Separability as a window into
many-body mixed states

Tarun Grover
(UCSD)

Yu-Hsueh Chen
(UCSD)

2309.11879 (PRL 132, 170602, 2024),
2310.07286, 2403.06553




Quantum Phases of Matter beyond pure states?
Ledku -4 (Solid Stede Plhoysies)

Quakony Phages oF Makter CT= 0)
\

\ |

Shatt Ranae € iougled. \’M%’ Ranae € ioggled,
\ \
\ m\ Aaned <9V \ \oveoles V \
Tl LA Sypolameouwn
(produsk Slale) < oo wedakors 6L Soiny fncm s?sﬂ\r}[ “ToQo- ordel ©obless
\ eﬂar F&‘T\, e'%r' '
\ \ Teht oxde, Terw \'\‘\(%

\ (o Lopokovie  Non-Fermw
QGGFD-S\;&E\C%& a«? g\\,. L9 “;:\k&\é?j " ele \igs 4 W)

. Saperflnas ... N e
’55 = o\ @ sen-\a, eXe
(%‘S'é'\ Wanded %,S,A.




Quantum Phases of Matter beyond pure states?
Ledkvue -4 (Solid Slede Thysies)

Quakony Phages oF Makter CT= 0)
\

\ \
Shatt Q&X\%C £ angled \,cw\ca, QM\%C £ wangled.

circuit depth 4
= independent
of L

I circuit depth
< > ~ L*#




Quantum Phases of Matter beyond pure states?
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Quantum Phases of Matter beyond pure states?

“Classical”
Phase Transition (2D Ising)

Ferromagnet Paramagnet

Quantum
Phase Transition (3D Ising)

[Dennis, Kitaev,
Landahl, Preskill 2001 ]
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Phase diagram of 2D toric code in the

presence of decoherence

Pc p = error rate
@ >

Correctable phase

Non-correctable phase



Quantum Phases of Matter beyond pure states?
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Several interesting developments:

Equivalence between mixed-state phases [Coser, Perez-Garcia ’19; Rakovszky, Gopalakrishnan, Keyserlingk ’23;
Koenig, Pastawski ’13; Hastings ’11].

Renormalization group approach and quantum error correction [Sang, Zou, Hsieh '23; Sang, Hsieh ’'24;
Lavasani, Vijay ’24].

Weak vs strong symmetries, corresponding SSB, and mixed-state SPTs [de Groot, Turzillo, Schuch '22; Ma,
Wang ’22; Li, Jian, Xu '23; Ma et al '23, Lessa et al '24; Sala et al '24,...].

Various entanglement measures [Lu, Hsieh, TG ’20; Fan, Bao, Altman, Vishwanath ’'23,...].

Replica-based approach [Bao, Fan, Altman, Vishwanath ’23; Li, Jian, Xu ’23; Zou, Sang, Hsieh '23, Li, Mong ’24,...].
Intrinsically mixed topological states, and higher-form symmetries [Wang, Wu, Wang ’23; Sohal, Prem ’24;
Ellison, Cheng ’24; Li, Lee, Yoshida ’24,...].

LSM constraints/anomalies [Kawabata, Sohal, Ryu '23; Zhou, Li, Li, Gu '23; Hsin, Luo, Sun '23; Lessa, Cheng, Wang
'24; Wang, Li ’24,...].
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In this talk we will employ a rather coarse characterization based
on mixed-state entanglement, and discuss a few examples.

Zeroth Order question:

When is a mixed state unentangled (“separable”)?



Separable (= Unentangled) Mixed States

[Werner 1989]  Iff a density matrix p admits a decomposition

p= ) p lw)wl, with p,;>0

where each |1//l-) IS unentangled between parties A and B i.e.

lw;) = | @; 1) ® | @, p), then p is bipartite separable (i.e. unentangled).



Separable (= Unentangled) Mixed States

[Werner 1989]  Iff a density matrix p admits a decomposition

p= ) p lw)wl, with p,;>0

where each |1//l-) IS unentangled between parties A and B i.e.

lw;) = | @; 1) ® | @, p), then p is bipartite separable (i.e. unentangled).

1
Example: p = p|YBen) (¥Ben| + (1 — P)Z

where [¥Bell) = \%2 dH=1H1m)

0 1/3 1
p

separable non-separable

Many-body analogs?



Short-ranged entangled (SRE) mixed states
= generalization of separability to many-body setup

If a density matrix admits a decomposition p = Z p; | w:){w:| where each

l
|l//l-) Is short-ranged entangled (i.e. can be prepared via a finite-depth, local, unitary

circuit), then we will call p a “short-ranged entangled (SRE) mixed-state”.
[Hastings 1106.6026]

circuit depth 4
= constant
=10
\ 4
L
< >

[y1) [ ws)
probability p, probability p,




Infinitely many decompositions of a density matrix into pure states (!)

P—sz 1) (Y] —sz [95) (] —Zp 3 ) (Y

No general algorithm to determine if it is SRE/LRE.



Infinitely many decompositions of a density matrix into pure states (!)

P—szwz W—ZP@W W—ZP 3 ) (Y

No general algorithm to determine if it is SRE/LRE.

A few useful tools:

Explicit demonstration that a density matrix is SRE (for simple models).
Lieb-Robinson bounds to show LRE (= long-range entangled i.e. not SRE).
Anomaly (e.g. Lieb-Schultz-Mattis) based arguments.

(Heuristic) Mixed-state entanglement measures such as negativity.



Quantum entanglement vs classical long-range correlations

Coser, Perez-Garcia (1810.05092): Two mixed states in the same phase if they can
be connected via finite time, local Lindbladian evolution.

Example: (a) |00...0)¢00...0 | (b) %(lOO...O)(OO...OI +|11...1)(11...1])

belong to different phases of matter due to long-range classical
correlations in (b).

However, both states are unentangled, and hence “trivial” from separability perspective.

One may also define an SRE mixed state as one that has an SRE purification
(e.g. Ma, Wang 2209.02723). In this definition, classical correlations will again
be regarded as non-trivial (e.g. state (b) has no SRE purification).



Outline

 Decoherence induced separability transitions.
A. Topological ordered states.
B. SPT states.
C. Chiral states.

e Separability transitions in Gibbs states.



Decoding transition as a separability transition

[Dennis, Kitaev, Pc P = error rate

. @ >
Landahl, Preskill 2001
] Correctable phase Non-correctable phase

topologically Environment topologically
ordered ordered



Decoding transition as a separability transition

Recent works, in particular, Fan, Bao, Altman, Vishwanath [2301.05689; 2301.05687],
and Lee, Jian, Xu [2301.05238] have formulated decoding transition as an intrinsic
transition for the decohered mixed-state.

e Logical qubit lost to environment for p > pc (as detected via “coherent information”).

e Renyi negativity also shows a phase transition from log(2) to zero.

e “Markov length” diverges at p = pc [Sang, Hsieh 2024].

Pc p = error rate
@ >

Correctable phase Non-correctable phase

Can one show that the density matrix is SRE in the non-correctable phase?



Decohered density matrix

Z

H2d toric — _ZU g % _Zp X p X

Z

local channel: &.|po]l = pZepoZe + (1 — p)po
mE
[ Dennis, Kitaev, Z Z . Q Q
Landahl, Preskill "01] P X2z Z2d ISlng,we‘ o) ({la | , E&' \Z—v’
N

ZQd Ising,xe (p) — Z 65 2oeTelluee 2o tanh(ﬁ) =1—2p

Q) o< [I,(I + 11,5, Ze)|xe) = subset of toric code eigenstates



Decohered density matrix

H2dt0ric — _Zv g % _Zp X p X

Z

local channel: &.|po]l = pZepoZe + (1 — p)po
N

[Dennis, Kitaev, .
Landahl, Preskill "01] P X Za:e Z9d Tsing,we Q) (s, | , E&\;V,
N

Another viewpoint:

Statistical weights Z24 Ising,z.

inherited from “parent” cluster state.




phase diagram of

14 - )
\/,5 trick
A 2d random bond Ising model

Key idea: Write decohered p as T Nishimori ine

trivial
phase

0= Z \/ﬁ|ze><ze\\/ﬁ = Z [t ) (m |

)

>
P

Claim: All |l//m> undergo transition from topological to trivial precisely at p. corresponding

to the decoding transition. Topological Renyi entanglement of | l//m>, as well as tunneling

probability from one logical state to another relates to free energy cost of inserting a
domain wall in 2d random-bond Ising model along the Nishimori line.

Similar argument works for several other CSS codes in 2d and 3d, including
fracton codes e.g. X-cube model.

[Yu-Hsueh Chen, TG, 2309.11879]



Structure of the “optimal” decomposition
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Structure of the “optimal” decomposition

p=" Vilze)(zel V7
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| [Ting-Tung Wang, Menghan Song,

ZiYang Meng (Unpublished)]

(tanh(1/T) = 1 — 2p)



Structure of the “optimal” decomposition

p=" Vilze)(zel V7

\/ﬁ|ze — 1> X Z[ZQd Ising,xe (p)]1/2‘$e>

More generally, for a mixed-state p, define

: CMIpin = inf Y~ piI(A: B|O)y,

c where the infimum is taken over all possible decompositions

of pas p =Y  pilti) (¥l

CMImin = “long-range part of mixed-state entanglement”

Pdec # D, Pl SREW(SREL|  pgec = D Pu| SREL)(SRE,|
critical error rate error rate

CMImin-‘/—' O CMIminZ O




Separability perspective on double state & canonical purification

p) = pu @ L1g|®P) yen “double state” = canonical purification of p%/tr(p?)

[e.g. Bao, Fan, Altman, Vishwanath 2023; Li, Jian, Xu 2023]

’\/@ — \/57{ X ]”H‘(I)>H®ﬂ canonical purification of p

If \/,5) is SRE, then p @ 1 can be written as a convex sum of SRE pure states.

If | p) is SRE, then p2 ® 1 can be written as a convex sum of SRE pure states.



Separability perspective on double state & canonical purification

p) = pu @ L1g|®P) yen “double state” = canonical purification of p%/tr(p?)

[e.g. Bao, Fan, Altman, Vishwanath 2023; Li, Jian, Xu 2023]

’\/@ — \/EH X LH@%{@”H canonical purification of p

p? LRE, 22 SRE
| p) double topological

ingle topological
(i.e. TEE = 2 log(2)) | p) single topologica
A

(i.,e. TEE =lo0g(2))

e N
e (RBIM @) (Isin
pte ( ). p.c( ing) , D = error rate

[Yu-Hsueh Chen, TG, 2309.11879]



Separability perspective on double state & canonical purification

p) = pu @ L1g|®P) yen “double state” = canonical purification of p%/tr(p?)

[e.g. Bao, Fan, Altman, Vishwanath 2023; Li, Jian, Xu 2023]

’\/@ — \/EH & I”H‘(I)>H®ﬂ

canonical purification of p

p? LRE, 22 SRE
| p) double topological

ingle topological
(i.e. TEE = 2 log(2)) | p) single topologica
A

(i.,e. TEE =lo0g(2))

e N
(e (RBIM @) (Isin
pts ( ). p.c( 9 » [P = error rate
— _/
~ ~ - ~
Error-correctable phase, Non-correctable phase,
p LRE, p SRE,

|\/E) double topological
(i.,e. TEE = 2 log(2)),

|\/,5) single topological
(i.,e. TEE = log(2)),

[Yu-Hsueh Chen, TG, 2309.11879]



Purification to a trivial state for p > pc

pc (RBIM) p = error rate
® >

Correctable phase Non-correctable phase

p(p) = ra(| V)Y |)

) = ([T00) (v @ 105
P

I/
WP) = Y2 D) Upp=—=+i—



 Decoherence induced separability transitions.
A. Topological ordered states.
B. SPT states.
C. Chiral states.

e Separability transitions in Gibbs states.



Incorporating symmetries

If a density matrix admits a decomposition p = Zpi | w:){y;| where each

l
| ;) is short-ranged entangled, and can be prepared via a finite-depth, local, unitary

circuit composed of symmetric gates, then we will call p a “sym-SRE mixed-state”.

circuit depth 4
= constant
= [0
v
L
< >

[v1) [ ys)
probability p, probability p,

Each local gate [ satisfies, [(3, U] = 0, where U is the generator of the symmetry.



Symmetry enforced separability transitions
In cluster states

H=-—

11

(Zv,j—1Xa,j2b,j + Za,j X jZaj+1)

Ground state py = H (1— ha,j)(l — hb,j) is a non-trivial SPT phase (i.e. sym-LRE)

J
protected by Z, X Z, symmetry.

Let’s subject p to the channel  Eu/p,5(p] = (1 —=Payp)P+PajpZas,jPZasn,s

Is the resulting state sym-SRE at any non-zero p, and/or p, ?



Symmetry enforced separability transitions
In cluster states

Db Dp 4
0.5 05
wny W) GHZ|  trivial
. @ > D, > Dy
Result: p sym-LRE as long as p, = 0 or p, = 0 (regions i, ii, iii).

sym-SRE if both p, p» non-zero (region iv). Proof uses

Lieb-Robinson bound [Yu-Hsueh Chen, TG, 2310.07286].

Ma, Wang [RR09.02723], and Ma et al [R305.16399]: in regions i, ii, iii, p cannot be purified to an SRE pure
state using symmetric, finite-depth channel. Recent relation to SPT as a resource for transmitting quantum

information: Zhang, Agarwal, Vijay [2405.05965].



Symmetry enforced separability transitions
In cluster states
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[Yu-Hsueh Chen, TG, 2310.07286]



 Decoherence induced separability transitions.
A. Topological ordered states.
B. SPT states.
C. Chiral states.

e Separability transitions in Gibbs states.



p+ip SC subjected to fermionic Kraus operators

pa = E[|p+ip) (p-ip|] Eilpl = (L—p)p+ 0
(explicitly breaks fermion parity from strong to weak)

1.0

R . ..gasaW"""mm
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0.25

[Yu-Hsueh Chen, TG, 2310.07286] 000l
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p+ip SC subjected to bilinear Kraus operators

pa = El|p+ip) (p-ip|] Exyy Pl = (1= p)p + pPyxVy PVxVy

(fermion parity = strong symmetry)

_ 7L
Double state: <Tp—> YL OyYL VR O:YR

YR

Field theory arguments suggest the following phase diagram for the double state:

o r—et—o0—>p—0

| p+ip) tricritical Spontaneous breaking of
Ising fermion parity from strong to weak symmetry.

[Yu-Hsueh Chen, TG, 2310.07286]

s there a phase transition in “single copy”, as detected by, say, § = — tr(p log(p))?
If yes, strong-to-weak symmetry breaking of fermion parity, no pure state analog.

Other examples of strong-to-weak SSB: [Ma, Wang ’22; Li, Jian, Xu '23; Ma, et al '23,
Lessa et al ’24; Sala et al '24]



 Decoherence induced separability transitions.
e Separability transitions in Gibbs states.
A. Quantum Ising model.

B. Toric codes.

C. NLTS Hamiltonians.



Spontaneous symmetry breaking as
a separability transition

Claim:

: —HIT ;
H — — Z(i,j) Z:Z; —hY. X The Gibbs state p x e Is sym-LRE for T< T,
A on a square lattice Proof by contradiction: Assume p is sym-SRE for T' < T..

T separate p into even and odd Ising sectors: P = pP+ + p—

Cla§§ical | p+ = Za pa,i|¢a,i><¢a,i’

Phase Trahsition (2D Ising)

p sym-SRE = |4, +) SRE

Ordered Disordered

>
Quantum h = WosilZZi|ta ) waiy/'wai %iy/ﬂpa o o li-ille
Phase Transition (3D Ising)

= tr (ijZk) Ziz Pa, i<¢a i‘Z Zk‘wa > ~ e_ll_]l/é:

Contradiction because of spontaneous long-range order for 7' < T,

[Yu-Hsueh Chen, TG, 2310.07286, argument inspired from Lu, Zhang, Vijay, Hsieh 2303.15507]



Spontaneous symmetry breaking as
a separability transition

H = _Z(i,j> ZiZy —hy; X

on a square lattice ” : . .
t optimal” sym-SRE decomposition:

p = Z\/E‘SUVM:UV’\/E

Phase Trahsition (2D Ising)
Conjecture: Pure states \/,5 |xv) are SRE only for T > Tc.

Ordered Disordered

>

Quantum h
Phase Transition (3D Ising)

[Yu-Hsueh Chen, TG, 2310.07286]



 Decoherence induced separability transitions.
e Separability transitions in Gibbs states.
A. Quantum Ising model.

B. Toric codes.

C. NLTS Hamiltonians.



Consider Gibbs state of Toric code in various dimensions...

H= -4

1

X
X
1
Let's write pas: p = ;f_BH/Z\mZ(m\e_BH/Q = >

=1,

where { |m)} = complete set of product states in the X or Z basis.

One can argue that all | gbm) are SRE whenever T > min(Ta, Tg) where Ta, Ts correspond to

......................................................

......................................................

the critical temperatures of the classical Hamiltonians As, Bp

A
T H = H3p toric code T hZXz

Deconfined
anyons Confined
SRE anyons
T = 0 topological ~ Quantum

order Phase Transition

> 1

T

A

H = H4D toric code 1 h Z Xz

SRE

LRE?

Confined
anyons

> )

—»topological negativity indicates yes.

[Tsung-Cheng Lu, Tim Hsieh, TG 1912.04293]



 Decoherence induced separability transitions.
e Separability transitions in Gibbs states.
A. Quantum Ising model.

B. Toric codes.

C. NLTS Hamiltonians.



An exotic separability transition

Recently, quantum Hamiltonians have been discovered [Panteleev, Kalachev 2022; Leverrier,
Zemor 2022; Dinur et al 2022; Anshu, Breuckmann, Nirkhe 2022] which satisfy the
Freedman-Hastings “NLTS conjecture”:

NLTS = Je. > 0 such that any state |y) that

satisfies (| H|w)/N < e, cannot be

prepared via a constant depth circuit.

Can the Gibbs state of NLTS satisfying Hamiltonian be SRE?

Suggestive arguments that Gibbs state has no partition fn singularity at T > 0.



NLTS = de. > 0 such that any state |y) that

Energy satisfies (| H|w)/N < e_. cannot be

density prepared via a constant depth circuit.

One can show that the Gibbs state of NLTS Hamiltonian in fact
cannot be SRE for T < T. # 0.

Basic idea: if it were SRE for all T > 0, i.e. if e "1/ Z Zpi | w:){y;| where

l

| ;) are all SRE, then the expectation value of energy density would exceed e,

leading to a contradiction.

= Separability transition in the Gibbs state without any partition

fn singularity! (conjecture).

[Yu-Hsueh Chen, TG, 2310.07286; See also Hong, Guo, Lucas, 2403.10599: finite-T memory in these
same Hamiltonians]



Summary and a few questions

Separability criterion provides an organizing principle to classify mixed states as
long range or short range entangled, with or without imposing symmetry.

The decoding transition in several topological codes coincides with the separabillity
transition: above the error threshold, the mixed state can be written as a convex
sum of short-range entangled states.

Other examples of separability transitions: mixed SPT states, spontaneous
symmetry breaking, Gibbs state of NLTS Hamiltonians.

How to distinguish distinct LRE mixed-states using separability?

Relation to renormalization group (Sang, Zou, Hsieh, 2310.08639)?

Field theoretic calculation of entanglement of proposed optimal pure states?
Generalization to other topologically ordered/SPT states?

Theory of separability transition in Gibbs state with no partition-fn singularity?



