a
thermal bath, so that the mixed state is described by a
Gibbs state, the topological order is lost at any non-zero
temperature [2, 53, 59, 60]. In contrast, when 2d or 3d
toric codes are subjected to local decoherence, then the
error-threshold theorems [61–66] imply that the mixed-
state topological order is stable upto a non-zero deco-
herence rate [17–20, 59, 67]. Given this, it is interesting
to ask if there exist situations where a local short-depth
channel maps a ground state to a Gibbs state. Here we
show that this is indeed the case if the corresponding
Hamiltonian satisfies the following properties:
(1) It can be written as a sum of local commuting terms
where each of them squares to identity:

H =
X

j

hj , [hj , hk] = 0, h2
j
= I, 8j, k. (5)

(2) There exists a local unitary Oj which anticommutes
(commutes) with hk if j = k (j 6= k):

OjhjO
†

j
= �hj ,

OjhkO
†

j
= hk (j 6= k).

(6)

Specifically, denoting the total system size as N , the
channel E = E1 � · · · EN with

Ej [⇢] = (1� p)⇢+ pOj⇢O
†

j
(7)

maps the ground state density matrix ⇢0 to a Gibbs state
for H.
To verify the claim, we first note that Eq.(5) implies
that ⇢0 can be written as the product of the projectors
on all sites ⇢0 = 1

2N
Q

j
(I � hj). Now, using Eq.(6),

it is straightforward to show that Ej [⇢0] =
1
2N [I � (1 �

2p)hj ]
Q

k 6=j
(I�hk). It then follows that the composition

of Ej on all sites gives

E [⇢0] =
1

2N

Y

j

[I � (1� 2p)hj ]. (8)

Since h2
j

= I, which implies e��hj = cosh(�)I �

sinh(�)hj , one may now exponentiate Eq.(8) to obtain
E [⇢0] =

1
Z
e��H where tanh� = (1� 2p), Z = tr

�
e��H

�
.

In Sec.VIII, we also discuss a ZN generalization of this
construction. For the rest of the paper, the afore-
mentioned Z2 version will su�ce. In the following we
will exploit the connection between local and thermal
decoherence to study decoherence-induced separability
transitions for the cluster states in various dimensions
(Secs.IVA,IVB,IVC). We will also briefly discuss a cou-

ple examples where the pure state is protected by a single
zero-form symmetry (Sec.IVD).

A. 1d cluster state

The Hamiltonian for the 1d cluster state is

H = �

NX

j=1

(Zb,j�1Xa,jZb,j + Za,jXb,jZa,j+1)

=
NX

j=1

ha,j + hb,j

(9)

where a and b denote the two sublattices of the 1d chain,
see Fig.1(a). H has a global Z2⇥Z2 symmetry generated
by

Ua =
Y

j

Xa,j , Ub =
Y

j

Xb,j . (10)

We assume periodic boundary conditions, so that their
is a unique, symmetric, ground state of H which is sepa-
rated from the rest of the spectrum with a finite gap.
It is obvious that H satisfies Eq.(5). To satisfy Eq.
(6), we choose Kraus operators Oa/b,j = Za/b,j . There-
fore, under the composition of the channel Ea/b,j [⇢] =
(1� pa/b)⇢+ pa/bZa/b,j⇢Za/b,j on all sites, the pure state
density matrix becomes

⇢(pa, pb) =
⇣ 1

Za

e��a
P

j ha,j

⌘⇣ 1

Zb

e��b
P

j hb,j

⌘

= ⇢a(pa)⇢b(pb),
(11)

with tanh�a/b = (1 � 2pa/b) and Za/b =

tr
⇣
e��a/b

P
j ha/b,j

⌘
. In the following, we will sup-

press the arguments pa, pb in ⇢a(pa), ⇢b(pb) if there
is no ambiguity. Note that ⇢a and ⇢b commute with
each other. To decompose ⇢ as a convex sum of
symmetric states, we write ⇢ =

P
Qa,Qb

⇢Qa,Qb , where
each ⇢Qa,Qb is an unnormalized density matrix that
carries exact symmetry: Ua ⇢Qa,Qb = (�1)Qa⇢Qa,Qb ,
Ub ⇢Qa,Qb = (�1)Qb⇢Qa,Qb , with Qa = 0, 1 and
Qb = 0, 1, so that the sum over Qa, Qb contains four
terms. The explicit expression for ⇢Qa,Qb is given as:
⇢Qa,Qb = ⇢Qa⇢Qb , where ⇢Qa = ⇢aPQa and ⇢Qb = ⇢bPQb ,
and PQa/b

= (I + (�1)Qa/bUa/b)/2 are projectors.
Note that the probability for a given sector (Qa, Qb) is
given by tr (⇢Qa,Qb) which can be used to obtain the
normalized density matrix ⇢̃Qa,Qb for a sector (Qa, Qb)
as ⇢̃Qa,Qb = ⇢Qa,Qb/ tr (⇢Qa,Qb).

To discuss whether the decohered mixed state ⇢ is triv-
ial based on our definition of sym-SRE mixed state, we
start from considering the special case pa > 0, pb = 0,
i.e., the mixed state obtained by applying the aforemen-
tioned quantum channel only on sublattice a. This case
was studied in detail in Ref.[27] from a di↵erent per-
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Ground state  is a non-trivial SPT phase (i.e. sym-LRE)


protected by  symmetry.

ρ0 = ∏
j

(1 − ha,j)(1 − hb,j)

Z2 × Z2

Let’s subject  to the channel ρ0

Is the resulting state sym-SRE at any non-zero pa and/or pb ?
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FIG. 1. Cluster states under decoherence in (a) 1d, (b) 2d, and (c) 3d. The first column depicts the Hamiltonian of cluster
states. The second column divides the decohered mixed state as a function of error rates into several regimes that have
qualitatively di↵erent behaviors. The white regions (region (iv)) in the three phase diagrams denote phases where the mixed
state is ‘sym-SRE’ (‘trivial’), i.e., it is expressible as a convex sum of symmetric, short-ranged entangled pure states. In contrast,
the colored regions or lines (regions (i), (ii), (iii)) denote phases where such a decomposition is not possible (‘sym-LRE’). There
can be phase transitions from one kind of sym-LRE phase to a di↵erent kind of sym-LRE phase as depicted by di↵erent
colors. The phase diagram is obtained by calculating objects of the form [hOi2] =

P
Q P (Q) (hOiQ)2 where O corresponds

to an appropriate observable that characterizes symmetry-enforced long-range entanglement, and P (Q) is the probability for
obtaining the symmetry charge q. The pc ⇡ 0.109 in the second row corresponds to the ferromagnetic to paramagnetic phase
transition in the 2d random-bond Ising model along the Nishimori line, while pc ⇡ 0.029 in third row corresponds to the critical
point in the 3d random plaquette gauge model along the Nishimori line. The third column shows the phase diagram obtained
by expressing ⇢ as a convex sum of symmetric states, where each symmetric state | mi = ⇢

1/2|mi with |mi the product state
in Pauli-X basis. See main text for more details.

spective and is an example of an ‘average-SPT’ phase
[26, 27, 29, 30]. In particular, it was shown in Ref.[27]
that this mixed state can not be purified to an SRE pure
state using a finite-depth local quantum channel. As dis-
cussed in Sec.II, our definition of SRE mixed state is a bit
di↵erent (namely, whether a mixed state can be written
as a convex sum of SRE pure states), and therefore, it is
worth examining whether this state continues to remain
an LRE mixed state using our definition.

When pa > 0, pb = 0, only the sector corresponding
to Qb = 0 survives, and in this sector, ⇢Qa,Qb /

Q
j
(I �

hb,j)e
��a

P
j ha,jPQa . We will now provide two separate

arguments that show that ⇢Qa,Qb is a sym-LRE (i.e. not
sym-SRE) mixed state when pa > 0, pb = 0.

First argument: We want to show that ⇢Qa,Qb /
Q

j
(I � hb,j)e

��a
P

j ha,jPQa can not be written asP
m
pm| mih m| where | mi are SRE states that can

be prepared via a short-depth circuit consisting of sym-
metric, local gates. We utilize the result in Ref.[39],
which shows that for an area-law entangled state in 1D
(which we will take to be | mi) which is symmetric un-
der an Ising symmetry (which we will take here to be
Ua =

Q
j
Xa,j), both order and disorder parameters can-

not vanish simultaneously. Note that we are assuming
that | mi has an area-law entanglement, as otherwise, it
is certainly not SRE and there is nothing more to prove.

Therefore, following the results in Ref.[39], | mi must
either (a) have a non-zero order parameter correspond-

Symmetry enforced separability transitions 
in cluster states

Result:  sym-LRE as long as pa = 0 or pb = 0 (regions i, ii, iii). 

sym-SRE if both pa, pb non-zero (region iv). Proof uses

Lieb-Robinson bound [Yu-Hsueh Chen, TG, 2310.07286].

ρ

Ma, Wang [2209.02723], and Ma et al [2305.16399]: in regions i, ii, iii,  cannot be purified to an SRE pure 
state using symmetric, finite-depth channel. Recent relation to SPT as a resource for transmitting quantum 
information: Zhang, Agarwal, Vijay [2405.05965].

ρ
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Symmetry enforced separability transitions 
in cluster states
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fermion parity).
Let us next consider Kraus operators bilinear in the

fermion operators. We study this problem only using
the double-state formalism (i.e. the aforementioned C-
J map), and obtain an e↵ective action consisting of two
counter-propagating free, chiral Majorana CFTs coupled
via a four-fermion interaction. Such a Hamiltonian has
already been studied in the past (see e.g. Refs.[75, 76]),
and we simply borrow the previous results to conclude
that unlike the case for Kraus operators linear in Majo-
rana operators, this system is stable against infinitesimal
decoherence. Furthermore, the field-theory correspond-
ing to the double state indicates that this system under-
goes a spontaneous symmetry breaking where the gapless
modes corresponding to the CFT are gapped out. The
university class for this transition lies in the (supersym-
metric) c = 7/10 tricritical Ising model. We discuss this

below in detail in Sec.VD. We note that recently, Ref.[22]
studied chiral topological phases subjected to decoher-
ence using a generalization of strange correlator [32] to
mixed states [29, 30]. Although Ref.[22] did not study
the problem of our interest (namely, p+ ip SC subjected
to Kraus operators bilinear in Majorana fermions), the
overall structure of the field theories obtained in Ref.[22]
using strange correlator bears resemblance to the one we
motivate using entanglement spectrum in Sec.VD.

B. Separability of p+ ip SC subjected to fermionic
Kraus operators

Our starting point is the ground state of the p+ ip su-
perconductor [45] described by the following Hamiltonian
on a square lattice

H =
X

x,y

�t(c†
x+1,ycx,y + c†

x,y+1cx,y + h.c.) +�(c†
x+1,yc

†

x,y
+ ic†

x,y+1c
†

x,y
+ h.c.)� (µ� 4t)c†

x,y
cx,y. (25)

When t = � = 1/2 and the chemical potential µ = 1,
the system is in the topologically non-trivial phase. This
can be diagnosed, for example, by studying the entan-
glement spectrum which will exhibit chiral propagating
modes [77, 78], or, by studying the modular commutator
[79–82] which is proportional to the chiral central charge
of the edge modes that appear if the system had bound-
aries. Relatedly, in the topological phase, the ground
state cannot be written as a Slater determinant of expo-
nentially localized Wannier single-particle states [44–46].
In our discussion, we assume periodic boundary condi-
tions, so that there are no physical edge modes.

We are interested in subjecting the ground state
of Eq.(25) to the composition of the following single-
majorana channel on all sites:

Ej [⇢] = (1� p)⇢+ p�j⇢�j . (26)

Is the chiral nature of the ground state ⇢0 stable under
the channel? More precisely, can we express the deco-
hered density matrix as a convex sum of pure states,
where each of these pure states now does not exhibit
chiral states in its entanglement spectrum, and relatedly,
has a vanishing modular commutator in the thermody-
namic limit?

Under the aforementioned channel (Eq.(26)), the den-
sity matrix will continue to remain Gaussian, and is
fully determined by the covariance matrix M defined
as Mjk = �i tr(⇢(�j�k � �jk)). As shown in Appendix
B 1, under the channel in Eq.26, M evolves as E(M) =
(1� 2p)2M . We write the decohered density matrix ⇢ as
⇢(p) = e�H⇢(p), where H⇢(p) can be determined explic-
itly in terms of E(M) = (1 � 2p)2M as detailed in the
Appendix B 1.

To write the decohered mixed state ⇢ as a convex sum
of pure states, we consider the decomposition in Eq.(4),
and write

⇢(p) =
X

m

e�H⇢(p)/2|mihm|e�H⇢(p)/2

=
X

m

| mih m| (27)

where |mi are product states in the occupation num-
ber basis: |mi = |m1, ...,mN i, mj = 0, 1 and | mi =
p
⇢|mi = e�H⇢(p)/2|mi. To build intuition for the states

| mi, let’s consider the particular state | 0i =
p
⇢|0i

where |0i is a state with no fermions. One can an-
alytically show at any non-zero decoherence, the real-
space wavefunction for this state is a Slater determinant
of localized Wannier orbitals, unlike the (undecohered)
ground state of p + ip SC [44–46]. The argument is as

follows. One may write | 0i / e��
P

k ↵
†
k↵k |0i where

tanh(�) = (1 � 2p)2 and ↵†

k = ukc
†

k + v⇤kc�k are the
same (complex) fermionic operators that diagonalize the
original p+ip BCS Hamiltonian (see Appendix B 1), with
|uk|

2 + |vk|2 = 1 due to unitarity. Since ck|0i = 0, this
implies that

| 0i /

Y

k

h
1 +

�
e��

� 1
� ⇣

|vk|
2 + ukvkc

†

kc
†

�k

⌘i
|0i (28)

This expression may then be exponentiated to obtain

the standard BCS-like form for | 0i / e
P

k h(k)c†kc
†
�k |0i,

where
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D. Phase transition induced by an interacting
channel in a p+ ip SC

Being equipped with the correspondence between E [·]
and NE , we now return to our discussion of decoher-
ence induced transitions in chiral topological states of
fermions. We first revisit the problem discussed in VB,
and then consider a more interesting problem where the
Kraus operators are bilinear in fermions so that the de-
cohered density matrix is not Gaussian.
There are di↵erent ways to employ the double state to

probe the e↵ect of decoherence. For example, one may
consider non-linear functions such as the normalization
of the double state [18, 20, 29, 83]. Here we will motivate
the entanglement spectrum of a state obtained from the
double state |⇢i (after space-time rotation) as a probe of
the decoherence-induced phase transitions.
To begin with, consider the normalization of the double

state

h⇢|⇢i = h⇢0|E
†
E|⇢0i. (35)

If the bulk action describing |⇢0i = | 0, ⇤

0i is rota-
tionally invariant, one can map h⇢|⇢i to the path integral
of the (1 + 1)-D boundary fields following Ref.[20]:

h⇢|⇢i =

Z
D( L, 

⇤

L
, R, 

⇤

R
)

e�S0,L( L, 
⇤
L)�S0,R( R, 

⇤
R)�Sint( L, 

⇤
L, R, 

⇤
R).

(36)

Here,  L and  ⇤

L
denote the low-energy field variables in

the ket and bra Hilbert space, respectively. S0,L is the
partition function on the left side of the spatial interface
x = 0� (the meaning of ( R, ⇤

R
) and S0,R are similar

with left $ right). Sint describes the e↵ect of the channel
E
†
E and has two contributions:

Sint = S1 + SE . (37)

Here, S1 denotes the action that exists even in the ab-
sences of decoherence. In particular, S1 strongly cou-
ples the fields  L( ⇤

L
) and  R( ⇤

R
) such that  L =

 R( ⇤

L
=  ⇤

R
) in the absence of decoherence. On the

other hand, SE describes the action that merely comes
from the decoherence and vanishes when the error rate
p = 0. In general, the exact form of SE involves four fields
( L, ⇤

L
, R, ⇤

R
) and may be schematically captured by

the following Hamiltonian:

H = (H0,L +HE,L) + (H0,R +HE,R) +H1. (38)

where H1 strongly couples the L and R fields. One may
then consider the reduced density matrix for L fields that
is obtained after tracing out the R fields. One expects
[86, 87] that the corresponding entanglement Hamilto-
nian (= logarithm of the reduced density matrix) will

FIG. 4. The spectrum of iML for the double state |⇢i, where
ML is the restriction of the covariance matrix M to the region
L, as a function of the momentum ky for di↵erent error rates
p. Here, we put the system on a cylinder with circumference
Lx = 60, and height Ly = 16.

essentially correspond to H0,L+HE,L. Working with en-
tanglement Hamiltonian has the advantage that the num-
ber of fields one needs to keep track of are now halved.
Similar simplification occurs if one considers the fidelity
tr(⇢d ⇢0) between the decohered density matrix ⇢d and
the non-decohered density matrix ⇢0, see Ref.[22]. Since
we are now working only with the L fields, in the follow-
ing we will omit the subscript L for notational simplicity.
As an example, let us first revisit the case of p + ip

superconductor perturbed by a channel that is linear in
Majorana fermions (Sec.VB). Recall that here the Kraus
map corresponds to the composition of the following map
on all sites: Ex[⇢] = (1�p)⇢+p�x⇢�x. Based on our dis-
cussion above on the C-J map for fermions, this translates
to a term of the form HE = ig

R
dy � ⌘ where p ⇠ g, and

�, ⌘ respectively denote the fields corresponding to bra
and ket Hilbert spaces of the L fields. In the absence of
any decoherence, the spatial boundary of the p + ip su-
perconductor has a simple description in terms of a chiral
Majorana fermion. The entanglement Hamiltonian in the
doubled Hilbert space then corresponds to stacking the
boundary of p + ip and p � ip superconductors, and is
given by H0 = i

R
dy(�@y� � ⌘@y⌘). Therefore, one ex-

pects that the entanglement Hamiltonian for the L fields
in the presence of decoherence takes the form:

HE = i

Z
dy(�@y� � ⌘@y⌘) + ig

Z
dy�⌘ (39)

The counter-propagating edge modes are gapped out for
any non-zero g (/ p), in line with our earlier discussion
where we provided evidence that at any non-zero p, the
density matrix can be written as a convex sum of pure
states that are SRE. The gapping out of the edge modes
can also be seen by numerically evaluating the entangle-
ment spectrum of the double state obtained via C-J map.
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is the partition function of the 2d Ising model with Ising interactions determined by {xe}. Thus, ⇢ /
P

xe
Z2d Ising,xe |⌦xeih⌦xe |,

where |⌦xei /
Q

v
(I +

Q
e3v

Ze)|xei are nothing but a subset of toric code eigenstates. Note that in this derivation,
the 2d Ising model emerges due to the he terms in the parent cluster Hamiltonian, and ultimately, this will lead to the
relation between the separability transition and the statistical mechanics of the 2d random-bond Ising model (RBIM)
that also describes the error-recovery transition [31]. We note that the above spectral representation of ⇢ in terms
of toric code eigenstates has also previously appeared in Ref.[13], using a di↵erent derivation. Since non-contractible
cycles of the torus will play an important role below, let us note that distinct eigenstates |⌦xei can be uniquely
specified by two labels: the first label corresponds to the set of local Z2 fluxes fp =

Q
e2p

xe through elementary
plaquettes p, while the second label L = (Lx = ±1, Ly = ±1) with Lx =

Q
e2`,ekx̂

xe, Ly =
Q

e2`,ekŷ
xe and ` a

non-contractible loop along x̂/ŷ direction, specifies the topological sector (‘Logical data’) in which |⌦xei lives.
We now probe the mixed state ⇢ using the separability criteria, i.e., we ask whether it can be decomposed as a

convex sum of SRE states. Clearly, the aforementioned spectral representation is not a useful decomposition since it
involves toric code eigenstates which are all LRE. Taking cue from the argument for separability of the Gibbs state
of toric codes [43], we decompose ⇢ as

⇢ =
X

ze

⇢
1/2|zeihze|⇢1/2 ⌘

X

m

| mih m| (20)

where {ze} are a complete set of product states in the Pauli-Z basis, and | mi = ⇢
1/2|zei. Generically, to determine

whether ⇢ is an SRE mixed state, one needs to determine whether each | mi is SRE. However, for the current case
of interest, it su�ces to consider only | i = ⇢

1/2|m0i with |m0i = |ze = 1i. The reason is as follows. The Gauss’s
law (

Q
e3v

Ze = 1) implies that the Hilbert space only contains states that are closed loops in the Z basis. Therefore,
one may write |mi = gx|m0i where gx is a product of single-site Pauli-Xs forming closed loops. Since [gx, ⇢] = 0, this
implies that

| 
m
i = Ugx | (p)i (21)

and therefore, if | i is SRE (LRE), so is | gxi. ⇢(�) may then be written as:

⇢(p) =
X

gx

Ugx | (p)ih (p)|U†

gx
(22)

. Now, using the aforementioned spectral representation of ⇢, the (non-normalized) state | i = ⇢
1/2|ze = 1i is:

⇢
1/2|ze = 1i /

X

xe

[Z2d Ising,xe(p)]
1/2|xei (23)

|⇢1/2i = ⇢
1/2

H
⌦ IH̄|�iH⌦H̄ (24)

|⇢i = ⇢H ⌦ IH̄|�iH⌦H̄ (25)

⇢d = E [|p+ipihp-ip|] (26)

(27)

⇢d =
X

i

pi |Gapped non-chiralii ihGapped non-chiral| (28)
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the 2d Ising model emerges due to the he terms in the parent cluster Hamiltonian, and ultimately, this will lead to the
relation between the separability transition and the statistical mechanics of the 2d random-bond Ising model (RBIM)
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convex sum of SRE states. Clearly, the aforementioned spectral representation is not a useful decomposition since it
involves toric code eigenstates which are all LRE. Taking cue from the argument for separability of the Gibbs state
of toric codes [43], we decompose ⇢ as
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where {ze} are a complete set of product states in the Pauli-Z basis, and | mi = ⇢
1/2|zei. Generically, to determine

whether ⇢ is an SRE mixed state, one needs to determine whether each | mi is SRE. However, for the current case
of interest, it su�ces to consider only | i = ⇢

1/2|m0i with |m0i = |ze = 1i. The reason is as follows. The Gauss’s
law (

Q
e3v

Ze = 1) implies that the Hilbert space only contains states that are closed loops in the Z basis. Therefore,
one may write |mi = gx|m0i where gx is a product of single-site Pauli-Xs forming closed loops. Since [gx, ⇢] = 0, this
implies that
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i = Ugx | (p)i (21)

and therefore, if | i is SRE (LRE), so is | gxi. ⇢(�) may then be written as:

⇢(p) =
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Ugx | (p)ih (p)|U†
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. Now, using the aforementioned spectral representation of ⇢, the (non-normalized) state | i = ⇢
1/2|ze = 1i is:
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|⇢1/2i = ⇢
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H
⌦ IH̄|�iH⌦H̄ (24)
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h(k) =
ukvk

�
e��

� 1
�

|uk|
2 + |vk|2e��

(29)

As p ! 0, � ! 1 (recall tanh(�) = (1 � 2p)2), and
one recovers the p+ ip ground state where h(k) ⇠ vk/uk

diverges as 1/(kx+ iky) and results in a power-law decay
of Wannier orbitals [45]. In contrast, at any non-infinite �
(i.e. non-zero decoherence rate p), h(k) is non-infinite for
any k (since |uk|

2+|vk|2 = 1), and therefore, the Wannier
orbitals corresponding the state | 0i are exponentially
localized. As an aside, this same argument also applies
to the decohered 1d Kitaev chain (Sec.IVD), and more
generally, to other decohered non-interacting fermionic
topological superconductors.

The above argument only applies to the translation-
ally invariant state | 0i that enters the convex decom-
position in Eq.(27). To make progress for general | mi,
we found it more helpful to consider diagnostics which
directly access the topological character (or lack thereof)
of a wavefunction, and which are also more amenable to
finite-size scaling. In particular, we employ the ‘mod-
ular commutator’ introduced in Refs. [79–82]. Mod-
ular commutator is a multipartite entanglement mea-
sure that quantifies the chiral central charge for a pure
state, and can be completely determined by the many-
body wavefuntion [79–82]. Specifically, it is defined as
JABC := i tr(⇢ABC [ln ⇢AC , ln ⇢BC ]) with ⇢X the reduced
density matrix in region X obtained from a pure state
| i (i.e. ⇢X = tr

X
| ih |).

In the absence of decoherence, the modular commuta-
tor of | mi for this setup is J0,ABC = ⇡c/3 = ⇡/6, as the
chiral central charge c = 1/2 for the p+ ip superconduc-
tor. Fig.2 shows the modular commutator JABC/J0,ABC

on a L⇥L torus as a function of L. We choose the error
rate p = 0.04 and several di↵erent initial states, including
|mi = |0, ..., 0i (uniform), |0, 1, 0, 1, .., 0, 1i (staggered),
and also a random bit string in the occupational number
basis. We find that in all cases, JABC vanishes in the
thermodynamic limit. We also studied other values of p,
and our results are again consistent with the claim that
at any non-zero p, the modular commutator for the states
| mi vanishes in the thermodynamic limit. This provides
numerical evidence that at any non-zero error rate, the
decohered mixed state can be expressed as a convex sum
of states that do not have any chiral topological order,
and hence must be representable as Slater determinants
of single-particle localized Wannier states [44] (note that
all states | mi are area-law entangled).

It is important to note that in contrast to the pure
states | mi, the modular commutator for the decohered
mixed state ⇢ does not show any abrupt behavior change
at p = 0 (dashed plot in Fig.2). This is consistent with
the fact that the arguments relating modular commuta-
tor to the chiral central charge rely on the overall state
being pure [79–82], and therefore, we don’t expect that
modular commutator for the mixed-state ⇢ captures the

FIG. 2. Modular commutator JABC/J0,ABC on a L⇥L torus
as a function of L corresponding to several di↵erent pure
states | mi that enter the convex decomposition of the p+ ip

SC subjected to decoherence with Kraus operators linear in
Majorana fermions (Eq.(27)), as well as the modular commu-
tator of the decohered mixed state itself. We choose error
rate p = 0.04, and the following initial states |mi in Eq.(27):
|mi = |0, ..., 0i (uniform), |0, 1, 0, 1, .., 0, 1i (staggered), and
|mi = a random bit string in the occupational number basis.
The inset shows the geometry of regions A,B,C used to de-
fine the modular commutator. We use anti-periodic boundary
conditions along both directions so that the ground state is
unique.

separability transition at p = 0. This again highlights the
utility of the convex decomposition of ⇢ into pure states.

In addition, we also numerically compute the entan-
glement spectrum of | mi with |mi the uniform product
state (so that momentum along the entanglement biparti-
tion is a good quantum number). For a chiral topological
state, one expects that the edge spectrum of a physical
edge will be imprinted on the entanglement spectrum of a
subregion [77]. Since | mi is Gaussian, the entanglement
spectrum is encoded in the spectrum of the matrix iMA,
where MA is the restriction of the covariance matrix M
to the region A in the inset of Fig.3. Fig.3 shows the
spectrum of iMABC (denoted as ⌫) as a function of the
momentum ky with error rate p = 0 and p = 0.04. The
geometry is again chosen as a torus, with length Lx = 60,
and height Ly = 30. In the absence of error (p = 0), all
states | mi are projected to the p+ ip ground state, and
thus the spectrum shows chirality, resembling the edge
states of the p+ ip SC (note that we have two entangle-
ment boundaries resulting in counter-propagating chiral
states in the entanglement spectrum). After the decoher-
ence is introduced, one finds that the chiral mode in the
entanglement spectrum is gapped out, see Fig.3. We also
confirmed that the gap between the two ‘bands’ of the en-
tanglement spectrum increases with the system size (not
shown). Overall, both the modular commutator and the
entanglement spectrum provide numerical evidence that
the decohered density matrix can be written as a con-
vex sum of free-fermion, pure states that have no chiral

5

⇢d =
X

m

p
⇢d|product stateim mhproduct state|p⇢d (29)

| m(p)i /
X

xe

[Z2d Ising,xe(p)]
1/2|xei (30)

⇢ =
X

zv

p
⇢ |zvihzv|

p
⇢ (31)

⇢ =
X

xv

p
⇢ |xvihxv|

p
⇢ (32)

It is easy to see that when � = 1, | i / |⌦0i, the non-decohered toric code ground state, while when � = 0,
| i / |ze = 1i is a product state. This suggests a phase transition for | (�)i from being an LRE state to an SRE
state as we increase the error rate p (i.e. decrease �). We will now show that this is indeed the case.

E (33)

We first consider the expectation value of the ‘anyon condensation operator’ (also known as ‘t Hooft loop) in state
| (�)i, defined as [15, 44–46] T˜̀=

Q
e2˜̀Ze, where ˜̀ denotes a homologically non-contractible loop on the dual lattice

(in the language of Z2 gauge theory [46, 47], Ze ⇠ e
i⇡(Electric field)e). Physically, hT˜̀i ⌘ h |T˜̀| i/h | i is the amplitude

of tunneling from one logical subspace to an orthogonal one, and therefore it is zero in the Z2 topologically ordered
phase, and non-zero in the topologically trivial phase (=anyon condensed phase) [48]. Indeed, one may easily verify
that hT˜̀i = 0 (1) when � = 1 (� = 0). Using Eq.(30), T˜̀ flips spins along the curve ˜̀ (i.e., xe ! �xe, 8e 2 ˜̀), and
we denote the corresponding configuration as x˜̀,e. While x˜̀,e and xe have the same flux through every elementary

plaquette, they live in di↵erent logical sectors L. Therefore, T˜̀| i /
P

xe
[Zxe ]

1/2|x˜̀,ei =
P

xe
[Zx˜̀,e

]1/2|xei, where
we have suppressed the subscript ‘2d Ising’ under the partition function Z for notational convenience. Thus,

hT˜̀i =

P
xe

q
ZxeZx˜̀,e

P
xe

Zxe

=

P
xe

Zxee
��Fx˜̀,e

/2

P
xe

Zxe

= he��F˜̀/2i � e
�h�F˜̀i/2

(34)

where �Fx˜̀,e
= � log

⇣
Zx˜̀,e

/Zxe

⌘
is the free energy cost of inserting a domain wall of size |˜̀| ⇠ L (= system’s linear

size) in the RBIM along the Nishimori line [31], and we have used Jensen’s inequality in the last sentence. We are
along the Nishimori line because the probability of a given gauge invariant label {fp,L} along the Nishimori line is
precisely the partition function Zxe [31]. Since h�F˜̀i, the disorder-averaged free energy cost, diverges with L in the
ferromagnetic phase of the RBIM while converges to a constant in the paramagnetic phase [31], Eq.(34) rigorously
shows that for p > pc = p2d RBIM ⇡ 0.109 [49], hT˜̀i saturates to a non-zero constant. Therefore, | i is a topologically
trivial state when p > pc, and hence the mixed state is SRE for p > pc. In contrast, for p < pc, due to non-vanishing
ferromagnetic order (and associated domain wall cost) of the RBIM, we expect that hT˜̀i ⇠ e

�h�F˜̀i/2 ⇠ e
�cL ! 0 in

the thermodynamic limit (c > 0 is a constant), implying that | i is topologically ordered. This doesn’t necessarily
imply that the decohered state ⇢ is long-range entangled for p < pc, because there may exist some other way to
decompose it as a sum of SRE pure states. However, for p < pc, long-range entanglement as quantified by topological
entanglement negativity is non-zero as shown in Ref.[14]. Since a state of a form ⇢ =

P
i
pi|SREii ihSRE| can be

prepared by an ensemble of finite-depth unitary circuits starting with a product state, it is reasonable to assume
that it cannot support long-range entanglement as quantified by any valid measure of entanglement. Assuming that
topological negativity is one such measure (as supported by previous works [14, 43]), the above discussion implies
that the state of our interest undergoes a separability transition at p = pc.

Another diagnostic of topological order in pure states is the (Renyi) topological entanglement entropy (TEE) [50–
52]. Dividing the system in real space as A [ B, and defining the reduced density matrix ⇢A = trB | (�)ih (�)| for

basic idea:

[Yu-Hsueh Chen, TG, 2310.07286]

(explicitly breaks fermion parity from strong to weak)
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where {ze} are a complete set of product states in the Pauli-Z basis, and | mi = ⇢
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whether ⇢ is an SRE mixed state, one needs to determine whether each | mi is SRE. However, for the current case
of interest, it su�ces to consider only | i = ⇢

1/2|m0i with |m0i = |ze = 1i. The reason is as follows. The Gauss’s
law (

Q
e3v

Ze = 1) implies that the Hilbert space only contains states that are closed loops in the Z basis. Therefore,
one may write |mi = gx|m0i where gx is a product of single-site Pauli-Xs forming closed loops. Since [gx, ⇢] = 0, this
implies that

| 
m
i = Ugx | (p)i (21)

and therefore, if | i is SRE (LRE), so is | gxi. ⇢(�) may then be written as:
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X

gx

Ugx | (p)ih (p)|U†

gx
(22)

. Now, using the aforementioned spectral representation of ⇢, the (non-normalized) state | i = ⇢
1/2|ze = 1i is:

⇢
1/2|ze = 1i /

X

xe

[Z2d Ising,xe(p)]
1/2|xei (23)
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1/2

H
⌦ IH̄|�iH⌦H̄ (24)

|⇢i = ⇢H ⌦ IH̄|�iH⌦H̄ (25)
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(27)
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X
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Fig.4 shows the spectrum of iML (denoted as ⌫) as a
function of the momentum ky with di↵erent error rate p.
Here, we put the system on the cylinder with circumfer-
ence Lx = 60, and height Ly = 16. In the absence of error
(p = 0), there are two counter-propagating modes, resem-
bling the edge states of the initial double state |⇢0i. After
the decoherence is introduced, one can clearly see from
Fig.4 that these counter-propagating modes are gapped
out for arbitrary small error rate. Note that we did not
perform any space-time rotation to obtain Fig.4. This
is suggestive that the entanglement Hamiltonian of the
double state |⇢i may already have the same qualitative
behavior as the one obtained after space-time rotation.
We leave further investigation of this point to the future.

Let us return to the problem of our main interest in this
subsection, namely that of Kraus operators that commute
with the fermion parity operator. The simplest possibil-
ity is the composition of the following Kraus map on all
nearest-neighbor bonds hx,yi of the square lattice:

Ehx,yi[⇢] = (1� p)⇢+ p�x�y⇢�x�y (40)

The interaction term HE induced by such a Kraus map
in the double state should respect the following Z2 ⇥ Z2

symmetries: � ! �� and/or ⌘ ! �⌘. Since Majorana
fermions square to identity, the simplest term that is bi-
linear in both � and ⌘ and respects all the symmetries
involves derivatives:

HE = g

Z
dy(�@y�)(⌘@y⌘). (41)

where g / p. Therefore, the full entanglement Hamil-
tonian for the L fields in the presence of decoherence is
given by:

HE = i

Z
dy(�@y� � ⌘@y⌘) + g

Z
dy(�@y�)(⌘@y⌘). (42)

This field theory has been studied earlier in Refs.[75, 76].
At a particular g = gc, the system undergoes a phase
transition in the tricitical Ising university class with cen-
tral charge c = 7/10. For g < gc, the interaction term
is irrelevant, while above gc, the system spontaneously
breaks the Z2 ⇥ Z2 symmetry down to the diagonal Z2

symmetry. Physically, this means that the exact fermion-
parity symmetry (i.e. U⇢ = ⇢ where U is the generator
of the fermion parity), has been spontaneously broken
down to an average symmetry (i.e. U⇢U † = ⇢). We note
that a class of 2d chiral topological phases subjected to
decoherence with fermion-bilinear Kraus operators was
also studied in Ref.[22]. One notable di↵erence between
Ref.[22] and our problem is that in the examples consid-
ered in Ref.[22], the decoherence always reduces the ef-
fective central charge of the action corresponding to the
double state. In contrast, in our problem, the e↵ective

central charge increases from c = 1/2 to c = 7/10.
It is interesting to contemplate the implications of the

above phase transition in terms of the separability prop-
erties of the original mixed state ⇢ (instead of the double
state |⇢i). We conjecture that for p ⌧ pc, there exists
no decomposition of the density matrix as a convex sum
of area-law entangled pure states without any chirality,
while p > pc the density matrix is expressible as a con-
vex sum of area-law entangled pure states with GHZ-like
entanglement (due to spontaneous breaking of fermion
parity). Similar to the case of intrinsic topological orders
subjected to local decoherence [17, 18, 20, 82], we antic-
ipate that the universality class as well as the location
of the critical point obtained from the double-state for-
malism will di↵er from that of the ‘intrinsic’ mixed-state
transition for the density matrix, e.g., when viewed from
the perspective of separability. We do not know the uni-
versality for the latter transition and we leave it as an
open question.

VI. SEPARABILITY TRANSITION IN GIBBS
STATES OF NLTS HAMILTONIAN

In this section we will consider an exotic separability
transition in a Gibbs state relevant to certain quantum
codes. Although this transition does not require any sym-
metry, which has been a main ingredient in the rest of
this work, the argument below to deduce the existence
of a separability transition is broadly similar in spirit to
that in Secs.III and IV.
Recently, there has been discovery of ‘good LDPC

codes’ where the code distance as well as the number
of logical qubits scale with the total number of qubits
[49–51]. Moreover, Ref.[48] showed that the construc-
tion of a good LDPC code in Ref.[49] satisfies Freedman-
Hastings’ No Low-Energy Trivial States (NLTS) conjec-
ture [47] which, when satisfied by a Hamiltonian, means
that any state | i with energy density less than a non-
zero value ec can not be prepared by a constant depth
unitary circuit (the energy density e of a state | i is de-
fined as e = limN!1 (h |H| i � E0) /N where E0 is the
groundspace energy of H). Here we ask: does the Gibbs
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tion at a non-zero temperature? That is, does there exist
a Tc > 0 so that for T < Tc, the Gibbs state can not be
written as a convex sum of SRE pure states?
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a product state, followed by a finite-depth unitary that
entangles the ‘system’ qubits (which are also initially in
a product state) with the ancillae qubits, and eventually
integrating out the ancillae. However, as already dis-
cussed in Sec.II, inability to purify to an SRE state via
a short-depth channel does not imply that a mixed state
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modifications, essentially follow the one in Ref.[21] for
a closely related problem of non-triviality of a density
matrix with an exact symmetry and long-range order.

To show that for � > �c, ⇢ can’t be a sym-SRE
state, let us first decompose ⇢ as ⇢ = ⇢+ + ⇢� where
⇢± = ( 1±U

2 )⇢ are the projections of ⇢ onto even and
odd charge of the Ising symmetry. ⇢+ and ⇢� are valid
density matrices with an exact Ising symmetry, that is,
they satisfy, U⇢± = ±⇢±. Now let us make the as-
sumption that for � > �c, ⇢ is a sym-SRE state. We
will show that this assumption leads to a contradiction.
Therefore, we write ⇢± =

P
↵
p↵,±| ↵,±ih ↵,±| where

p↵,± are positive numbers, and | ↵,±i are SRE states 8↵
that satisfy U | ↵,±i = ±| ↵,±i. Since U anti-commutes
with Zi, h ↵,±|Zi| ↵,±i = 0. Further, since | ↵,±i are
all SRE states, correlation functions of all local opera-
tors decay exponentially (notably, we assume that the
associated correlation length is bounded by a system-
size independent constant for all | ↵,±i), and therefore,
h ↵,±|ZjZk| ↵,±i � h ↵,±|Zj | ↵,±ih ↵,±|Zk| ↵,±i =
h ↵,±|ZjZk| ↵,±i vanishes as |j � k| ! 1. However,
this leads to a contradiction, because this implies that
tr (⇢ZjZk) =

P
±

P
↵
p↵,±h ↵,±|ZjZk| ↵,±i itself van-

ishes, which we know can’t be true since as mentioned
above, for � > �c, the system is in an SSB phase with
long-range order. Therefore, our assumption that ⇢ is a
sym-SRE state for � > �c must be incorrect. The same
conclusion also holds for � = �c since the correlations at
the critical point decay as a power-law.

As mentioned in the introduction, our general ap-
proach would be to first look for general constraints that
lead to a mixed state being necessarily non-trivial. If we
are unable to find such a constraint, we will attempt to
find an explicit decomposition of the density matrix as
a convex sum of SRE states. For example, above, we
noted that ⇢ cannot be a sym-SRE state for � � �c,
and we also claimed that ⇢ is an SRE state for all non-
zero temperatures. Let us therefore try to find an ex-
plicit decomposition of ⇢ as a convex sum of SRE pure
states for any non-zero temperature, and as a convex
sum of symmetric, pure SRE states for � < �c. The key
player in our argument will be a particular convex decom-
position ansatz (CDA in short) that is motivated from
“minimally entangled typical thermal states” (METTS)
construction introduced in Ref.[56], and which was em-
ployed in Ref.[53] to show that the Gibbs state of 2d
and 3d toric code is SRE for all non-zero temperatures.
Note that despite the nomenclature, METTS construc-
tion as introduced in [56] does not involve minimization
of entanglement over all possible decompositions, and is
simply an ansatz that is physically motivated (which is
why we prefer the nomenclature CDA over METTS for
our discussion).

First, let us specialize to zero transverse field. In this
case, ⇢ is clearly an SRE state at any temperature since
⇢ /

P
m
e��Em |zmihzm| where |zmi denotes a product

state in the Z-basis and Em = hzm|H|zmi. To obtain a
symmetric convex decomposition, we write:

⇢ =

P
m
e��H/2

|xmihxm|e��H/2

Z
=

X

m

pm| mih m| (3)

where the set {|xmi} corresponds to the complete set of
states in the X basis, | mi / e��H/2

|xmi and pm /

h m| mi. The states | mi are clearly symmetric under
the Ising symmetry, and their symmetry charge (= ±1)
is determined by the parity of the number of sites in the
product state |xmi where spins point along the negative-
x direction. We will now argue that the states | mi are
SRE for � < �c and LRE for � � �c. To see this, we first
consider the “partition function with respect to | mi”
defined as Zm = h m| mi and study its analyticity as a
function of �. In this specific example, since transverse
field is set to zero, one finds that for all m, Zm is simply
proportional to the partition function of the 2d classical
Ising model at inverse temperature �, and therefore is
non-analytic across the phase transition. Similarly, the
two-point correlation function h m|ZiZj | mi/h m| mi

is just the two-point spin-spin correlation function in the
2d classical Ising model, which is long-ranged for � � �c
and exponentially decaying for � < �c. These obser-
vations strongly indicate that | mi is SRE (and corre-
spondingly, ⇢ sym-SRE) if and only if � < �c. Note that
the states | mi are expected to be area-law entangled for
all �. This is because one may represent the imaginary
time evolution e��H

|mi as a tensor network of depth �
acting on |mi (which is a product state), which can only
generate an area-law worth of entanglement. Further,
even the state at � = 1 is area-law entangled (= the
ground state of H). Therefore, short-range correlations
are strongly suggestive of short-range entanglement.

Now, let’s consider non-zero transverse field. To argue
that ⇢ is SRE for any non-zero temperature, we again
decompose it as ⇢ =

P
m
pm|�mih�m| where |�mi /

e��H/2
|zmi. The corresponding Zm = h�m|�mi can now

be expressed in the continuum limit as an imaginary-
time path integral Zm ⇠

R
�(⌧=0)=�(⌧=�)=�0

D� e�S

where S =
P

n

R
kx,ky

|�(kx, ky, n)|2(k2x + k2
y
+ !2

n
) +

R
�

⌧=0

R
x,y

�
r|�|2 + u|�|4

�
, !n = 2⇡n/� are the Matsub-

ara frequencies, and the Dirichlet boundary conditions
�(x, y, ⌧ = 0) = �(x, y, ⌧ = �) = �0(x, y) are imposed by
the ‘initial’ state zm ⇠ �0(x, y). Since � 6= 1, the dis-
crete sum over the Matsubara frequencies will be dom-
inated by !n = 0, which implies that the fluctuations
of � will be essentially completely suppressed at all non-
zero temperatures (including at the finite temperature
critical point which corresponds to renormalized r = 0),
since n = 0 corresponds to space-time configurations
that are translationally invariant along the imaginary-
time-direction, and the Dirichlet boundary conditions
imply that there is just one such configuration, namely,
�(x, y, ⌧) = �0(x, y). Therefore, we expect that Zm will
not exhibit singularity across the finite temperature crit-
ical point, which indicates that the states |�mi are SRE.
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generate an area-law worth of entanglement. Further,
even the state at � = 1 is area-law entangled (= the
ground state of H). Therefore, short-range correlations
are strongly suggestive of short-range entanglement.

Now, let’s consider non-zero transverse field. To argue
that ⇢ is SRE for any non-zero temperature, we again
decompose it as ⇢ =

P
m
pm|�mih�m| where |�mi /

e��H/2
|zmi. The corresponding Zm = h�m|�mi can now

be expressed in the continuum limit as an imaginary-
time path integral Zm ⇠

R
�(⌧=0)=�(⌧=�)=�0

D� e�S

where S =
P

n

R
kx,ky

|�(kx, ky, n)|2(k2x + k2
y
+ !2

n
) +

R
�

⌧=0

R
x,y

�
r|�|2 + u|�|4

�
, !n = 2⇡n/� are the Matsub-

ara frequencies, and the Dirichlet boundary conditions
�(x, y, ⌧ = 0) = �(x, y, ⌧ = �) = �0(x, y) are imposed by
the ‘initial’ state zm ⇠ �0(x, y). Since � 6= 1, the dis-
crete sum over the Matsubara frequencies will be dom-
inated by !n = 0, which implies that the fluctuations
of � will be essentially completely suppressed at all non-
zero temperatures (including at the finite temperature
critical point which corresponds to renormalized r = 0),
since n = 0 corresponds to space-time configurations
that are translationally invariant along the imaginary-
time-direction, and the Dirichlet boundary conditions
imply that there is just one such configuration, namely,
�(x, y, ⌧) = �0(x, y). Therefore, we expect that Zm will
not exhibit singularity across the finite temperature crit-
ical point, which indicates that the states |�mi are SRE.
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modifications, essentially follow the one in Ref.[21] for
a closely related problem of non-triviality of a density
matrix with an exact symmetry and long-range order.

To show that for � > �c, ⇢ can’t be a sym-SRE
state, let us first decompose ⇢ as ⇢ = ⇢+ + ⇢� where
⇢± = ( 1±U

2 )⇢ are the projections of ⇢ onto even and
odd charge of the Ising symmetry. ⇢+ and ⇢� are valid
density matrices with an exact Ising symmetry, that is,
they satisfy, U⇢± = ±⇢±. Now let us make the as-
sumption that for � > �c, ⇢ is a sym-SRE state. We
will show that this assumption leads to a contradiction.
Therefore, we write ⇢± =

P
↵
p↵,±| ↵,±ih ↵,±| where

p↵,± are positive numbers, and | ↵,±i are SRE states 8↵
that satisfy U | ↵,±i = ±| ↵,±i. Since U anti-commutes
with Zi, h ↵,±|Zi| ↵,±i = 0. Further, since | ↵,±i are
all SRE states, correlation functions of all local opera-
tors decay exponentially (notably, we assume that the
associated correlation length is bounded by a system-
size independent constant for all | ↵,±i), and therefore,
h ↵,±|ZjZk| ↵,±i � h ↵,±|Zj | ↵,±ih ↵,±|Zk| ↵,±i =
h ↵,±|ZjZk| ↵,±i vanishes as |j � k| ! 1. However,
this leads to a contradiction, because this implies that
tr (⇢ZjZk) =

P
±

P
↵
p↵,±h ↵,±|ZjZk| ↵,±i itself van-

ishes, which we know can’t be true since as mentioned
above, for � > �c, the system is in an SSB phase with
long-range order. Therefore, our assumption that ⇢ is a
sym-SRE state for � > �c must be incorrect. The same
conclusion also holds for � = �c since the correlations at
the critical point decay as a power-law.

As mentioned in the introduction, our general ap-
proach would be to first look for general constraints that
lead to a mixed state being necessarily non-trivial. If we
are unable to find such a constraint, we will attempt to
find an explicit decomposition of the density matrix as
a convex sum of SRE states. For example, above, we
noted that ⇢ cannot be a sym-SRE state for � � �c,
and we also claimed that ⇢ is an SRE state for all non-
zero temperatures. Let us therefore try to find an ex-
plicit decomposition of ⇢ as a convex sum of SRE pure
states for any non-zero temperature, and as a convex
sum of symmetric, pure SRE states for � < �c. The key
player in our argument will be a particular convex decom-
position ansatz (CDA in short) that is motivated from
“minimally entangled typical thermal states” (METTS)
construction introduced in Ref.[56], and which was em-
ployed in Ref.[53] to show that the Gibbs state of 2d
and 3d toric code is SRE for all non-zero temperatures.
Note that despite the nomenclature, METTS construc-
tion as introduced in [56] does not involve minimization
of entanglement over all possible decompositions, and is
simply an ansatz that is physically motivated (which is
why we prefer the nomenclature CDA over METTS for
our discussion).

First, let us specialize to zero transverse field. In this
case, ⇢ is clearly an SRE state at any temperature since
⇢ /

P
m
e��Em |zmihzm| where |zmi denotes a product

state in the Z-basis and Em = hzm|H|zmi. To obtain a
symmetric convex decomposition, we write:

⇢ =

P
m
e��H/2

|xmihxm|e��H/2

Z
=

X

m

pm| mih m| (3)

where the set {|xmi} corresponds to the complete set of
states in the X basis, | mi / e��H/2

|xmi and pm /

h m| mi. The states | mi are clearly symmetric under
the Ising symmetry, and their symmetry charge (= ±1)
is determined by the parity of the number of sites in the
product state |xmi where spins point along the negative-
x direction. We will now argue that the states | mi are
SRE for � < �c and LRE for � � �c. To see this, we first
consider the “partition function with respect to | mi”
defined as Zm = h m| mi and study its analyticity as a
function of �. In this specific example, since transverse
field is set to zero, one finds that for all m, Zm is simply
proportional to the partition function of the 2d classical
Ising model at inverse temperature �, and therefore is
non-analytic across the phase transition. Similarly, the
two-point correlation function h m|ZiZj | mi/h m| mi

is just the two-point spin-spin correlation function in the
2d classical Ising model, which is long-ranged for � � �c
and exponentially decaying for � < �c. These obser-
vations strongly indicate that | mi is SRE (and corre-
spondingly, ⇢ sym-SRE) if and only if � < �c. Note that
the states | mi are expected to be area-law entangled for
all �. This is because one may represent the imaginary
time evolution e��H

|mi as a tensor network of depth �
acting on |mi (which is a product state), which can only
generate an area-law worth of entanglement. Further,
even the state at � = 1 is area-law entangled (= the
ground state of H). Therefore, short-range correlations
are strongly suggestive of short-range entanglement.

Now, let’s consider non-zero transverse field. To argue
that ⇢ is SRE for any non-zero temperature, we again
decompose it as ⇢ =

P
m
pm|�mih�m| where |�mi /

e��H/2
|zmi. The corresponding Zm = h�m|�mi can now

be expressed in the continuum limit as an imaginary-
time path integral Zm ⇠

R
�(⌧=0)=�(⌧=�)=�0

D� e�S

where S =
P

n

R
kx,ky

|�(kx, ky, n)|2(k2x + k2
y
+ !2

n
) +

R
�

⌧=0

R
x,y

�
r|�|2 + u|�|4

�
, !n = 2⇡n/� are the Matsub-

ara frequencies, and the Dirichlet boundary conditions
�(x, y, ⌧ = 0) = �(x, y, ⌧ = �) = �0(x, y) are imposed by
the ‘initial’ state zm ⇠ �0(x, y). Since � 6= 1, the dis-
crete sum over the Matsubara frequencies will be dom-
inated by !n = 0, which implies that the fluctuations
of � will be essentially completely suppressed at all non-
zero temperatures (including at the finite temperature
critical point which corresponds to renormalized r = 0),
since n = 0 corresponds to space-time configurations
that are translationally invariant along the imaginary-
time-direction, and the Dirichlet boundary conditions
imply that there is just one such configuration, namely,
�(x, y, ⌧) = �0(x, y). Therefore, we expect that Zm will
not exhibit singularity across the finite temperature crit-
ical point, which indicates that the states |�mi are SRE.
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regarded as SRE if it can be obtained from ⇢cl by
applying a finite-depth unitary on s ⌦ a, followed
by tracing out a. That is, one may consider ⇢ as
SRE if

⇢ = tra
�
U †e�HclU/Z

�
(2)

where U is a finite-depth circuit and Z =
tr
�
e�Hcl

�
. We are unable to show that the defini-

tion in Eq.(1) is equivalent to Eq.(2). Although we
will primarily use the former definition (Eq.(1)), in
Sec.VII we will briefly discuss potential connections
between the two definitions, and also relation with
other diagnostics of mixed-state entanglement.

3. The symmetry we consider is called weak symme-
try (average symmetry) in Ref.[28] (Ref.[26]), which
highlights its di↵erence with the stronger symmetry
U(g)⇢ = ⇢U(g) = ei✓(g)⇢, 8g 2 G, termed strong
symmetry (exact symmetry) in Ref.[28] (Ref.[26]).
Physically, exact symmetry enforces the constraint
that the density matrix must be written as an in-
coherent sum of pure states, where each of them
is an eigenstate of U(g) with the same eigenvalue
ei✓(g). On the other hand, while the mixed state
⇢ with only average symmetry can be written as a
convex sum of symmetric pure states having di↵er-
ent charge under G, one may as well express ⇢ as a
convex sum of non-symmetric pure states. There-
fore, our requirement that each of the pure states
respects the symmetry puts a further constraint on
a mixed state with only average symmetry.

On that note, Ref. [54] defined a symmetric-SRE
state for a symmetry U as one which satisfies Eq.(2)
where e�Hcl is replaced by P✓(g)e

�Hcl where P✓(g)

is a projector onto a given symmetry charge ✓(g).
Therefore, in this definition one is always working
with a density matrix that has an exact symme-
try. As already mentioned, we will instead only
impose the average symmetry in our definition of
a sym-SRE state (of course, there may be special
quantum channels that happen to preserve an exact
symmetry).

4. An alternative definition of an SRE mixed state was
considered in Refs.[26, 27, 52] whereby a mixed den-
sity matrix is considered SRE if it can be obtained
from a pure product state in a system⌦ancillae
Hilbert space via a finite-depth unitary followed
by tracing out ancillae. In contrast, as already
mentioned above in comment #2, Ref.[2] defines
a mixed density matrix as SRE if it can be ob-
tained from the ‘classical mixed state’ ⇢cl / e�Hcl

of system⌦ancillae via a finite-depth local quan-
tum channel. Therefore, a mixed state can be
trivial/SRE using the definition of Ref.[2] while
remaining non-trivial/LRE using the definition of

Refs.[26, 27, 52]. The physical distinction between
these two definitions is most apparent when one
considers a mixed state for qubits of the form
⇢ = 1

2 (| "ih" |+ | #ih# |) where | "i =
Q

i
| "ii and

| #i =
Q

i
| #ii. This state is clearly separable (un-

entangled). However, any short-depth purification
of this state must be long-ranged entangled. This is
because tr(⇢ZiZj)�tr(⇢Zi) tr(⇢Zj) is non-zero and
the purified state can’t change this correlation func-
tion due to the Lieb-Robinson bound [36, 37] (this
is also related to the fact the entanglement of purifi-
cation [55] is sensitive to both quantum and classi-
cal correlations, and therefore is not a good mixed-
state entanglement measure). Thus the aforemen-
tioned ⇢ will be SRE using definition of Ref.[2], and
LRE using the definition of Ref.[26, 27, 52]. Of
course, it will also be SRE via Eq.(1), which is the
definition we will use throughout this paper.

III. AN ILLUSTRATIVE EXAMPLE:
SEPARABILITY TRANSITION IN THE GIBBS
STATE OF THE 2D QUANTUM ISING MODEL

Let us consider an example to illustrate the di↵erence
between an SRE mixed state and a sym-SRE mixed state,
that will also provide one of the simplest examples of a
separability transition. Consider the density matrix ⇢ for
qubits (i.e. objects transforming in the spin-1/2 repre-
sentation of SU(2)) given by ⇢(�) = e��H/Z where H
is a local Hamiltonian that satisfies U†HU = H with
U =

Q
i
Xi being the generator of the Ising symmetry,

and Z = tr e��H is the partition function. Let us further
assume that ⇢(�) exhibits spontaneous symmetry break-
ing (SSB) for � > �c where 0 < �c < 1 (for a range
of other parameters that specify the Hamiltonian). For
concreteness, one may choose H as the nearest neighbor
transverse-field Ising model on the square lattice, i.e.,
H = �

P
hi,ji

ZiZj � h
P

i
Xi although the only aspect

that will matter in the following discussion is that H is
local with a zero-form Ising symmetry, and the order pa-
rameter in the symmetry breaking phase is a real scalar
(e.g. one may as well consider a transverse-field Ising
model on a cubic lattice). Therefore, for a range of the
transverse-field h and � > �c (where �c depends on h),
the two-point correlation function tr (⇢ZiZj) is non-zero
for |i� j| ! 1. We will argue that ⇢ is SRE for all non-
zero temperatures, while it is sym-SRE only for � < �c.
Partial support for ⇢ being an SRE at all non-zero tem-
peratures was provided in Refs.[23–25] and we will argue
below for an explicit decomposition of ⇢ in terms of SRE
states.
The statement that ⇢ is not sym-SRE for � � �c was

also hinted in [54], and intuitively follows from the fact
that for � > �c, SSB implies that if one decomposes ⇢ as
a convex sum of symmetric, pure states, those pure states
must have GHZ-like entanglement. Let us first consider
a rigorous argument for this statement which, upto small
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We study states with intrinsic topological order subjected to local decoherence from the perspective
of separability, i.e., whether a decohered mixed state can be expressed as an ensemble of short-range
entangled (SRE) pure states. We focus on toric codes and the X-cube fracton state and provide
evidence for the existence of decoherence-induced separability transitions that precisely coincide with
the threshold for the feasibility of active error correction. A key insight is that local decoherence
acting on the ‘parent’ cluster states of these models results in a Gibbs state. As an example, for
the 2d (3d) toric code subjected to bit-flip errors, we show that the decohered density matrix can
be written as a convex sum of SRE states for p > pc, where pc is related to the paramagnetic-
ferromagnetic transition in the 2d (3d) random-field bond Ising model along the Nishimori line.

In this work we will explore aspects of many-body
topological states subjected to decoherence from the per-
spective of separability, i.e., whether the resulting mixed
state can be expressed as a convex sum of short-range
entangled (SRE) states [1–3]. This criteria is central
to the definition of what constitutes an SRE or long-
range entangled (LRE) mixed state, and various mea-
sures of mixed-state entanglement, such as negativity[3–
8] and entanglement of formation [9], are defined so as to
quantify non-separability. We will be particularly inter-
ested in decoherence-induced “separability transitions”,
i.e., transitions tuned by decoherence such that the den-
sity matrix in one regime is expressible as a convex sum
of SRE states, and in the other regime, it is not. One
salient distinction between pure state versus mixed-state
dynamics is that although a short-depth unitary evolu-
tion cannot change long-range entanglement encoded in
a pure state, a short-depth local channel can fundamen-
tally alter long-range mixed-state entanglement. There-
fore, even the limited class of mixed states that are ob-
tained by the action of local short-depth channels on
an entangled pure state o↵er an opportunity to explore
mixed-state phases and phase transitions [10–22]. We
will focus on mixed states that are obtained via subject-
ing several well-understood topologically ordered phases
of matter to short-depth quantum channels.

⇢ sym-SRE ) | ↵,±i SRE
Error-threshold theorems [24–29] suggest a topologi-

cally ordered pure state is perturbatively stable against
decoherence from a short-depth, local quantum channel,
leading to the possibility of a phase transition as a func-
tion of the decoherence rate [30]. Such transitions were
originally studied from the perspective of quantum error
correction (QEC) in Refs.[31, 32] and more recently us-
ing mixed-state entanglement measures such as topolog-
ical negativity [14], and other non-linear functions of the
density matrix (Refs.[13–15]). These approaches clearly
establish at least two di↵erent mixed-state phases: one
where the topological qubit can be decoded, and the
other where it can’t. However, it is not obvious if the
density matrix in the regime where decoding fails can be
expressed as a convex sum of SRE pure states, which, fol-
lowing Refs.[1, 2], we will take as the definition of an SRE

FIG. 1. (a) Topological orders under local decoherence can
undergo a separability transition, where only above a certain
critical error rate, the decohered mixed state ⇢dec can be writ-
ten as a convex sum of SRE pure states. The bottom depicts
the parent cluster states and their o↵spring models obtained
by appropriate measurements (indicated by an arrow) (b) 2d
cluster Hamiltonian and 2d toric code, (c) 3d cluster Hamil-
tonian and 3d toric code, and (d) “Cluster-X” Hamiltonian
[23] and the X-cube Hamiltonian.

mixed state. Our main result is that for several topo-
logically ordered phases subjected to local decoherence,
which are relevant for quantum computing [31–33], one
can explicitly write down the decohered mixed state as a
convex sum of pure states which we argue all undergo a
topological phase transition, from being long-ranged en-
tangled to short-ranged entangled, at a threshold that
precisely corresponds to the optimal threshold for QEC.
We find that the universality class of such a separability
transition also coincides with that corresponding to the
QEC error-recovery transition. Therefore, in these ex-
amples, we argue that the error-recovery transition does
indeed coincide with a many-body separability transi-
tion. As discussed below, our method also provides a new
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for the quantum error-correcting codes [14, 31, 32, 34].
Let us begin by considering the ground state of the

2d toric code (see Fig.1(b)) with Hamiltonian H2d toric =
�
P

v
(
Q

e2v
Ze) �

P
p
(
Q

e2p
Xe) subjected to phase-flip

errors. The Hilbert space consists of qubits residing
on the edges (denoted as ‘e’) of a square lattice and
we assume periodic boundary conditions. Denoting the
ground state as ⇢0, the Kraus map corresponding to
the phase-flip errors act on an edge e as: Ee[⇢0] =
pZe⇢0Ze + (1 � p)⇢0, and the full map is given by the
composition of this map over all edges. The key first
step is to utilize the idea of duality [35–39] by identifying
the corresponding ‘parent’ cluster Hamiltonian (in the
sense of Refs.[23, 40–42]). Interestingly, the application
of the aforementioned Kraus map to its ground state re-
sults in a Gibbs state. For the problem at hand, consider
H2d cluster =

P
v
hv +

P
e
he where hv = �Xv(

Q
e3v

Ze)
and he = �Xe(

Q
v2e

Zv) whose Hilbert space consists
of qubits both on the vertices and the edges of the
square lattice (Fig.1(b)). The ground state density ma-
trix ⇢0 of the 2d toric code can be written as ⇢0 /
hxv = 1|⇢C,0|xv = 1i, where |xv = 1i = ⌦v|xv = 1i
is the product state in the Pauli-X basis, and ⇢C,0 (/Q

e
(I �he)

Q
v
(I �hv)) is the ground state of H2d cluster.

The projection selects one specific ground state of the
toric code that is an eigenvector of the non-contractible
Wilson loops W` =

Q
e2`

Xe with eigenvalue +1 along
both cycles ` of the torus. A simple calculation shows
that Ee[⇢C,0] / e

��
P

e he
Q

v
(I � hv) where

tanh(�) = 1� 2p (1)

This implies that the decohered density matrix ⇢ of the
toric code is ⇢ / hxv = 1|e��

P
e he |xv = 1iPZ where

PZ =
Q

v
(I +

Q
e3v

Ze). By inserting a complete set
of states, one may simplify the above expression as ⇢ /
PZ⇢ePZ where ⇢e =

P
xe

Z2d Ising,xe |xeihxe| and

Z2d Ising,xe(p) =
X

zv

e
�
P

e xe
Q

v2e zv (2)

is the partition function of the 2d Ising model
with Ising interactions determined by {xe}. Thus,
⇢ /

P
xe

Z2d Ising,xe |⌦xeih⌦xe |, where |⌦xei /
Q

v
(I +Q

e3v
Ze)|xei are nothing but a subset of toric code

eigenstates. Note that in this derivation, the 2d Ising
model emerges due to the he terms in the parent clus-
ter Hamiltonian, and ultimately, this will lead to the re-
lation between the separability transition and the sta-
tistical mechanics of the 2d random-bond Ising model
(RBIM) that also describes the error-recovery transition
[31]. We note that the above spectral representation of
⇢ in terms of toric code eigenstates has also previously
appeared in Ref.[13], using a di↵erent derivation. Since
non-contractible cycles of the torus will play an impor-
tant role below, let us note that distinct eigenstates |⌦xei
can be uniquely specified by two labels: the first label

corresponds to the set of local Z2 fluxes fp =
Q

e2p
xe

through elementary plaquettes p, while the second label
L = (Lx = ±1, Ly = ±1) with Lx =

Q
e2`,ekx̂ xe, Ly =Q

e2`,ekŷ xe and ` a non-contractible loop along x̂/ŷ di-
rection, specifies the topological sector (‘Logical data’)
in which |⌦xei lives.

We now probe the mixed state ⇢ using the separabil-
ity criteria, i.e., we ask whether it can be decomposed
as a convex sum of SRE states. Clearly, the aforemen-
tioned spectral representation is not a useful decomposi-
tion since it involves toric code eigenstates which are all
LRE. Taking cue from the argument for separability of
the Gibbs state of toric codes [43], we decompose ⇢ as

⇢ =
X

ze

⇢
1/2|zeihze|⇢1/2 ⌘

X

m

| mih m| (3)

where {ze} are a complete set of product states in the
Pauli-Z basis, and | mi = ⇢

1/2|zei. Generically, to de-
termine whether ⇢ is an SRE mixed state, one needs
to determine whether each | mi is SRE. However, for
the current case of interest, it su�ces to consider only
| i = ⇢

1/2|m0i with |m0i = |ze = 1i. The reason is as
follows. The Gauss’s law (

Q
e3v

Ze = 1) implies that the
Hilbert space only contains states that are closed loops
in the Z basis. Therefore, one may write |mi = gx|m0i
where gx is a product of single-site Pauli-Xs forming
closed loops. Since [gx, ⇢] = 0, this implies that

| 
m
i = Ugx | (p)i (4)

and therefore, if | i is SRE (LRE), so is | gxi. ⇢(�) may
then be written as:

⇢(p) =
X

gx

Ugx | (p)ih (p)|U†
gx

(5)

. Now, using the aforementioned spectral representa-
tion of ⇢, the (non-normalized) state | i = ⇢

1/2|ze = 1i
is:

| (p)i /
X

xe

[Z2d Ising,xe(p)]
1/2|xei (6)

⇢ =
X

zv

p
⇢ |zvihzv|

p
⇢ (7)

⇢ =
X

xv

p
⇢ |xvihxv|

p
⇢ (8)

It is easy to see that when � = 1, | i / |⌦0i, the non-
decohered toric code ground state, while when � = 0,
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regarded as SRE if it can be obtained from ⇢cl by
applying a finite-depth unitary on s ⌦ a, followed
by tracing out a. That is, one may consider ⇢ as
SRE if

⇢ = tra
�
U †e�HclU/Z

�
(2)

where U is a finite-depth circuit and Z =
tr
�
e�Hcl

�
. We are unable to show that the defini-

tion in Eq.(1) is equivalent to Eq.(2). Although we
will primarily use the former definition (Eq.(1)), in
Sec.VII we will briefly discuss potential connections
between the two definitions, and also relation with
other diagnostics of mixed-state entanglement.

3. The symmetry we consider is called weak symme-
try (average symmetry) in Ref.[28] (Ref.[26]), which
highlights its di↵erence with the stronger symmetry
U(g)⇢ = ⇢U(g) = ei✓(g)⇢, 8g 2 G, termed strong
symmetry (exact symmetry) in Ref.[28] (Ref.[26]).
Physically, exact symmetry enforces the constraint
that the density matrix must be written as an in-
coherent sum of pure states, where each of them
is an eigenstate of U(g) with the same eigenvalue
ei✓(g). On the other hand, while the mixed state
⇢ with only average symmetry can be written as a
convex sum of symmetric pure states having di↵er-
ent charge under G, one may as well express ⇢ as a
convex sum of non-symmetric pure states. There-
fore, our requirement that each of the pure states
respects the symmetry puts a further constraint on
a mixed state with only average symmetry.

On that note, Ref. [54] defined a symmetric-SRE
state for a symmetry U as one which satisfies Eq.(2)
where e�Hcl is replaced by P✓(g)e

�Hcl where P✓(g)

is a projector onto a given symmetry charge ✓(g).
Therefore, in this definition one is always working
with a density matrix that has an exact symme-
try. As already mentioned, we will instead only
impose the average symmetry in our definition of
a sym-SRE state (of course, there may be special
quantum channels that happen to preserve an exact
symmetry).

4. An alternative definition of an SRE mixed state was
considered in Refs.[26, 27, 52] whereby a mixed den-
sity matrix is considered SRE if it can be obtained
from a pure product state in a system⌦ancillae
Hilbert space via a finite-depth unitary followed
by tracing out ancillae. In contrast, as already
mentioned above in comment #2, Ref.[2] defines
a mixed density matrix as SRE if it can be ob-
tained from the ‘classical mixed state’ ⇢cl / e�Hcl

of system⌦ancillae via a finite-depth local quan-
tum channel. Therefore, a mixed state can be
trivial/SRE using the definition of Ref.[2] while
remaining non-trivial/LRE using the definition of

Refs.[26, 27, 52]. The physical distinction between
these two definitions is most apparent when one
considers a mixed state for qubits of the form
⇢ = 1

2 (| "ih" |+ | #ih# |) where | "i =
Q

i
| "ii and

| #i =
Q

i
| #ii. This state is clearly separable (un-

entangled). However, any short-depth purification
of this state must be long-ranged entangled. This is
because tr(⇢ZiZj)�tr(⇢Zi) tr(⇢Zj) is non-zero and
the purified state can’t change this correlation func-
tion due to the Lieb-Robinson bound [36, 37] (this
is also related to the fact the entanglement of purifi-
cation [55] is sensitive to both quantum and classi-
cal correlations, and therefore is not a good mixed-
state entanglement measure). Thus the aforemen-
tioned ⇢ will be SRE using definition of Ref.[2], and
LRE using the definition of Ref.[26, 27, 52]. Of
course, it will also be SRE via Eq.(1), which is the
definition we will use throughout this paper.

III. AN ILLUSTRATIVE EXAMPLE:
SEPARABILITY TRANSITION IN THE GIBBS
STATE OF THE 2D QUANTUM ISING MODEL

Let us consider an example to illustrate the di↵erence
between an SRE mixed state and a sym-SRE mixed state,
that will also provide one of the simplest examples of a
separability transition. Consider the density matrix ⇢ for
qubits (i.e. objects transforming in the spin-1/2 repre-
sentation of SU(2)) given by ⇢(�) = e��H/Z where H
is a local Hamiltonian that satisfies U†HU = H with
U =

Q
i
Xi being the generator of the Ising symmetry,

and Z = tr e��H is the partition function. Let us further
assume that ⇢(�) exhibits spontaneous symmetry break-
ing (SSB) for � > �c where 0 < �c < 1 (for a range
of other parameters that specify the Hamiltonian). For
concreteness, one may choose H as the nearest neighbor
transverse-field Ising model on the square lattice, i.e.,
H = �

P
hi,ji

ZiZj � h
P

i
Xi although the only aspect

that will matter in the following discussion is that H is
local with a zero-form Ising symmetry, and the order pa-
rameter in the symmetry breaking phase is a real scalar
(e.g. one may as well consider a transverse-field Ising
model on a cubic lattice). Therefore, for a range of the
transverse-field h and � > �c (where �c depends on h),
the two-point correlation function tr (⇢ZiZj) is non-zero
for |i� j| ! 1. We will argue that ⇢ is SRE for all non-
zero temperatures, while it is sym-SRE only for � < �c.
Partial support for ⇢ being an SRE at all non-zero tem-
peratures was provided in Refs.[23–25] and we will argue
below for an explicit decomposition of ⇢ in terms of SRE
states.
The statement that ⇢ is not sym-SRE for � � �c was

also hinted in [54], and intuitively follows from the fact
that for � > �c, SSB implies that if one decomposes ⇢ as
a convex sum of symmetric, pure states, those pure states
must have GHZ-like entanglement. Let us first consider
a rigorous argument for this statement which, upto small
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Hamiltonian can be written as H = ��A
Õ

s As � �B
Õ

p Bp

in which As are products of Pauli-X operators, and Bp are
products of Pauli-Z operators (their precise forms depend
on the dimensionality). This model can be thought of as a
sum of two classical gauge theories in two di�erent bases,
which has an interesting consequence: the partition func-
tion factorizes, Z = ZAZB/2N where ZA = tr

�
e��A

Õ
s As

�
,

ZB = tr
⇣
e��B

Õ
p Bp

⌘
, and N is the number of spins. Due to this

structure, the toric code model has two critical temperatures
TA and TB above which the excitations corresponding to As and
Bp operators proliferate. In the language of the gauge theory,
these temperatures correspond to confinement-deconfinement
transition for Wilson operators Wx and Wz respectively, where
Wx/Wz is a product of connected As/Bp operators and is a
gauge invariant under the local gauge transformation gener-
ated by Bp/As . Intuitively, at a finite temperature, a stable
topological order can protect the encoded qubits against the
thermal decoherence without the need of any active error cor-
rection, only when both types of excitations are suppressed,
that is, below Min(TA,TB). On the other hand, if only one type
of excitations is suppressed, i.e. in the temperature regime
Min(TA,TB) and Max(TA,TB), the other type of excitation de-
stroys the topological order, and the model can only realize a
self-correcting classical memory11,17,18,23.

Our main result is summarized in Fig.1. Through an ex-
plicit calculation, we find that topological entanglement nega-
tivity is nonzero only when the temperature is simultaneously
below both critical temperatures associated with the prolifera-
tion of two types of excitations, in line with the aforementioned
heuristics. In strong contrast, Stopo remains nonzero (drops to
half of its ground state value) when temperature is between the
lower and upper critical temperatures17,18.

Disentangling toric codes at finite-T— Before discussing
topological entanglement negativity for toric code models in
detail, here we provide intuition for finite-T topological order
by decomposing a mixed state of interest into a convex sum
of pure states: ⇢ =

Õ
i pi | iih i |. If each | ii is short-range

entangled, then preparing ⇢ requires only the ability to gen-
erate the probability distribution {pi}, and constructing short-
ranged entangled states | ii, tasks which can be done with
resources that do not scale with the system size. Alternatively,
one can purify ⇢ to obtain a state that can be constructed with
a finite depth unitary (12, see also26 for an explicit construc-
tion for toric code). One hint for such a decomposition comes
from ‘minimally entangled typical thermal state’ (METTS)
ansatz27: ⇢ = e��H/Z =

Õ
m pm |�mih�m | where each |�mi is

a METTS obtained from imaginary time evolution of a product
state |mi: |�mi ⇠ e��H/2

|mi. pm = hm| e��H |mi /Z is the
probability corresponding to |�mi. Using such decomposition,
we now show that the Gibbs state of the toric code model in
arbitrary spatial dimension is not topologically ordered above
Min(TA,TB).

First consider METTS obtained from a product state
|mi in the Z basis: |�m(T)i ⇠ e�/2

Õ
s As e�/2

Õ
p Bp |mi ⇠

e�/2
Õ

s As |mi. One finds all such METTS |�m(T)i at tem-
perature T > TA are short-range entangled since they can be
adiabatically connected to the infinite temperature METTS

FIG. 2: The boundary operators in toric code for various
spatial dimensions, where blue circles and red squares label
Ai and Bj operators respectively. (a) 1D bipartition boundary
in 2D toric code, where Ai live on sites, and Bj live on links.
(b) 2D bipartition boundary in 3D toric code, where Ai live
on sites, and Bj live on links. (c) 3D bipartition boundary in
4D toric code, where Ai live on links, and Bj live on faces.

FIG. 3: Scaling collapse of topological negativity in 2D toric
code as �B ! 1 (Eq.3). L is the size of the bipartition
boundary, � is the inverse temperature, and �A is the coef-
ficient of the star operators As . Inset: Scaling collapse of
topological negativity in 2D toric code at � = �A = �B using
classical Monte Carlo combined with transfer matrix method.

|�m(T ! 1)i, i.e. a product state, without encountering a
phase transition/critical point. Therefore ⇢ is not topologi-
cally ordered for T > TA. Similarly, one can also decom-
pose ⇢ using METTS obtained by imaginary time evolving the
product state in X basis to deduce that ⇢ is not topologically
ordered for T > TB. Combining these two observations proves
the absence of topological order in toric code for temperature
T > min(TA,TB). Note that this result applies to all CSS code
Hamiltonians H = ��A

Õ
i S(X)

i
� �B

Õ
i S(Z)

i

28,29, where each
local commuting term S(X/Z)

i
is a product of Pauli-X/Z oper-

ators. Using this result and the observation in Ref.30–33, one
immediately proves the absence of finite-T topological order
in the more exotic topological models such as X-cube model34,
a type-I fracton model, and Haah’s code35, a type-II fracton
model. As an aside, each METTS |�m(T)i is the ground state
of a local parent Hamiltonian26, which can be explicitly con-
structed using an approach analogous to Ref.36,37.

General scheme for calculating negativity— The above cal-
culation using METTS ansatz shows when a state is not topo-
logically ordered. To understand the fate of topological order

2

Hamiltonian can be written as H = ��A
Õ

s As � �B
Õ

p Bp

in which As are products of Pauli-X operators, and Bp are
products of Pauli-Z operators (their precise forms depend
on the dimensionality). This model can be thought of as a
sum of two classical gauge theories in two di�erent bases,
which has an interesting consequence: the partition func-
tion factorizes, Z = ZAZB/2N where ZA = tr

�
e��A

Õ
s As

�
,

ZB = tr
⇣
e��B

Õ
p Bp

⌘
, and N is the number of spins. Due to this

structure, the toric code model has two critical temperatures
TA and TB above which the excitations corresponding to As and
Bp operators proliferate. In the language of the gauge theory,
these temperatures correspond to confinement-deconfinement
transition for Wilson operators Wx and Wz respectively, where
Wx/Wz is a product of connected As/Bp operators and is a
gauge invariant under the local gauge transformation gener-
ated by Bp/As . Intuitively, at a finite temperature, a stable
topological order can protect the encoded qubits against the
thermal decoherence without the need of any active error cor-
rection, only when both types of excitations are suppressed,
that is, below Min(TA,TB). On the other hand, if only one type
of excitations is suppressed, i.e. in the temperature regime
Min(TA,TB) and Max(TA,TB), the other type of excitation de-
stroys the topological order, and the model can only realize a
self-correcting classical memory11,17,18,23.

Our main result is summarized in Fig.1. Through an ex-
plicit calculation, we find that topological entanglement nega-
tivity is nonzero only when the temperature is simultaneously
below both critical temperatures associated with the prolifera-
tion of two types of excitations, in line with the aforementioned
heuristics. In strong contrast, Stopo remains nonzero (drops to
half of its ground state value) when temperature is between the
lower and upper critical temperatures17,18.

Disentangling toric codes at finite-T— Before discussing
topological entanglement negativity for toric code models in
detail, here we provide intuition for finite-T topological order
by decomposing a mixed state of interest into a convex sum
of pure states: ⇢ =

Õ
i pi | iih i |. If each | ii is short-range

entangled, then preparing ⇢ requires only the ability to gen-
erate the probability distribution {pi}, and constructing short-
ranged entangled states | ii, tasks which can be done with
resources that do not scale with the system size. Alternatively,
one can purify ⇢ to obtain a state that can be constructed with
a finite depth unitary (12, see also26 for an explicit construc-
tion for toric code). One hint for such a decomposition comes
from ‘minimally entangled typical thermal state’ (METTS)
ansatz27: ⇢ = e��H/Z =

Õ
m pm |�mih�m | where each |�mi is

a METTS obtained from imaginary time evolution of a product
state |mi: |�mi ⇠ e��H/2

|mi. pm = hm| e��H |mi /Z is the
probability corresponding to |�mi. Using such decomposition,
we now show that the Gibbs state of the toric code model in
arbitrary spatial dimension is not topologically ordered above
Min(TA,TB).

First consider METTS obtained from a product state
|mi in the Z basis: |�m(T)i ⇠ e�/2

Õ
s As e�/2

Õ
p Bp |mi ⇠

e�/2
Õ

s As |mi. One finds all such METTS |�m(T)i at tem-
perature T > TA are short-range entangled since they can be
adiabatically connected to the infinite temperature METTS

FIG. 2: The boundary operators in toric code for various
spatial dimensions, where blue circles and red squares label
Ai and Bj operators respectively. (a) 1D bipartition boundary
in 2D toric code, where Ai live on sites, and Bj live on links.
(b) 2D bipartition boundary in 3D toric code, where Ai live
on sites, and Bj live on links. (c) 3D bipartition boundary in
4D toric code, where Ai live on links, and Bj live on faces.

FIG. 3: Scaling collapse of topological negativity in 2D toric
code as �B ! 1 (Eq.3). L is the size of the bipartition
boundary, � is the inverse temperature, and �A is the coef-
ficient of the star operators As . Inset: Scaling collapse of
topological negativity in 2D toric code at � = �A = �B using
classical Monte Carlo combined with transfer matrix method.

|�m(T ! 1)i, i.e. a product state, without encountering a
phase transition/critical point. Therefore ⇢ is not topologi-
cally ordered for T > TA. Similarly, one can also decom-
pose ⇢ using METTS obtained by imaginary time evolving the
product state in X basis to deduce that ⇢ is not topologically
ordered for T > TB. Combining these two observations proves
the absence of topological order in toric code for temperature
T > min(TA,TB). Note that this result applies to all CSS code
Hamiltonians H = ��A

Õ
i S(X)

i
� �B

Õ
i S(Z)

i

28,29, where each
local commuting term S(X/Z)

i
is a product of Pauli-X/Z oper-

ators. Using this result and the observation in Ref.30–33, one
immediately proves the absence of finite-T topological order
in the more exotic topological models such as X-cube model34,
a type-I fracton model, and Haah’s code35, a type-II fracton
model. As an aside, each METTS |�m(T)i is the ground state
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We study states with intrinsic topological order subjected to local decoherence from the perspective
of separability, i.e., whether a decohered mixed state can be expressed as an ensemble of short-range
entangled (SRE) pure states. We focus on toric codes and the X-cube fracton state and provide
evidence for the existence of decoherence-induced separability transitions that precisely coincide with
the threshold for the feasibility of active error correction. A key insight is that local decoherence
acting on the ‘parent’ cluster states of these models results in a Gibbs state. As an example, for
the 2d (3d) toric code subjected to bit-flip errors, we show that the decohered density matrix can
be written as a convex sum of SRE states for p > pc, where pc is related to the paramagnetic-
ferromagnetic transition in the 2d (3d) random-field bond Ising model along the Nishimori line.

In this work we will explore aspects of many-body topological states subjected to decoherence from the perspective
of separability, i.e., whether the resulting mixed state can be expressed as a convex sum of short-range entangled (SRE)
states [1–3]. This criteria is central to the definition of what constitutes an SRE or long-range entangled (LRE) mixed
state, and various measures of mixed-state entanglement, such as negativity[3–8] and entanglement of formation [9],
are defined so as to quantify non-separability. We will be particularly interested in decoherence-induced “separability
transitions”, i.e., transitions tuned by decoherence such that the density matrix in one regime is expressible as a convex
sum of SRE states, and in the other regime, it is not. One salient distinction between pure state versus mixed-state
dynamics is that although a short-depth unitary evolution cannot change long-range entanglement encoded in a pure
state, a short-depth local channel can fundamentally alter long-range mixed-state entanglement. Therefore, even the
limited class of mixed states that are obtained by the action of local short-depth channels on an entangled pure state
o↵er an opportunity to explore mixed-state phases and phase transitions [10–22]. We will focus on mixed states that
are obtained via subjecting several well-understood topologically ordered phases of matter to short-depth quantum
channels.
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Error-threshold theorems [24–29] suggest a topologically ordered pure state is perturbatively stable against deco-
herence from a short-depth, local quantum channel, leading to the possibility of a phase transition as a function of
the decoherence rate [30]. Such transitions were originally studied from the perspective of quantum error correction
(QEC) in Refs.[31, 32] and more recently using mixed-state entanglement measures such as topological negativity [14],
and other non-linear functions of the density matrix (Refs.[13–15]). These approaches clearly establish at least two
di↵erent mixed-state phases: one where the topological qubit can be decoded, and the other where it can’t. However,
it is not obvious if the density matrix in the regime where decoding fails can be expressed as a convex sum of SRE
pure states, which, following Refs.[1, 2], we will take as the definition of an SRE mixed state. Our main result is that
for several topologically ordered phases subjected to local decoherence, which are relevant for quantum computing
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We study states with intrinsic topological order subjected to local decoherence from the perspective
of separability, i.e., whether a decohered mixed state can be expressed as an ensemble of short-range
entangled (SRE) pure states. We focus on toric codes and the X-cube fracton state and provide
evidence for the existence of decoherence-induced separability transitions that precisely coincide with
the threshold for the feasibility of active error correction. A key insight is that local decoherence
acting on the ‘parent’ cluster states of these models results in a Gibbs state. As an example, for
the 2d (3d) toric code subjected to bit-flip errors, we show that the decohered density matrix can
be written as a convex sum of SRE states for p > pc, where pc is related to the paramagnetic-
ferromagnetic transition in the 2d (3d) random-field bond Ising model along the Nishimori line.

In this work we will explore aspects of many-body
topological states subjected to decoherence from the per-
spective of separability, i.e., whether the resulting mixed
state can be expressed as a convex sum of short-range
entangled (SRE) states [1–3]. This criteria is central
to the definition of what constitutes an SRE or long-
range entangled (LRE) mixed state, and various mea-
sures of mixed-state entanglement, such as negativity[3–
8] and entanglement of formation [9], are defined so as to
quantify non-separability. We will be particularly inter-
ested in decoherence-induced “separability transitions”,
i.e., transitions tuned by decoherence such that the den-
sity matrix in one regime is expressible as a convex sum
of SRE states, and in the other regime, it is not. One
salient distinction between pure state versus mixed-state
dynamics is that although a short-depth unitary evolu-
tion cannot change long-range entanglement encoded in
a pure state, a short-depth local channel can fundamen-
tally alter long-range mixed-state entanglement. There-
fore, even the limited class of mixed states that are ob-
tained by the action of local short-depth channels on
an entangled pure state o↵er an opportunity to explore
mixed-state phases and phase transitions [10–22]. We
will focus on mixed states that are obtained via subject-
ing several well-understood topologically ordered phases
of matter to short-depth quantum channels.
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Error-threshold theorems [24–29] suggest a topologically
ordered pure state is perturbatively stable against de-
coherence from a short-depth, local quantum channel,
leading to the possibility of a phase transition as a func-
tion of the decoherence rate [30]. Such transitions were
originally studied from the perspective of quantum error
correction (QEC) in Refs.[31, 32] and more recently us-
ing mixed-state entanglement measures such as topolog-

FIG. 1. (a) Topological orders under local decoherence can
undergo a separability transition, where only above a certain
critical error rate, the decohered mixed state ⇢dec can be writ-
ten as a convex sum of SRE pure states. The bottom depicts
the parent cluster states and their o↵spring models obtained
by appropriate measurements (indicated by an arrow) (b) 2d
cluster Hamiltonian and 2d toric code, (c) 3d cluster Hamil-
tonian and 3d toric code, and (d) “Cluster-X” Hamiltonian
[23] and the X-cube Hamiltonian.

ical negativity [14], and other non-linear functions of the
density matrix (Refs.[13–15]). These approaches clearly
establish at least two di↵erent mixed-state phases: one
where the topological qubit can be decoded, and the
other where it can’t. However, it is not obvious if the
density matrix in the regime where decoding fails can be
expressed as a convex sum of SRE pure states, which, fol-
lowing Refs.[1, 2], we will take as the definition of an SRE
mixed state. Our main result is that for several topo-
logically ordered phases subjected to local decoherence,
which are relevant for quantum computing [31–33], one
can explicitly write down the decohered mixed state as a
convex sum of pure states which we argue all undergo a
topological phase transition, from being long-ranged en-
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ical negativity [14], and other non-linear functions of the
density matrix (Refs.[13–15]). These approaches clearly
establish at least two di↵erent mixed-state phases: one
where the topological qubit can be decoded, and the
other where it can’t. However, it is not obvious if the
density matrix in the regime where decoding fails can be
expressed as a convex sum of SRE pure states, which, fol-
lowing Refs.[1, 2], we will take as the definition of an SRE
mixed state. Our main result is that for several topo-
logically ordered phases subjected to local decoherence,
which are relevant for quantum computing [31–33], one
can explicitly write down the decohered mixed state as a
convex sum of pure states which we argue all undergo a
topological phase transition, from being long-ranged en-

[Tsung-Cheng Lu, Tim Hsieh, TG 1912.04293]

SREDeconfined 
anyons

topological negativity indicates yes.

Consider Gibbs state of Toric code in various dimensions…



• Decoherence induced separability transitions.


• Separability transitions in Gibbs states.


A. Quantum Ising model.


B. Toric codes.


C. NLTS Hamiltonians.



An exotic separability transition

Recently, quantum Hamiltonians have been discovered [Panteleev, Kalachev 2022; Leverrier, 

Zemor 2022; Dinur et al 2022; Anshu, Breuckmann, Nirkhe 2022] which satisfy the 

Freedman-Hastings “NLTS conjecture”:

Energy
density

ec

NLTS =  such that any state  that 


satisfies  cannot be

prepared via a constant depth circuit.

∃ ec > 0 |ψ⟩
⟨ψ |H |ψ⟩/N < ec

Can the Gibbs state of NLTS satisfying Hamiltonian be SRE?

Suggestive arguments that Gibbs state has no partition fn singularity at T > 0.
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One can show that the Gibbs state of NLTS Hamiltonian in fact

 cannot be SRE for . 


Basic idea: if it were SRE for all , i.e. if  where 

 are all SRE, then the expectation value of energy density would exceed ec, 
leading to a contradiction.
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[Yu-Hsueh Chen, TG, 2310.07286; See also Hong, Guo, Lucas, 2403.10599: finite-T memory in these 
same Hamiltonians]

NLTS =  such that any state  that 


satisfies  cannot be

prepared via a constant depth circuit.

∃ ec > 0 |ψ⟩
⟨ψ |H |ψ⟩/N < ec

⇒ Separability transition in the Gibbs state without any partition

fn singularity! (conjecture).



Summary and a few questions

• Separability criterion provides an organizing principle to classify mixed states as 
long range or short range entangled, with or without imposing symmetry.


• The decoding transition in several topological codes coincides with the separability 
transition: above the error threshold, the mixed state can be written as a convex 
sum of short-range entangled states.


• Other examples of separability transitions: mixed SPT states, spontaneous 
symmetry breaking, Gibbs state of NLTS Hamiltonians.

• How to distinguish distinct LRE mixed-states using separability? 


• Relation to renormalization group (Sang, Zou, Hsieh, 2310.08639)?


• Field theoretic calculation of entanglement of proposed optimal pure states?


• Generalization to other topologically ordered/SPT states?


• Theory of separability transition in Gibbs state with no partition-fn singularity?


