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Figure 4 | Signatures of Fermi-liquid and non-Fermi-liquid behaviour in

the resistivity of Yb(Rh0.94Ir0.06)2Si2. Temperature dependence of the

resistivity ⇢(T) at selected magnetic fields. The lines indicate Fermi-liquid

behaviour, that is, fits to ⇢(T) = ⇢0 +AT
n

with the exponent n = 2 and ⇢0

being the residual resistivity, for temperatures below TFL (marked by blue

arrows). Bottom inset: The field dependence of the coefficient

A = (⇢ �⇢0)/T
n

in the Fermi-liquid regime. The red line corresponds to

A(H) / (H�H
A
c

)
�1

yielding a critical field of µ0H
A
c

= 30(5) mT. Top

inset: Colour-coded representation of the resistivity exponent calculated as

n = dlog(⇢ �⇢0)/dlogT. The energy scales TN, T
?

and TFL are reproduced

from Fig. 1, top panel. The red square on the abscissa depicts H
A
c

, the critical

field of the divergence of the A coefficient (see bottom inset). The error

bars represent standard errors.

ref. 22 resembles our experimental observations. Also for YbAgGe,
a finite field range was reported where the resistivity exhibits
similar non-Fermi-liquid behaviour to the lowest temperatures23.
However, the specific heat of YbAgGe shows a saturation ofC(T )/T
in this field range, discarding a spin-liquid ground state24. In
contrast, preliminarymeasurements on 6% Ir down to 0.06 K reveal
a strong divergence of C(T )/T with decreasing temperature in the
field range below 50mT (not shown), supporting our claimof a spin
liquid. In addition, the susceptibility continues to increase towards
the lowest temperatures (see Fig. 2a). The experimental evidence
of such a new, non-magnetic ground state is fascinating and will
certainlymotivate future experimental and theoretical studies.

Figure 5 shows the evolution of the two different QCPs as a
function of Ir/Co substitution. The following main results can
be deduced from this figure. (1) The antiferromagnetic state is
stabilized through the application of positive chemical pressure,
as expected. (2) The position of the suggested breakdown of
the Kondo effect depends only weakly on chemical pressure—
although the Kondo effect itself is known to be strongly pressure
dependent. (3) As a consequence, for positive pressure, the
antiferromagnetic QCP at HN is located in the regime with intact
Kondo screening (HN >H

?) where the SDW theory is expected to
be applicable in accordance with our observations. (4) For negative
chemical pressure, on the other hand, HN is separated from H

?

towards lower fields with an intermediate spin-liquid-type ground
state emerging. Obviously, here, antiferromagnetic order and the
Fermi-liquid ground state are not connected by a single QCP,
but are separated by a spin liquid, that is, a non-Fermi-liquid
range as previously observed for MnSi (ref. 25) and, perhaps, in
�-YbAlB4 (refs 26, 27).
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Figure 5 | Experimental phase diagram in the zero temperature limit. The

zero-temperature phase diagram depicts the extrapolated critical fields of

the various energy scales. The red line represents the critical field of T
?
(H)

and the green line the antiferromagnetic (AF) critical field HN. The blue and

green regions mark the Fermi-liquid (FL) and magnetically ordered ground

state, respectively. The orange region situated between these two is a

phase that resembles a spin liquid (SL). Data for Yb(Rh1�xMx)2Si2 with

2.5% Ir and 3% Co have been included. The error bars represent

standard errors.

To conclude, the application of chemical pressure provides a
wider view on the global phase diagram of YbRh2Si2 by lifting
the coincidence of the multiple energy scales in the stoichiometric
compound. The results and their interpretation presented here pose
a formidable challenge for those theories describing the breakdown
of the Kondo effect near an antiferromagnetic QCP in Kondo
lattice systems. It remains to be explored under which conditions
antiferromagnetic ordering and the Fermi-surface reconstruction
may eventually become separated as observed for YbRh2Si2 with
Ir substitution. Equally important, it needs to be understood
why in pure YbRh2Si2, the antiferromagnetic QCP coincides with
the Kondo breakdown.

Methods
Single crystals were grown from In flux, analogous to the stoichiometric samples
described earlier12. The In flux was subsequently removed in hydrochloric acid.
The presented results prove the absence of residual In. X-ray diffraction confirms
the single crystallinity. All low-temperature measurements were carried out with
the magnetic field aligned perpendicular to the crystallographic c axis, H ? c .
The a.c.-susceptibility measurements were carried out at low frequencies with
a modulation field amplitude of 4 µT down to 0.02 K. As no imaginary signal
was detected, the real part � 0 is a direct measure of the field derivative of the
magnetization. The temperature-dependent susceptibility � 0(T ) was measured in
selected static magnetic fields. The isothermal susceptibility � 0(H ) was measured
as a function of a field applied in addition to the modulation field. The electrical
resistivity ⇢ was monitored by a standard four-point lock-in technique at low
frequencies down to 0.02 K. An extremely small out-of-phase signal of less
than 1% proves the high quality of the spot-welded contacts. With the help
of low-temperature transformers, a very high sensitivity of better than 0.1 nV
was realized. In all samples, the resistivity was measured perpendicular to the
crystallographic c axis, and the magnetic field was applied parallel to the current.
The magnetic field dependence of the magnetization M (H ) was isothermally
measured in a high-resolution Faraday magnetometer down to 0.05 K (ref. 28).
Background contributions from the sample platform and the torque exerted on
the sample have been subtracted. The magnetization was analysed in the form
M̃ =M +� 0

H by fitting

Z
H

0
A2 �(A2 �A1)/(1+ (H 0/H0)p) dH 0 (1)

to the data from which the crossover field H0 was obtained14. M̃ is preferred
for the analysis as it enables a more precise fitting compared with M itself,
although the conclusions drawn from M (H ) are identical (see ref. 14 and its
supporting online material).
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Ir doped YbRh2Si2

[Friedemann et al 2009]

Kondo breakdown transitions

(YbRh2Si2, CeRhIn5, CeCu6-xAux,…)


[Custers et al 2010]

Main motivation for this talk: 

Questions related to local moments in a metallic bath

(Apparent) Non-Fermi liquid (stable) phases

(green squares in inset). The same may hold true for CeCoIn5
(ref. 20).

In our field-dependent Hall-effect measurements on YbRh2Si2,
the magnetic field plays dual roles, as both a ‘tuning’ and a ‘probe’
field. On the one hand, the coupling between the field and the Yb3þ

moments tends to align the latter: it is this Zeeman-like coupling
that tunes the ground state of the material, ultimately suppressing
the antiferromagnetism and creating the QCP. On the other
hand, the magnetic field also generates a weak Lorentz force on
the underlying electrons, which produces the Hall response. The
weak orbital coupling responsible for the Lorentz force does not
appreciably change the ground state, so that, to a good approxi-
mation, we can discuss the two couplings independently. The single
crystals of YbRh2Si2 are thin platelets oriented along the a–b plane,
and practical Hall-effect measurements require a current and Hall
voltage lying in this plane. This allows for two distinct types of
experiment, namely ‘transverse tuning’ where the tuning field B1 is
parallel to the c axis, perpendicular to the current, and ‘longitudinal
tuning’ where the tuning field B2 lies parallel to the current in the
basal plane (compare schematics in Fig. 2a and b). The longitudinal
field B2 produces essentially no Hall response (see Supplementary
Methods 1), and serves only to tune the state: a separate, crossed
probe field dB1 along the c axis is required to measure the Hall
response. In this longitudinal (crossed-field) experiment, the Hall
resistivity rH is a direct measure of the field-tuned (linear-response)
Hall coefficient RH(B2):

RHðB2Þ;
B1!0
lim rHðB2;B1Þ=B1 ð1Þ

In the transverse (single-field) case, on the other hand, the

magnetic field simultaneously tunes the state and probes the Hall
response, and the differential Hall coefficient ~RHðB1Þ is:

~R

~RHðB1Þ;
drHðB1Þ
dB1

¼ ›rHðB1Þ
›B1

! "

orb

þ ›rHðB1Þ
›B1

! "

zeeman

¼ RHðB1Þþ
›rHðB1Þ
›B1

! "

zeeman

ð2Þ

The orbital (‘probing’) contribution is, according to the Kubo
formalism, just the generalized definition of a Hall coefficient (see
Supplementary Methods 2). The Zeeman (‘tuning’) term is not
related to a readily measurable linear-response quantity.
We first discuss the results of the single-field experiment.

Figure 2a displays several representative isotherms of the Hall
resistivity rH, corrected for its anomalous contribution rH,a(B)
(see Methods), versus B1. rH – rH;a shows a linear low-B1 beha-
viour with larger slope, and a linear high-B1 behaviour with smaller
slope. The crossover between the two regimes broadens and shifts to
higher B1 with increasing temperature. For a quantitative analysis of
the data we choose ~RHðBÞ ¼ R1

H 2 ðR1
H 2R0

HÞgðBÞ as a fitting func-
tion, where R0

H is the zero-field Hall coefficient and R1
H is the

asymptotic differential Hall coefficient at large fields. g(B) is a
crossover function that changes from unity at low fields to zero at
large fields, whichwe parameterize as gðBÞ ¼ 1=½1þ ðB=B0Þp&:Here,
B0 is the crossover field and p determines the sharpness of the
transition, which has a width G < B0/p when p is large. For p ! 1,Ð
~RHðBÞdB has a sharp kink at B ¼ B0, corresponding to a step in

 

  

  

 

 

 

Figure 3 Temperature–field phase diagrams of YbRh2Si2. a, The red data points
correspond to the B 0 values (crossover positions in the Hall-effect measurements)

determined from the fits to the data in Fig. 2a (single-field experiment). Note that the

horizontal bars represent the error in the determination of B 0 rather than the width of the

crossover. The red dotted line denoted T Hall is the best linear fit to all data up to 0.5 K. It

extrapolates at zero temperature to,0.7 T, the critical field B 1c for the direction parallel

to the c-axis. The green data points correspond to 11B 0 determined from the fits to the

data in Fig. 2b (crossed-field experiment). The full and dotted black curves represent the

field dependence of the Néel temperature T N and the crossover temperature T * to a

Dr / T 2 law, respectively, as determined from iso-field r(T ) data12. The latter differs

qualitatively from the cross-over line determined from a scaling analysis of both specific

heat and resistivity data, yielding T cross / (B 2 B c) (ref. 14). The inset shows the full-

width at half-maximum (FWHM) of dR̃H(B 1)/dB 1 in a log–log plot (red points). The red

solid line, / T a, a ¼ 0.5 ^ 0.1, is a best fit to these data. As in the main panel, the

green dots correspond to the crossed-field experiment. For both the main panel and the

inset, the red and green data points agree within the error bars. b, Three-dimensional
representation of the field derivative of the crossover function g(B) defined in the text. The

coloured curves represent arbitrary isotherms of dg(B)/dB, obtained using both the B 0(T )

fit of a and a power law fit to the corresponding p(T ) data (not shown). The field B

corresponds to B 1kc or to 11B 2 ’ c. The positions B 0 are designated by broken drop

lines and the black dotted line denoted T Hall in the T – B plane. The antiferromagnetic ( AF)

phase and the region where Dr / T 2 ( LFL) are marked as black and hatched areas,

respectively, in the T – B plane. At the lowest temperatures, dg(B)/dB may be

interpreted as indicating the change of the effective carrier concentration. In the limit

T ! 0, dg(B)/dB is a d-function (dotted line in the T ¼ 0 plane), separating the states of

small and large Fermi surface (FS) at B ¼ B 1c ¼ 11B 2c. Error bars, standard errors.
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finite B range (factor of 45 in T, factor of 2.3 in B consid-
ering the expected crossover to a quadratic dependence at
even lower T in the AFM state at B< Bc1 ¼ 0:3 T, see
Fig. 3) has not previously been observed in any HF com-
pound [9–11]. In analogy with YbRh2Si2 [16], the resis-
tivity !ðBÞ isotherms have been examined. Clear crossover
behavior is seen for B ? c and B k c which is character-
ized by inflection points [16] denoted as Binfl in Figs. 1(b)
and 1(c), respectively. It is clear from these figures that Binfl

increases with increasing T. Like Co- and Ir-substituted
YbRh2Si2 [9], the crossover behavior for the Ge-
substituted compound investigated here is found to be al-
most identical with the one of pure YbRh2Si2 [Fig. 1(b)].

This is further supported by another measure of the
crossover scale T$, the position Tmax of maxima in iso-B
"ðTÞ curves [16], cf. Fig. 2. Like !ðBÞ, also the "ðTÞ data
show that, while TN is strongly suppressed upon substitut-
ing YbRh2Si2 with Ge, T$ does not move (Fig. 2, inset).

Figure 3 summarizes all characteristic features of
YbRh2ðSi0:95Ge0:05Þ2 in a T-B phase diagram. As indicated
by the shaded area, a finite range of NFL behavior at zero T
appears between the critical fields Bc1 and Bc2 for the
suppression of TN and T$.

In pure YbRh2Si2, the in-T linear resistivity extends to
the lowest accessible T (20 mK) at a single critical B, yet in
YbRh2ðSi0:95Ge0:05Þ2 this canonical behavior is violated,
and instead, in-T linear resistivity extends to the lowest T
over a substantial B range. In isolation, this behavior might
be dismissed as an anomaly. However, similar behavior has
recently been observed also in other Yb-based HF com-
pounds [9–11].

Conservatively, we might attribute these observations to
disorder. In the Hertz-Millis theory, the in-T linear resis-
tivity of HF systems is itself attributed to disorder [18,19].
Furthermore, disorder is expected to smear a well-defined
QCP into a region [20].

However, various aspects speak against this conservative
view point. First, it is unlikely that the smearing of a QCP
will be ‘‘asymmetric’’. The position of the T$ line in
YbRh2ðSi1%xGexÞ2 and hence of the entrance into the
LFL phase is not affected by going from x ¼ 0 to x ¼
0:05 (see Refs. [15,16] for the phase diagram of
YbRh2Si2); the NFL region in YbRh2ðSi0:95Ge0:05Þ2 thus
spreads only to the left of T$. Second, the NFL power law
dependencies are identical for YbRh2ðSi0:95Ge0:05Þ2 and
YbRh2Si2 [12]. Thus, either both systems are disorder
dominated or none. And finally, values for the normalized
linear rise of resistivity !!=!0 are, with &4 for
YbRh2ðSi0:95Ge0:05Þ2 [21],&5 for early YbRh2Si2 samples
[22], and & 20 for the new generation of ultrapure
YbRh2Si2 (where ! ¼ !0 þ AT# with # ¼ 1( 0:2 holds
up to 20 K) [23], all beyond the maximum value of unity
expected within the Hertz-Millis type scenario for disor-
dered systems [18]. !!=!0 values more compatible with
this scenario are observed for CeCu5:9Au0:1 (!!=!0 &
0:5) [24] and YbAgGe (!!=!0 & 1) [10], values much
larger than unity for CeCoIn5 (!!=!0 & 100 for I ? c)
[25]. Of course, the significance of !!=!0 in estimating
the role of disorder is questionable in systems such as
YbRh2Si2 and YbRh2ðSi0:95Ge0:05Þ2 where the Hertz-
Millis theory fails [12,15,16].

FIG. 3 (color online). Phase diagram of YbRh2ðSi0:95Ge0:05Þ2
for B k c. Symbols represent Binfl (r) and the upper boundary of
LFL behavior (.). The dashed TLFL line is the polynomial fit
shown in the inset of Fig. 1(a). Data points from measurements
with B ? c are included by multiplying B with the factor 11: )
symbolizes Binfl, * displays Tmax from "acðTÞ. The solid T$ line
is taken from the inset of Fig. 2. Hexagons represent T$ [16] (or
THall [15]) of YbRh2Si2. j marks TN observed by specific heat.
The dotted TN line indicates the typical evolution of TN for
YbRh2Si2, TNðBÞ ¼ TNð0Þð1% B=BcÞ0:36 [9], using the respec-
tive parameters for YbRh2ðSi0:95Ge0:05Þ2 (TNð0Þ ¼ 18 mK, Bc ¼
11+ B?c

c & 0:3 T) [12]. The hatched area 0:3 T , B , 0:66 T
marks the zero T NFL phase characterized by !!- T. The inset
compares the evolution of the resistivity exponent ", derived
from the dependence ð!% !0Þ - T" (see also Ref. [12]), for
YbRh2Si2 (top) and YbRh2ðSi0:95Ge0:05Þ2 (bottom) in the same B
and T range.
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FIG. 2. Ac susceptibility of YbRh2ðSi1%xGexÞ2 for x ¼ 0:05
(d) and, for comparison, for x ¼ 0 (*). Inset: Positions of the
maxima in iso-B "acðTÞ curves (circles) and of the inflection
points [16] Binfl of !ðBÞ isotherms (diamonds) of both samples.
The power law ðB% BcÞ0:75 (solid line) with Bc ¼ 0:06 T is a
good description of all data points.
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1d spinons in a 3D metal?
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Ge doped YbRh2Si2
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LQ 6HF�,� RQH REWDLQV WKH +)/ SKDVH ZKHQ WKH .RQGR
VFUHHQLQJ GRPLQDWHV RYHU WKH 5..< PHGLDWHG H[�
FKDQJH LQWHUDFWLRQV EHWZHHQ ORFDO PRPHQWV� ZKLOH
LQ WKH RSSRVLWH OLPLW� RQH REWDLQV D PDJQHWLFDOO\ RU�
GHUHG SKDVH� 7KH VODYH�SDUWLFOH�$EULNRVRY�IHUPLRQ
GHVFULSWLRQ DOORZV IRU D EURDGHU VHW RI SRVVLELOLWLHV
IRU WKH JOREDO SKDVH GLDJUDP >���� ���� ���±���@�
/HW XV UHVWULFW RXUVHOYHV WR MXVW WZR NLQGV RI µRU�
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UDPHWHU 〈b̂〉� DQG WKH RUGHU SDUDPHWHU FRUUHVSRQGLQJ
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!k f̂
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��� 〈b̂〉 $= 0,m = 0� $V MXVW GLVFXVVHG� WKLV LV WKH
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A paramagnet with a small Fermi surface is necessarily a non-Fermi 
liquid [Senthil, Vojta, Sachdev 2002, Oshikawa 2000]. Further, magnetically 

ordered phases can also show Kondo breakdown [Si 2001, 2006].



2. In low-dimensions (e.g. d = 1), Berry phase effects associated with order-parameter 
fluctuations can become important. Can they alter the phase diagram qualitatively, e.g., 
generate non-Fermi liquids?

1. At a generic chemical potential, Kondo lattice model has a fermion sign problem. 
Can one design models where one can access a paramagnetic large Fermi surface 
phase, and proximate phases, e.g., a Kondo-breakdown phase?
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This paper proposes an approach to the study of critical phenomena in quantum-mechanical systems at zero
or low temperatures, where classical free-energy functionals of the Landau-Ginzburg-wilson sort are not
valid. The functional integral transformations first proposed by Stratonovich and Hubbard allow one to
construct a quantum-mechanical generalization of the Landau-Ginzburg-%ilson functional in which the order-
parameter field depends on {imaginary) time as well as space. Since the time variable lies in the finite interval
[0,—iP], where P is the inverse temperature, the resulting description of a d-dimensional system shares
some features with that of a (d + 1)-dimensional classical system which has finite extent in one dimension.
However, the analogy is not complete, in general, since time and space do not necessarily enter the
generalized free-energy functional in the same way. The %'ilson renormalization group is used here to
investigate the critical behavior of several systems for which these generalized functionals can be constructed
simply. Of these, the itinerant ferromagnet is studied in greater detail. The principal results of this
investigation are (i) at zero temperature, in situations where the ordering is brought about by changing a
coupling constant, the dimensionality which separates classical from nonclassical critical-exponent behavior is
not 4, as is usually the case in classical statistics, but 4—z dimensions, where z depends on the way the
frequency enters the generahzed free-energy functional. %hen it does so in the same way that the wave vector
does, as happens in the case of interacting magnetic excitons, the effective dimensionality is simply increased
by 1; z = 1. It need not appear in this fashion, however, and in the examples of itinerant antiferromagnetism
and clean and dirty itinerant ferromagnetism, one finds z = 2, 3, and 4, respectively. {ii)At finite
temperatures, one finds that a classical statistical-mechanical description holds (and nonclassical exponents, for
d ( 4) very close to the critical value of the coupling U„when ( U—U,)/ Uc«(T/ U,)'". z/2 is therefore the
quantum-to-classical crossover exponent.

I. INTRODUCTION

The spectacularly successful analysis of critical
phenomena in a wide variety of systems using
Wilson's renormalization-group ideas' has hither-
to been limited to classical statistical-mechanical
models. Such a description is appropriate when-
ever the critical temperature is finite, provided
one is close enough to the instability. Then, when
all fluctuation modes have characteristic energies
«kT„classical statistics are appropriate. How-
ever, one can also think about a phase transition
in a zero-temperature system which occurs when,
say, a coupling constant reaches a certain thresh-
old. In this case, none of the fluctuation modes
have thermal energies, and their statistics will
be highly nonclassical. By the same token, in the
same system at a finite but low temperature, one
should expect quantum effects to be dominant ex-
cept in a narrow range of coupling strengths near
the critical value. (By iow temperature, I mean
4T much less than characteristic microscopic
energies, such as the Fermi energy, bandwidth,
Coulomb or exchange energies, etc.)
In addition to quantum effects at low or zero

temperature in the equilibrium correlation func-
tions and static-response coefficients, we should

expect quite different dynamical properties. In
the classical case, one can study dynamical criti-
cal phenomena using time-dependent I.andau-Qinz-
burg equations or generalizations thereof. ' These
equations contain as parameters transport coeffi-
cients whose existence depends on the presence
of collisions to maintain local thermal equilibrium.
In a zero-temperature problem, by contrast,
there are no collisions, and consequently no trans-
port coefficients and no time-dependent I andau-
Ginzburg equations. Similarly, at low T, the dy-
namics mill be effectively collisionless except
very close to the critical coupling.
One feature of the classical problem is the

separability of the statics and the dynamics —the
former may be solved independently of the latter.
%e shall see here that this, too, breaks down in
systems where quantum mechanics is important.
Statistics and dynamics are then inextricably con-
nected, and one has to solve for both equilibrium
and nonequilibrium properties together in the
same formalism, rather than doing the dynamics
afterwards. This complication is offset, however,
by the fact that the formalism we shall use makes
this unified approach the straightforward and na-
tural one.
Our principal formal tool for setting up this
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scale of 2k„and with u on a scale of E~. Put
physically, the force between paramagnons has
a range = (2Pz) ' in space and a retardation =1/Ez
in time. When all of the q; and m; vanish, v is
simply proportional to the (m-2)nd derivative of
the band density of states at E~.'
In this section we will see an approximation to

the full functional in which we use the expansion
{2.10) in v„ ignore all q and &u dependence on v„
and discard higher-order vertices completely.
The finite range and retardation effects will be
simulated by cutting off all q sums at =2k~ and
all & sums at =E~. Choosing units appropriate-
ly, we can write our approximate functional as

@[q]=2 g ~.+q'+ —Iq(q, ~)l'

so = 1 —UH{E~),

so=+pU Iq (Ey)

(2.14a}
(2.14b)

This 4 is of almost the same form as the classi-
cal LGW functional, except for the presence of
the frequency-dependent term in v„which con-
tains the essential information about the dynam-
ics. It tells us that the decay mechanism for the
paramagnon excitations is Landau damping —the
lifetime of a free particle-hole pair of total mo-
mentum q is (v~) ', and the correlations enhance
this lifetime (for small q) by afactor [1—UN(E„)] ',
as reflected in (2.11). This is why &u enters (2.13}
in the form [+[/q. If the dynamics were different,
this term would have a different form. We shall
examine examples with different dynamics in Sec.
V.
Our functional (2.13) therefore describes a set

of interacting, weakly-Landau-damped excita-
tions. Terms of higher order in 4, as well as
higher-order expansions of the coefficients in-
cluded here in powers of q and ap, contain no
essential new physics and in fact are "irrelevant"'
to the zero-temperature critical behavior in the
sense described by Wilson. '
It is also possible to write the generalized LGW

functional in a form which preserves the rotation-
al invariance of the original Hamiltonian by using
a vector paramagnon field S in place of 4. We
shall not dwell at length on the formal derivation
of this functional, since this aspect of the prob-
lem has been discussed elsewhere. e " Our em-

+ ' Q q(q„(u, )q(q„(u, )4(q„(u, )
OthPi

&&q'(-q -q -q -~ -~ -~ )

(2.13)

where, ln terms of microscopic parameters

phasis is on the form of the coefficients to order
8' and their physical implications.
The starting point lies in expressing the inter-

action Hamiltonian as

H'=2U Q (n;)+n()) ——', U Q S( ~ S( (2.15)

instead of (2.1), which only has S,'S'; terms. Then
the application of the identity (2.3) leads to an ex-
pression for the partition function [cf. (2.6}]

z =z, 5Sexp —— dTS'; 7 + Trln & —VG
0

(2.16)

2 g [1--UX.(q, ~)]IS.(q, ~)l'
and the fourth-order term looks like

&&~ 3
C] ~td ~

apy6

x S (q, ~, ) S~(q,~, )S„(q.~.) S~(q,~,)

xQ q) (2.19)

where v, ay is proportional to the v4 which ap-
peared in the scalar description [Eg. (2.7)],

v, ~& =-,'(-', )'v, Tr(o"oBo&o ) . (2.20)
The important point is that the dependence of

the quadratic and quartic coefficients on wave-
vector and frequency arguments is the same as
in the scalar case, and the dependence on the
polarization labels follows simply from the Pauli
spin algebra. So in order that four-paramagnon
modes have nonvanishing interactions, the Pauli
matrices corresponding to their polarizations
must multiply to give the unit matrix. One way
to do this is to have n = P and y= 5; this part of
the interaction is then of the form (S ~ S)(S S), as
occurs in the usual LGW functional for a vector
field. But one can also have e =y, P= 5 or e = 5,

in which V and G are matrices in spin space as
well as in space-time indices, and the Tr indi. -
cates a trace over both spin and space-time in-
dices. Explicitly, Q' is the spin diagonal with
elements (2.5), and

{i,~, m~ v) j, v', m')
=(—,'U)'~'6;q6(v' —7') S;(7) ~ (m[o ~m') . (2.17)

When the Tr ln in (2.16) is expanded in powers
of V, the quadratic term of the exponent becomes

+ interactions



Sign Problem for Kondo Lattice models

Absence of sign-problem requires half-filling and a bipartite lattice. 
However, at half-filling, the heavy Fermi liquid is replaced by a 

Kondo insulator ⇒ No fermions at low energy.

More generally, tension between repulsively interacting fermions with 

a stable Fermi surface, and sign-problem-free QMC


(see, e.g., [Ori Grossman, Erez Berg 2023]).
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Local moments and interactions only

on a sub-manifold.

Kondo coupling

Geometric

Frustration

(At least) two ways to obtain a Kondo breakdown transition

 without fermion sign problem…

(e.g., sign-problem free models of 

non-Fermi liquids with a small Fermi surface,


[with Hofmann, Assaad 2019]).

“dimensional mismatch”
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Figure 1 | Construction of XXZ chains. a, IETS spectra taken on a single Co
atom on Cu2N at 0T and 2T applied along the hard axis. Left inset: atomic
arrangement near the Co atom. Right inset: energy diagram indicating the
separation between the±1/2 and±3/2 doublets. b, Atomic design for XXZ
chains and indication of the transverse field direction. Large (small) grey
circles represent Cu (N) atoms. c, Lowest excitation energies of an N=8
chain for a transverse field up to 9 T. EG and Bcrit are indicated, as well as
the transverse magnetizationM and average number of domain walls n
between each ground state change. d, Same as c for N=9.

The model H1/2 with J nnn⊥ = 0, uniform gi and Jz/J⊥ ≈ 1/8 has
a phase transition at giµBBx ≈ 1.5J⊥ from an antiferromagnetic
to a paramagnetic phase5. The additional next-nearest neighbour
coupling J nnn⊥ generated by the Schrieffer–Wolff transformation
affects neither the qualitative features of the spectrum nor the
existence of the phase transition, effectively reducing H1/2 to an
XXZ Hamiltonian in a transverse field. For finite-size realizations
the antiferromagnetic phase is characterized by a number of level
crossings, where the ground state switches between sectors of
even and odd total magnetization, reflecting the Z2 symmetry
corresponding to a π-rotation of all spins around the field axis25.

Figure 1c,d shows the calculated lowest excitation energies
of H1/2 for an even-numbered (N = 8) and an odd-numbered
(N =9) chain, respectively, for a transverse field up to 9 T. Below
the transition to the paramagnetic phase, just below 6T, several
ground state crossings are predicted, with their number increasing
with chain length. Starting from a state with Néel-like order
near zero field, each crossing corresponds to a stepwise increase
of the total magnetization M along the field and the average
number of antiferromagnetic domain walls n inside the chain
(Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in
finite chains, but becomes degenerate with the ground state
in the thermodynamic limit, where it corresponds (through a
Jordan–Wigner transformation26,27) to the topological edge states
recently observed in ferromagnetic chains on a superconducting
surface28. Below the critical field Bcrit, the ground state and this zero
mode are separated from the higher excited states by an energy
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Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an
N=5 chain in transverse fields ranging from 0T to 9T, in increments of
200mT. b, Same as a, but taken on atom 1 of an N=6 chain. IETS curves
were normalized to correct for tip height variations. Conductance values
listed at the colour bars are indicative only: owing to normalization, scaling
between spectra may vary by ∼20%. c,d, Theoretical spectra
corresponding to a,b, respectively, calculated using a spin-3/2model
(equation (1)). The Kondo peak appearing at the first ground state crossing
in b is under-represented in the theory (d). e,f, Same as c,d, but calculated
using a spin-1/2 XXZ model (equation (2)).

gap EG. As the length of the chain increases, EG remains finite and
forms the characteristic energy separating the ground state from the
continuum—except at Bcrit, where it vanishes. Just below this point,
spin liquid behaviour is predicted5.

We constructed chains of Co atoms of various length
and performed low-temperature IETS measurements
(T=330mK<EG/kB) on each atom in a chain while varying
the strength of the transverse field. To obtain an extensive data
set, a fully automated measurement sequence was employed (see
Methods). Figure 2a,b shows measurements taken on the first atom
of an odd-length (5 atoms) and an even-length chain (6 atoms),
respectively, recorded for every 200mT from 0 to 9 T. At voltages
below 5.5mV, transitions within the manifold of mz = ±1/2
states are observed; excitations at higher voltages correspond to
transitions to the mz =±3/2 manifold. The spectra show sudden
changes in both excitation energy and intensity at field values
corresponding to expected ground state crossings: near 3.5 T for
N =5 and near 1.5 T and 4.0 T for N =6.
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Atomic spin-chain realization of a model for
quantum criticality
R. Toskovic1†, R. van den Berg2†, A. Spinelli1, I. S. Eliens2, B. van den Toorn1, B. Bryant1, J.-S. Caux2

and A. F. Otte1*
The ability to manipulate single atoms has opened up the door
to constructing interestinganduseful quantumstructures from
the ground up1. On the one hand, nanoscale arrangements of
magnetic atoms are at the heart of future quantum computing
and spintronic devices2,3; on the other hand, they can be used
as fundamental building blocks for the realization of textbook
many-body quantum models4, illustrating key concepts such
as quantum phase transitions, topological order or frustration
as a function of system size. Here, we use low-temperature
scanning tunnellingmicroscopy toconstruct arraysofmagnetic
atoms on a surface, designed to behave like spin-1/2 XXZ
Heisenberg chains in a transverse field, for which a quantum
phase transition from an antiferromagnetic to a paramagnetic
phase is predicted in the thermodynamic limit5. Site-resolved
measurementson thesefinite-size realizations revealanumber
of sudden ground state changes when the field approaches
the critical value, each corresponding to a new domain wall
entering the chains. We observe that these state crossings
becomecloser for longer chains, suggesting theonsetof critical
behaviour.Our resultspresentopportunities for furtherstudies
on quantum behaviour of many-body systems, as a function of
their size and structural complexity.

Since the birth of quantummechanics, lattice spin systems6 have
represented a natural starting point for understanding collective
quantum dynamics. Today, scanning tunnelling microscopy (STM)
techniques allow one to experimentally build and probe realizations
of exchange-coupled lattice spins in different geometries7–9. In linear
arrangements, quantum effects are strongest10 and notions such
as quantum phase transitions11 are most easily understood, the
simplest illustration being the Ising model in a transverse field12,13.
In this work, using STM, we construct finite-size versions of amodel
in the same universality class, namely the spin-1/2 XXZ chain in
a transverse field5, which has previously been realized in the bulk
material Cs2CoCl4 (refs 14,15). Our set-up allows us to probe the
chainswith single-spin resolutionwhile tuning an externally applied
transverse field through the critical regime.

The chains are created by manipulating Co atoms evaporated
onto a Cu2N/Cu(100) surface (see Methods), which provides
efficient decoupling for the magnetic d-shell electrons from
the underlying bulk electrons7. Employing inelastic electron
tunnelling spectroscopy (IETS)16,17 at sufficiently low temperature
(330mK) allows us to determine the magnetic anisotropy vector
of each atom18 as well as the strength of the exchange coupling
between neighbouring atoms19. It was previously demonstrated
that Co atoms on this surface behave as spin S = 3/2 objects

experiencing a strong uniaxial hard-axis anisotropy pointing in-
plane, perpendicular to the bond with the neighbouring N atoms20.
As a result, the mz =±3/2 states split off approximately 5.5meV
above the mz =±1/2 doublet (see Fig. 1a). As we will show below,
by exploiting themagneto-crystalline anisotropy, we thus effectively
reduce the spins from 3/2 to 1/2. The Cu2N islands were kept small
(∼6 nm) to ensure limited variation in anisotropy and substrate
coupling between different atoms inside the chains21.

The Co atoms are manipulated into the arrangement shown
in Fig. 1b, such that their interaction is governed by the spin-
3/2 nearest neighbour antiferromagnetic isotropic Heisenberg
exchange:

H3/2= J
N−1∑

i=1

Si ·Si+1+D
N∑

i=1

(Szi )2 −gµBBx

N∑

i=1

Sxi (1)

with interaction strength J = 0.24meV (ref. 22), subjected to an
external magnetic field B (with g -factor g = 2.3 (ref. 20)) applied
perpendicular to the surface. This weak interaction was chosen
specifically from a set of possible configurations22 to provide a
critical point at an accessible field value. Because J and all other
relevant energy scales (kBT , µBB) stay well below the anisotropy
energy 2D≈5.5meV, excitations to±3/2 doublets can be projected
out through a Schrieffer–Wolff transformation up to first order
in 1/D (refs 15,23,24). This results in an effective spin-1/2
Hamiltonian:

H1/2 =
N−1∑

i=1

J⊥(Sxi Sxi+1+Syi S
y
i+1)+ JzSzi Szi+1

+ J nnn⊥

N−2∑

i=1

Sxi Sxi+2+Syi S
y
i+2 −µBBx

N∑

i=1

giSxi (2)

with nearest and next-nearest neighbour exchange parameters and
bulk/boundary g -factors given by:

J⊥=4J , Jz = J − 39J 2
8D , J nnn⊥ =−3J 2

D ,

gi=






2g
(
1− 3J

2D

)
if i=2, . . . ,N −1

2g
(
1− 3J

4D

)
if i=1,N

(3)
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Experiments on “Hybrid-dimensionality” Kondo lattice systems
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FIG. 6. Conduction-electron spectral function, A0(k, !), as a
function of energy (!/t) and momentum (k) on L = � = 44
lattice at Jh/t = 1.

excitation spectrum of the isolated spin-1/2 Heisenberg
chain is well understood and consists of a two-spinon con-
tinuum bounded by ⇡

2 Jh sin(k)  !(k)  ⇡Jh sin
�

k

2

�
.

Fig. 5 plots the dynamical spin spectral function for dif-
ferent values of Jk/t. Remarkably, the spin dynamics of
the Heisenberg chain remains una↵ected by conduction
electron for Jk/t . 2. In the screened phase at Jk/t > 2
spinons bind and low-energy spectral weight is depleted.

In Kondo lattices, a Kondo-breakdown transition im-
plies an abrupt change of the Luttinger volume. In
our setup such a notion cannot be applied since the lo-
calized spin-1/2 moments are sub-extensive. Neverthe-
less, we can consider the spectral function of the con-
duction electrons that directly couple to the localized
spin-1/2 moments and investigate how it evolves across
the transition. Let An(k, !) = � 1

⇡
ImGret

n
(k, !) with

Gret
n

(k, !) = �i
R1
0 dtei!t

P
�
h{ĉk,n,�(0), ĉ†

k,n,�
(t)}i. In

the considered Landau gauge, translation symme-
try is present along the x-direction and ĉk,n,� =
1p
L

P
L

m=1 eikmĉi=(m,n),� is the partial Fourier transform.

Fig. 6 plots A0(k, !) corresponding to the conduction
electrons that couple to the Heisenberg chain. At Jk = 0
the spectral function shows a dominant ✏(k) = 2t cos(ka)
dispersion. In the Kondo-breakdown phase and even at
relatively large values of Jk/t = 1.5 we observe no signs
of hybridization with the spins. In contrast in the Kondo-
screened phase, Jk/t & 2, a clear signature of hybridiza-
tion is apparent.

STM experiments of magnetic adatoms on metallic
surfaces, separated by an insulating bu↵er layer shown
in Ref. [13, 14], measure tunneling between tip and
substrate occurring through the localized orbitals. In
our setup we can access this quantity by carrying out
a Schrie↵er-Wol↵ transformation of the localized elec-
tron creation operator in the realm of the Anderson
model [20, 30, 31]. In particular, Al(!) = �ImGret

l (!)

with Gret
l (!) = �i

R1
0 dtei!t

P
�

⌦�
c̃l,�(t), c̃†l,�(0)

 ↵
and

c̃†l,� = ĉ†l,��
Ŝ�

l + �ĉ†l,�Ŝz

l . Here � = ± runs over the
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FIG. 7. Zero-bias tunneling through the magnetic adatom.

two spin polarizations and Ŝ±
l = Ŝx

l ± iŜy

l . To evaluate
the zero-bias tunneling signal we estimate Al(! = 0) '
1
⇡
�Gl(⌧ = �/2). Fig. 7 plots this quantity. Remarkably,

in the Kondo-breakdown phase, we are not able to dis-
tinguish the signal from zero. This supports the notion
that spins and conduction electrons decouple at low en-
ergies. As Jk ! 1 the spin binds in a singlet with the
conduction electron and the tunneling signal through the
adatom drops. A more detailed numerical analysis [32,
33] of the STM signal across the transition is certainly of
great interest.

Conclusion: We have shown that a one-dimensional
spin chain coupled via a Kondo interaction to 2D Dirac
fermions provides a realization of a continuous Kondo-
breakdown transition. Weak coupling Jk is irrelevant and
gapless spinons exist while propagating along the one-
dimensional chain. The reason for the absence of Kondo
screening in this phase is qualitatively similar to its ab-
sence at deconfined quantum critical points in 2D [34]: in
both cases, the anomalous dimension of the spin operator
is ‘large’ due to fractionalization, which makes conduc-
tion electrons ine↵ectual at Kondo screening. Beyond the
transition, Kondo screening appears and gapless spinons
bind. The Kondo-screened phase is adiabatically con-
nected to the strong-coupling limit, where each spin binds
with a conduction electron into a spin singlet. Larger sys-
tems will be needed to determine the critical exponents
such as the anomalous dimension of the local moments.
In addition, since the number of adatoms in experiments
is tunable [14–16], it will be very useful to determine how
many of them are needed to resolve Kondo breakdown in
an interacting spin chain.

The choice of Dirac fermions which only possess Fermi
points simplifies the problem and allows for an RG anal-
ysis. This is in contrast to the conventional Hertz-Millis-
Moriya approach [35–37] where one integrates out the
fermions to obtain an e↵ective non-local action for local
moments. Indeed, past work on Fermi surface coupled
to a spin-chain employed Hertz-Millis-Moriya approach,
and concluded that the Kondo interaction is relevant
(marginal) for an XXZ (Heisenberg) chain, thus desta-
bilizing the Luttinger liquid for infinitesimal Kondo cou-

Kondo breakdown in a hybrid-dimensionality model

1+1-D spin-chain Kondo coupled to a 2+1-D Dirac semi-metal.

Low energy 

theory

1

L =  ̄0 /@ 0 +
1

2
(@µ ~N)2 + u( ~N2)2 + 2g ~N ·  ̄0~� 0 S =

Z
d2x d⌧  ̄/@ + JK

Z
dx d⌧ ~N · ̄~� +S1d Heisenberg

 irrelevant at the decoupled fixed-point corresponding to .

Therefore, expect a Kondo breakdown transition.
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[with Danu, Vojta, Assaad (2020)]
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plaquette. This gauge choice allows for translation sym-
metry by one lattice site in the x-direction. Jk > 0 is
the antiferromagnetic Kondo coupling between magnetic
adatoms and conduction electrons, Jh > 0 the Heisen-
berg coupling between magnetic adatoms, L the length
of the Heisenberg chain and linear length of the square
conduction electron lattice, and Ŝl represents the spin-
1/2 operators. We use an array of adatoms at interatomic
distance �l = (1, 0) on the substrate and choose periodic
boundary conditions along the spin chain and on the sub-
strate to access the thermodynamic limit.

RG analysis: Consider the Hamiltonian in Eq. (1) at
Jk = 0. At low energies, this describes two decoupled
conformal field theories (CFT): a (2+1)-D CFT corre-
sponding to Dirac fermions, and a (1+1)-D CFT cor-
responding to SU(2)1 WZW description of the spin-1/2
Heisenberg chain (we ignore the marginal perturbations
that lead to multiplicative logarithmic corrections to the
power-law correlations in the chain). The scaling di-
mension of Dirac fermions in d space dimensions reads
� = d

2 and for the spin-1/2 chain, �S = 1
2 . At this

decoupled fixed point, the Kondo coupling has a scaling
dimension 2�2� ��S = 2�d� 1

2 = � 1
2 and is thereby

irrelevant. On the other hand, in the limit Jk ! 1
each spin-1/2 degree of freedom binds in a singlet with a
conduction electron. This one-dimensional singlet prod-
uct state, corresponding to the strong-coupling limit of
the one-dimensional Kondo lattice model [23], decouples
from the conduction electrons, and e↵ectively changes
the boundary condition in the y-direction from periodic
to open. At large but finite Jk, we expect the system to
be locally described by a heavy Fermi liquid. Assuming
these two regimes are separated by a single phase transi-
tion motivates us to find a suitable renormalization group
(RG) description of the critical point separating the two
regimes. The approach we follow is to consider (d + 1)-
dimensional Dirac fermions coupled to (1+1)-D Heisen-
berg chain. By power-counting, the Kondo coupling is
marginal in d = 3/2, which allows for an expansion in
✏ = d � 3/2, where the physical case of interest corre-
sponds to d = 2, i.e., ✏ = 1/2. Perturbing around the
Jk = 0 fixed point, the RG flow of dimensionless Kondo
coupling jk = Jk⇤✏ is given by:

djk

d ln ⇤
= ✏jk � j2

k

2
(2)

where ⇤ is an ultraviolet cuto↵, and we have kept terms
to O(j2

k
) (see Sec. I of Ref. [24] for details). The re-

sulting flow diagram is shown in Fig. 1 and the Kondo-
breakdown critical fixed point is given by jc

k
= 2✏, which

yields the correlation length exponent ⌫ = 1/✏. Due to
Lorentz invariance, the critical theory will exhibit !/T
scaling in all observables.

Large-N approximation: To formulate the large-N ap-
proximation, we use a fermion representation of the
spin degree of freedom, Ŝl = 1

2 d̂†l�d̂l and impose the

constraint d̂
†
l d̂l = 1 with d̂

†
l =

�
d̂†l,", d̂

†
l,#
�
. The in-

teraction part of the Hamiltonian can then be written
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FIG. 2. The zero-temperature mean-field phase diagram in
a parameter space of Jk/t and Jh/t. The critical line with
symbols separates the two phases.
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�
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�2
. We now let the spin-index run from

1 to N , and take N to infinity, which allows us to ob-
tain the phase diagram in Fig. 2 using the saddle-point
approximation. The saddle-point variables are deter-
mined by: V =

P
�
hĉ†

l,0,�
d̂l,0,�i, � =

P
�
hd̂†

l,�
d̂

l+1,�
i

and
P
�
hd̂†

l,�
d̂l,�i = 1. The details of the calculations

are presented in Secs. II and III of Ref. [24]. Within
this approximation, Kondo breakdown corresponds to
the solution V = 0 and � 6= 0 and Kondo screening
to V 6= 0 and � 6= 0. As apparent, for each value of
Jh the mean-field solution shows a single transition. In
the limit Jh = 0, the critical value of Jk corresponds to
that of the single-impurity pseudogap Kondo problem.
Aside from the mean-field order parameters, the transi-
tion can be detected by considering the spin-spin correla-
tions along the chain. In the decoupled phase spinons are
confined to chain and the spin-spin correlations – at the
mean-field level – decay as 1/r2. In the Kondo-screened
phase, spins hybridize with the Dirac electrons. Since
the spin system is sub-extensive, the properties of the
Dirac electrons remain unchanged and the spin-spin cor-
relations along the chain inherit the 2D Dirac 1/r4 decay
(see Fig. S3 of Ref. [24]). Introducing particle-hole asym-
metry by adding next-nearest hopping (while keeping a
half-filled semimetallic state) was found to lead to similar
results within large-N [24].

QMC simulations: We have used the Algorithms for
Lattice Fermions (ALF) [25] implementation of the finite-
temperature auxiliary-field QMC algorithm [26–28]. The
perfect square form of the interaction used to formu-
late the large-N calculation complies with the standards
of the ALF-library and the model can be readily im-
plemented by decoupling the perfect square terms with
a Hubbard Stratonovich transformation. The absence
of negative sign problem follows by first carrying out
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We consider a spin-1/2 Heisenberg chain coupled via a Kondo interaction to two-dimensional
Dirac fermions. The Kondo interaction is irrelevant at the decoupled fixed-point, leading to the
existence of a Kondo-breakdown phase and a Kondo-breakdown critical point separating such a
phase from a heavy Fermi liquid. We reach this conclusion on the basis of a renormalization group
analysis, large-N calculations as well as extensive auxiliary-field quantum Monte Carlo simulations.
We extract quantities such as the zero-bias tunneling conductance which will be relevant to future
experiments involving adatoms on semimetals such as graphene.

The antiferromagnetic Kondo coupling, Jk, between a
spin-1/2 degree of freedom and a Fermi sea with finite
density of states at the Fermi energy is (marginally) rel-
evant: Jk flows to strong coupling and the impurity is
screened. If, in contrast, the density of states shows
a power-law pseudogap behavior, the Kondo coupling
is irrelevant at the decoupled fixed point, and the spin
remains unscreened at weak coupling. Since for large
Kondo coupling screening is present, a novel Kondo-
breakdown quantum critical point emerges [1, 2, 3]. The
decoupled as well as Kondo-screened phase share the
same symmetry properties.

In the context of Kondo lattices, the numbers of both
conduction electrons and impurity spins scale with the
volume of the system. In the Kondo-screened para-
magnetic (i.e. heavy Fermi liquid) phase, the volume
enclosed by the Fermi surface (i.e. Luttinger volume)
counts both spins and electrons. A Kondo-breakdown
transition (equivalently, an orbital-selective Mott tran-
sition [4]), which, as above, does not involve symmetry
breaking, implies that the spins drop out from the Lut-
tinger count. For the case of an odd number of electrons
and spins per unit cell, this leads to a violation of the Lut-
tinger sum rule. Oshikawa’s flux-threading argument [5,
6] shows that a specific family of the resulting states of
matter can be achieved via topological degeneracy in the
spin sector [7]. Such states, coined fractionalized Fermi
liquid (FL⇤) phases, have been realized numerically [8].
Kondo breakdown has also been proposed to understand
the phenomenology of heavy-Fermion systems [7, 9, 10],
especially in the context of materials such as YbRh2Si2
and CeCu6�xAux [11, 12].

In this article, we consider a situation intermediate
between Kondo impurity and Kondo lattice: a one-
dimensional (1D) Heisenberg chain which is Kondo-
coupled to Dirac electrons. Dimensional analysis shows
that, at the decoupled fixed point, the Kondo coupling
is irrelevant, thus leading to an RG flow very similar to
that of the pseudogap Kondo e↵ect discussed above, see
Fig. 1. The motivation to study such systems equally
stems from scanning tunneling microscopy (STM) experi-

Jk/t=∞Jk/t=0

Decoupled spin chain Kondo screened

Kondo breakdown  
critical point

Jk/t=∞Jk/t=0

Decouple spin chain Kondo screened

Kondo breakdown  
critical point

FIG. 1. Renormalization group flow of the Kondo coupling,
Jk, for a spin-1/2 chain on a semimetallic substrate.

ments of Co adatoms on a Cu2N/Cu(100) surfaces. Here,
recent experiments show an impressive ability to tune the
exchange coupling between adatoms as well as the cou-
pling of adatoms to the surface [13–19]. As shown in
Ref. [20], simple models amenable to negative-sign-free
quantum Monte Carlo (QMC) simulations are able to
provide a detailed account of the experiments. Another
experimental system that has qualitative resemblance
with our setup is Yb2Pt2Pb, where neutron scattering
indicates the presence of 1D spinons, and apparent ab-
sence of Kondo screening, despite the presence of three-
dimensional conduction electrons [21, 22]. In our study,
we consider conduction electrons in two dimensions with
Dirac spectrum since this choice unambiguously leads to
a Kondo-breakdown phase and phase transition, while
also allowing RG and large-N calculations and explicit
comparison to QMC numerics.

Model Hamiltionian: We consider a spin-1/2 Heisen-
berg chain on a semimetallic substrate:

Ĥ = �t
X

hi,ji,�

⇣
e

2⇡i
�0

R j
i A.dl ĉ†i ĉj + h.c.

⌘

+
Jk

2

LX

l=1

ĉ†l�ĉl · Ŝl + Jh

LX

l=1

Ŝl · Ŝl+�l. (1)

Here, t is the hopping parameter of the conduction elec-
trons, the summation

P
hi,ji runs over a square lattice

and ĉ†i =
�
ĉ†i,", ĉ

†
i,#

�
is a spinor where ĉ†i,"(#) creates an

electron at site i with z-component of spin 1/2 (�1/2).
We use the Landau gauge, A = B(�y, 0, 0), and tune
B such that half a flux quantum (⇡-flux) pierces each
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plaquette. This gauge choice allows for translation sym-
metry by one lattice site in the x-direction. Jk > 0 is
the antiferromagnetic Kondo coupling between magnetic
adatoms and conduction electrons, Jh > 0 the Heisen-
berg coupling between magnetic adatoms, L the length
of the Heisenberg chain and linear length of the square
conduction electron lattice, and Ŝl represents the spin-
1/2 operators. We use an array of adatoms at interatomic
distance �l = (1, 0) on the substrate and choose periodic
boundary conditions along the spin chain and on the sub-
strate to access the thermodynamic limit.

RG analysis: Consider the Hamiltonian in Eq. (1) at
Jk = 0. At low energies, this describes two decoupled
conformal field theories (CFT): a (2+1)-D CFT corre-
sponding to Dirac fermions, and a (1+1)-D CFT cor-
responding to SU(2)1 WZW description of the spin-1/2
Heisenberg chain (we ignore the marginal perturbations
that lead to multiplicative logarithmic corrections to the
power-law correlations in the chain). The scaling di-
mension of Dirac fermions in d space dimensions reads
� = d

2 and for the spin-1/2 chain, �S = 1
2 . At this

decoupled fixed point, the Kondo coupling has a scaling
dimension 2�2� ��S = 2�d� 1

2 = � 1
2 and is thereby

irrelevant. On the other hand, in the limit Jk ! 1
each spin-1/2 degree of freedom binds in a singlet with a
conduction electron. This one-dimensional singlet prod-
uct state, corresponding to the strong-coupling limit of
the one-dimensional Kondo lattice model [23], decouples
from the conduction electrons, and e↵ectively changes
the boundary condition in the y-direction from periodic
to open. At large but finite Jk, we expect the system to
be locally described by a heavy Fermi liquid. Assuming
these two regimes are separated by a single phase transi-
tion motivates us to find a suitable renormalization group
(RG) description of the critical point separating the two
regimes. The approach we follow is to consider (d + 1)-
dimensional Dirac fermions coupled to (1+1)-D Heisen-
berg chain. By power-counting, the Kondo coupling is
marginal in d = 3/2, which allows for an expansion in
✏ = d � 3/2, where the physical case of interest corre-
sponds to d = 2, i.e., ✏ = 1/2. Perturbing around the
Jk = 0 fixed point, the RG flow of dimensionless Kondo
coupling jk = Jk⇤✏ is given by:

djk

d ln ⇤
= ✏jk � j2

k

2
(2)

where ⇤ is an ultraviolet cuto↵, and we have kept terms
to O(j2

k
) (see Sec. I of Ref. [24] for details). The re-

sulting flow diagram is shown in Fig. 1 and the Kondo-
breakdown critical fixed point is given by jc

k
= 2✏, which

yields the correlation length exponent ⌫ = 1/✏. Due to
Lorentz invariance, the critical theory will exhibit !/T
scaling in all observables.

Large-N approximation: To formulate the large-N ap-
proximation, we use a fermion representation of the
spin degree of freedom, Ŝl = 1

2 d̂†l�d̂l and impose the

constraint d̂
†
l d̂l = 1 with d̂

†
l =

�
d̂†l,", d̂

†
l,#
�
. The in-

teraction part of the Hamiltonian can then be written
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FIG. 2. The zero-temperature mean-field phase diagram in
a parameter space of Jk/t and Jh/t. The critical line with
symbols separates the two phases.
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ĉ†l d̂l + h.c.

�2 � Jh
4

P
l

�
d̂
†
l d̂l+�l + h.c.

�2
+

U

2

P
l

�
d̂
†
l d̂l � 1

�2
. We now let the spin-index run from

1 to N , and take N to infinity, which allows us to ob-
tain the phase diagram in Fig. 2 using the saddle-point
approximation. The saddle-point variables are deter-
mined by: V =

P
�
hĉ†

l,0,�
d̂l,0,�i, � =

P
�
hd̂†

l,�
d̂

l+1,�
i

and
P
�
hd̂†

l,�
d̂l,�i = 1. The details of the calculations

are presented in Secs. II and III of Ref. [24]. Within
this approximation, Kondo breakdown corresponds to
the solution V = 0 and � 6= 0 and Kondo screening
to V 6= 0 and � 6= 0. As apparent, for each value of
Jh the mean-field solution shows a single transition. In
the limit Jh = 0, the critical value of Jk corresponds to
that of the single-impurity pseudogap Kondo problem.
Aside from the mean-field order parameters, the transi-
tion can be detected by considering the spin-spin correla-
tions along the chain. In the decoupled phase spinons are
confined to chain and the spin-spin correlations – at the
mean-field level – decay as 1/r2. In the Kondo-screened
phase, spins hybridize with the Dirac electrons. Since
the spin system is sub-extensive, the properties of the
Dirac electrons remain unchanged and the spin-spin cor-
relations along the chain inherit the 2D Dirac 1/r4 decay
(see Fig. S3 of Ref. [24]). Introducing particle-hole asym-
metry by adding next-nearest hopping (while keeping a
half-filled semimetallic state) was found to lead to similar
results within large-N [24].

QMC simulations: We have used the Algorithms for
Lattice Fermions (ALF) [25] implementation of the finite-
temperature auxiliary-field QMC algorithm [26–28]. The
perfect square form of the interaction used to formu-
late the large-N calculation complies with the standards
of the ALF-library and the model can be readily im-
plemented by decoupling the perfect square terms with
a Hubbard Stratonovich transformation. The absence
of negative sign problem follows by first carrying out

Spin-spin correlations decay as  for 
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FIG. 3. Equal-time spin-spin correlation function, C(r), as a
function of distance r along the spin chain on a log-log scale
for various values of Jk/t at Jh/t = 1 and Lx = Ly = L =
�. The grey dashed line corresponds to 1/r decay and the
corresponding static spin structure factors S(k) are shown in
the insets.

a partial particle-transformation, d̂†l," ! eiQ·ld̂l,", and

ĉ†l," ! �eiQ·lĉl,", and then using time reversal symme-
try to prove that the eigenvalues of the fermion matrix
occur in complex conjugate pairs. For a given system of
linear length L, the QMC simulations are performed at
an inverse temperature �(= 1/kBT ) = L and at a fix
Jh/t = 1. At L = 20 we checked that the the choice
� = 2L shows similar results as � = L. For the con-
sidered periodic boundary conditions, L = 4n + 2 corre-
sponds to open-shell configurations and is known to show
less finite-size e↵ects than L = 4n + 4 sized systems.

QMC results: Fig. 3 plots the spin-spin correlations
C(r) = 4hŜz

0 Ŝz

r
i as a function of distance r for various

values of Jk/t. In the limit of vanishing Kondo coupling,
our results are consistent with the exact asymptotic form:
C(r) / (�1)r

p
ln r/r. The 1/r decay of the spin-spin

correlations in the Heisenberg model, is tied to SU(2)
spin symmetry. If the Kondo coupling is irrelevant, then
we expect

P
l Ŝl to remain a good quantum number of

the low-energy e↵ective theory. Thereby the asymptotic
form of the spin-spin correlations should equally follow a
(�1)r/r form. Remarkably, the data supports this point
of view up to Jk/t . 2. On the other hand, in the Kondo-
screened phase for Jk/t & 2, the equal-time correlations
decay with a power larger than unity. In this phase, we
expect the spin-spin correlations to inherit the power-law
of the Dirac fermions hŜz,c

l Ŝz,c

l+ri / 1/r4. (see Fig. S3
of Ref. [24]). The insets of Fig. 3 plot the static spin
structure factor S(k) = 1

L

P
r
e�ik·rC(r) as a function of

momentum k. Noticeably, both at Jk = 0 and Jk/t = 1.5
we observe systematic growth of S(k) at k = ⇡, reflecting
the (�1)r/r real space decay. At Jk/t = 2 we observe a
cusp feature but a saturation of S(k = ⇡) with system
size thus suggesting a power law with exponent 1 < K� <
2. Finally, in the Kondo-screened phase at Jk/t = 3,
S(k) converges to a smooth function implying K� > 2.
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FIG. 4. Left: Magnetic susceptibility �(k = ⇡) as a function
of Jk/t for Jh/t = 1 and � = L. Right: Plots @F/@Jk as a
function of Jk/t.
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FIG. 5. Dynamical spin structure factor, S(k, !), along spin
chain as a function of energy (!/t) and momentum (k) for
L = � = 44 at Jh/t = 1.

A detailed overview of the QMC data is given in Sec. IV
of Ref. [24].

To confirm the above, we have computed the spin sus-

ceptibility �(k) =
R

�

0 d⌧S(k, ⌧) with S(k, ⌧) given as:

S(k, ⌧) =
X

r

e�ik·rhSz(r, ⌧)Sz(r = 0, ⌧ = 0)i. (3)

Lorentz invariance, inherent to spin chains, renders space
and time interchangeable such that the time displaced
correlation function scales as 1/

p
r2 + (vs⌧)2 with vs the

spin velocity. Setting � = L, we hence expect �(k = ⇡)
to diverge as L. Fig. 4 (a) plots �(k = ⇡) at � = L =
4n + 2. A similar data at L = 4n + 4 can be found in
Fig. S8 of Ref. [24]. For both cases we see two phases,
one in which �(k = ⇡) scales as L and one in which it
scales to a L-independent constant. In Fig. 4 (b) we plot
1
L

@F

@Jk
= 2

3L

P
L

l=1hĉ
†
l�ĉl · Ŝli so as to inquire the nature

of the transition. The data favors a smooth curve, and
hence a continuous quantum phase transition.

We now consider the dynamical spin structure factor,
that relates to the imaginary-time correlation functions
through S(k, ⌧) = 1

⇡

R
d! e

�⌧!

1�e��! �00(k, !). To extract

S(k, !) = �
00(k,!)

1�e��! , we use the ALF-implementation of the
stochastic analytical continuation algorithm [29]. The
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FIG. 3. Equal-time spin-spin correlation function, C(r), as a
function of distance r along the spin chain on a log-log scale
for various values of Jk/t at Jh/t = 1 and Lx = Ly = L =
�. The grey dashed line corresponds to 1/r decay and the
corresponding static spin structure factors S(k) are shown in
the insets.

a partial particle-transformation, d̂†l," ! eiQ·ld̂l,", and

ĉ†l," ! �eiQ·lĉl,", and then using time reversal symme-
try to prove that the eigenvalues of the fermion matrix
occur in complex conjugate pairs. For a given system of
linear length L, the QMC simulations are performed at
an inverse temperature �(= 1/kBT ) = L and at a fix
Jh/t = 1. At L = 20 we checked that the the choice
� = 2L shows similar results as � = L. For the con-
sidered periodic boundary conditions, L = 4n + 2 corre-
sponds to open-shell configurations and is known to show
less finite-size e↵ects than L = 4n + 4 sized systems.

QMC results: Fig. 3 plots the spin-spin correlations
C(r) = 4hŜz

0 Ŝz

r
i as a function of distance r for various

values of Jk/t. In the limit of vanishing Kondo coupling,
our results are consistent with the exact asymptotic form:
C(r) / (�1)r

p
ln r/r. The 1/r decay of the spin-spin

correlations in the Heisenberg model, is tied to SU(2)
spin symmetry. If the Kondo coupling is irrelevant, then
we expect

P
l Ŝl to remain a good quantum number of

the low-energy e↵ective theory. Thereby the asymptotic
form of the spin-spin correlations should equally follow a
(�1)r/r form. Remarkably, the data supports this point
of view up to Jk/t . 2. On the other hand, in the Kondo-
screened phase for Jk/t & 2, the equal-time correlations
decay with a power larger than unity. In this phase, we
expect the spin-spin correlations to inherit the power-law
of the Dirac fermions hŜz,c

l Ŝz,c

l+ri / 1/r4. (see Fig. S3
of Ref. [24]). The insets of Fig. 3 plot the static spin
structure factor S(k) = 1

L

P
r
e�ik·rC(r) as a function of

momentum k. Noticeably, both at Jk = 0 and Jk/t = 1.5
we observe systematic growth of S(k) at k = ⇡, reflecting
the (�1)r/r real space decay. At Jk/t = 2 we observe a
cusp feature but a saturation of S(k = ⇡) with system
size thus suggesting a power law with exponent 1 < K� <
2. Finally, in the Kondo-screened phase at Jk/t = 3,
S(k) converges to a smooth function implying K� > 2.
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FIG. 4. Left: Magnetic susceptibility �(k = ⇡) as a function
of Jk/t for Jh/t = 1 and � = L. Right: Plots @F/@Jk as a
function of Jk/t.
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FIG. 5. Dynamical spin structure factor, S(k, !), along spin
chain as a function of energy (!/t) and momentum (k) for
L = � = 44 at Jh/t = 1.

A detailed overview of the QMC data is given in Sec. IV
of Ref. [24].

To confirm the above, we have computed the spin sus-

ceptibility �(k) =
R

�

0 d⌧S(k, ⌧) with S(k, ⌧) given as:

S(k, ⌧) =
X

r

e�ik·rhSz(r, ⌧)Sz(r = 0, ⌧ = 0)i. (3)

Lorentz invariance, inherent to spin chains, renders space
and time interchangeable such that the time displaced
correlation function scales as 1/

p
r2 + (vs⌧)2 with vs the

spin velocity. Setting � = L, we hence expect �(k = ⇡)
to diverge as L. Fig. 4 (a) plots �(k = ⇡) at � = L =
4n + 2. A similar data at L = 4n + 4 can be found in
Fig. S8 of Ref. [24]. For both cases we see two phases,
one in which �(k = ⇡) scales as L and one in which it
scales to a L-independent constant. In Fig. 4 (b) we plot
1
L

@F

@Jk
= 2

3L

P
L

l=1hĉ
†
l�ĉl · Ŝli so as to inquire the nature

of the transition. The data favors a smooth curve, and
hence a continuous quantum phase transition.

We now consider the dynamical spin structure factor,
that relates to the imaginary-time correlation functions
through S(k, ⌧) = 1

⇡

R
d! e

�⌧!

1�e��! �00(k, !). To extract

S(k, !) = �
00(k,!)

1�e��! , we use the ALF-implementation of the
stochastic analytical continuation algorithm [29]. The

(ϵ = d − 3/2)



Defining Large Fermi Surface in a 

hybrid-dimensionality system using Oshikawa’s argument

Thread flux  Φ = 2π

spin-chain 

[Oshikawa 2000]

Lx
Ly

 = Number of occupied momentum modes in the Fermi sea for the up/down electrons.NLx
↑/↓

Density of conduction electrons.ν =

NLx
↑ + NLx

↓ = (νLy+1)Lx

contribution to Fermi surface

 due to local moments



Transition between Magnetically Ordered Phase

and Heavy Fermi liquid?

Heavy Fermi liquid 

�

HYHQ JDXJH QRQ�LQYDULDQW RSHUDWRUV �VXFK DV b̂� FDQ DFTXLUH D QRQ�]HUR H[SHFWDWLRQ YDOXH� ZKLFK SUHFLVHO\
FRUUHVSRQGV WR WKH $QGHUVRQ�+LJJV PHFKDQLVP�

Spin-Density Wave Metal

b ≠ 0, m ≠ 0  

Local Moment Metal

b = 0, m ≠ 0  

Fractionalized Fermi Liquid

b = 0, m = 0  

Heavy Fermi Liquid

b ≠ 0, m = 0  

Local Moment

Conduction

electron

EPR Singlet

)LJXUH �� $ FDUWRRQ LOOXVWUDWLRQ RI WKH IRXU SRVVLELOLWLHV
GLVFXVVHG LQ WKH WH[W IRU WKH SKDVH GLDJUDP RI D .RQGR
ODWWLFH V\VWHP� 1RWH WKDW WKH (35 VLQJOHWV DUH QRW VWDWLF
LQ WLPH� EXW IOXFWXDWH�UHVRQDWH TXDQWXP PHFKDQLFDOO\�

5HFDOO WKDW ZLWKLQ 'RQLDFK¶V SLFWXUH GLVFXVVHG
LQ 6HF�,� RQH REWDLQV WKH +)/ SKDVH ZKHQ WKH .RQGR
VFUHHQLQJ GRPLQDWHV RYHU WKH 5..< PHGLDWHG H[�
FKDQJH LQWHUDFWLRQV EHWZHHQ ORFDO PRPHQWV� ZKLOH
LQ WKH RSSRVLWH OLPLW� RQH REWDLQV D PDJQHWLFDOO\ RU�
GHUHG SKDVH� 7KH VODYH�SDUWLFOH�$EULNRVRY�IHUPLRQ
GHVFULSWLRQ DOORZV IRU D EURDGHU VHW RI SRVVLELOLWLHV
IRU WKH JOREDO SKDVH GLDJUDP >���� ���� ���±���@�
/HW XV UHVWULFW RXUVHOYHV WR MXVW WZR NLQGV RI µRU�
GHU SDUDPHWHUV¶� WKH �QRQ�JDXJH LQYDULDQW� RUGHU SD�
UDPHWHU 〈b̂〉� DQG WKH RUGHU SDUDPHWHU FRUUHVSRQGLQJ
WR WKH VSLQ URWDWLRQ V\PPHWU\ EUHDNLQJ 〈 !̂S(!k0)〉 =〈∑

!k f̂
†(!k0+!k)!σf̂(!k)

〉
≡ mZKHUH !k0 LV WKH ZDYH�

YHFWRU IRU WKH PDJQHWLF RUGHU �H�J�� RQ D VTXDUH ODW�
WLFH� WKH 1pHO $QWLIHUURPDJQHWLF RUGHU FRUUHVSRQGV
WR !k0 = (π,π)�� :H QRZ FRQVLGHU WKH IRXU SRVVLELO�
LWLHV DOORZHG E\ WKHVH WZR RUGHU SDUDPHWHUV �)LJ����

��� 〈b̂〉 $= 0,m = 0� $V MXVW GLVFXVVHG� WKLV LV WKH
+)/ SKDVH DQG KDV D ODUJH )HUPL VXUIDFH� +HUH WKH
ORFDO PRPHQWV DUH HQWDQJOHG ZLWK WKH FRQGXFWLRQ
HOHFWURQV DV GHSLFWHG E\ WKH (35 VLQJOHWV LQ )LJ���
7KLV SKDVH GRHVQ¶W EUHDN DQ\ JOREDO V\PPHWULHV�

��D� 〈b̂〉 $= 0,m $= 0� 7KLV SKDVH FRUUHVSRQGV WR D 6SLQ 'HQVLW\ :DYH �6':� LQVWDELOLW\ RI WKH +)/� DQG
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ĉσ DQG WKH $EULNRVRY IHUPLRQV f̂σ GR QRW K\EULGL]H DQG GHFRXSOH DW ORZ HQHUJLHV >���� ���@�

��� 〈b̂〉 = 0,m = 0� 7KLV LV D V\PPHWULF SKDVH ZKHUH WKH .RQGR VFUHHQLQJ LV DJDLQ QRW RSHUDWLYH� 7KH
)HUPL VXUIDFH LQ WKLV SKDVH RQO\ LQFOXGHV WKH FRQGXFWLRQ HOHFWURQV >���@ �DQG LV WKHUHIRUH µVPDOO¶ LQ FRQWUDVW
WR WKH +)/¶V ODUJH )HUPL VXUIDFH�� 6LQFH WKLV SKDVH YLRODWHV /XWWLQJHU¶V WKHRUHP� LW LV QRW D )HUPL OLTXLG�
7KLV LV WKH DIRUHPHQWLRQHG )/
 SKDVH� $V DUJXHG LQ 5HI� >���@� WKLV SKDVH LV ERXQG WR FRQWDLQ IUDFWLRQDOL]HG
H[FLWDWLRQV� ,Q )LJ�� ZH GHSLFW WKLV SKDVH DV D UHVRQDWLQJ YDOHQFH ERQG OLTXLG >��@�

2SHQ 4XHVWLRQV 7R EH $GGUHVVHG ,Q 7KLV 3URMHFW

,V .RQGR VFUHHQLQJ D XQLYHUVDO SURSHUW\ RI D SKDVH" 7KH RUGHU�SDUDPHWHU 〈b̂〉 FRQYHQWLRQDOO\ XVHG WR
GHILQH .RQGR VFUHHQLQJ FDQQRW EH PHDVXUHG LQ DQ DFWXDO H[SHULPHQW DQG VWULFWO\ VSHDNLQJ� LV RQO\ D PHDQ�
ILHOG SDUDPHWHU� 7KLV LV UHODWHG WR WKH DIRUHPHQWLRQHG IDFW WKDW WKH +)/ SKDVH LV D +LJJV SKDVH ZKLFK KDV QR
ORFDO JDXJH�LQYDULDQW RUGHU�SDUDPHWHU >���@� )XUWKHU� LW¶V DOVR QRW FOHDU WKDW D VLQJXODULW\ LQ WKH YDOXH RI WKH
PHDQ�ILHOG SDUDPHWHU 〈b̂〉 DV D IXQFWLRQ RI H[WHUQDO WXQLQJ SDUDPHWHU FRUUHVSRQGV WR DQ DFWXDO SKDVH WUDQVLWLRQ�

Fractionalized Fermi liquid

Again, fermion sign-problem a major obstacle.



Square lattice nested 
Fermi surface Kondo

1d Heisenberg

Spin chain on a metallic surface: dissipation versus Kondo screening

Bimla Danu,1 Matthias Vojta,2 Tarun Grover,3 and Fakher F. Assaad1

1Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat,
Universität Würzburg, 97074 Würzburg, Germany

2Institut für Theoretische Physik and Würzburg-Dresden Cluster of Excellence ct.qmat,
Technische Universität Dresden, 01062 Dresden, Germany

3Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
(Dated: January 27, 2022)

We explore the physics of a spin-1/2 Heisenberg chain coupled via a Kondo interaction, Jk, to two
dimensional Schrödinger electrons. At weak Jk the problem maps onto a Heisenberg chain locally
coupled to a dissipative Ohmic bath. At the Heisenberg fixed point, this coupling is marginal
and triggers long ranged antiferromagnetic order along the chain. In the strong Kondo coupling
limit we observe a heavy fermion metal originating from Kondo screening. Our results stem from
auxiliary field quantum Monte Carlo simulations. Due to the dimensionality mismatch between
spins and conduction electrons, our model provides a unique negative sign free realization of an
anti-ferromagnetic metal to heavy fermion metal transition driven by the competition of dissipation
and Kondo screening. We discuss the relevance of our results in the context of scanning tunneling
spectroscopy experiments on finite adatom chains on metallic surfaces. In particular we observe
distinct features in the zero bias di↵erential conductance in both phases.

Introduction. Scanning tunneling microscopy (STM)
is a powerful tool to build and probe Kondo nanostruc-
ture [1–8]. Remarkably, starting from an adatom on a
metallic surface the atomic manipulation technique of
STM so far has shown to build an array up to fourteen
adatoms [9–15]. Particularly, in context of Co adatoms
on Cu2N/Cu(100) surface the STM has shown the great
ability to control, the e↵ective spin and the Kondo tem-
perature of a single adatom, as well as the coupling
between adatoms [5, 11, 12]. Indeed the STM mea-
surements has confirmed the coupling of Co adatom to
the surface via a prominent Kondo resonance at Fermi
level [5] and has evident the Ruderman-Kittel-Kasuya-
Yosida (RKKY) [16, 17] interaction between Co adatoms
is negligible as compared to the exchange coupling gen-
erated by superexchange mechanism [11, 12]. Theoret-
ically, this setup can be described by a Kondo lattice
model which is composed of two subsystems of di↵erent
space dimensionality.

Model. We start with the Hamiltonian given by a spin-
1/2 chain on a metallic surface,

Ĥ = �t

X

hi,ji
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ĉ†i ĉj + H.c
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+
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2

LX

l=1

ĉ†l�ĉl · Ŝl
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Here, t is the nearest neighbour hopping parameter of
the conduction electrons, the summation

P
hi,ji runs over
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i,#
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spinor where ĉ
†
i,"(#) creates an electron at site i with

z-component of spin 1/2 (�1/2). Jk is the antiferro-
magnetic Kondo coupling between magnetic adatoms and
conduction electrons, Jh is the antiferromagnetic Heisen-
berg coupling between adatoms. L is the length of the

Heisenberg chain. Ŝl represents the spin-1/2 operators.
We use an array of adatoms at an interatomic position
�l = (a, 0) with a = 1 and the periodic boundary con-
ditions are used along the spin chain as well as on the
substrate.

Weak Coupling. In weak coupling using the coherent
path integral representation of the partition function Z =
Z0

R
D(n)e�S(n) and with perturbatively expanding the

Kondo exchange term up to second order, the action can
be written as [18, 19],

S(n) = Schain(n) +
J
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In the above Z0 is the partition function of conduct-
ing substrate, Schain(n) is the action of the decou-
pled spin chain, nl = 2Ŝl represent the spin vector
of unit length, and the local spin response function
of conduction electrons is given by; �

c(0, ⌧ � ⌧
0) /⌦

T⌧ ĉ
†
l (⌧)�ĉl(⌧)ĉ†l (⌧

0)�ĉl(⌧ 0)
↵

/ 1/(⌧ � ⌧
0)2. Notably,

in Eq. (2) the Kondo exchange term e↵ectively acts as a
dissipative Ohmic bath to the spin chain.

Consider the action given in Eq. (2) for decoupled spin-
1/2 chain in (1+1) space-time dimension the scaling di-
mension of nl is �n = 1/2. The power counting at
the decoupled Heisenberg point leads to the scaling di-
mension of Jk is 3 � 2 � 2�n = 0 which is marginal
in the renormalisation group (RG) sense. On the other
hand, if one consider the spatial decay of 2D electrons
�

c(r�r
0
, 0) / 1/(r�r

0)4 the scaling dimension at Jk = 0
is 3 � 4 � 2�n = �2 < 0 which is irrelevant. There-
fore justify the action of Eq. (2) and shows instead of
the RKKY interaction in this case dissipation predom-
inantly competes with the Kondo e↵ect. However, the
nesting in square conducting substrate may cause sub-
stantial changes. The power law corrections to space(π,0)
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Dissipation due to fermions can lead to long-range AFM order even in a 1d chain!
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We explore the physics of a spin-1/2 Heisenberg chain with Kondo interaction, Jk, to a two-
dimensional electron gas. At weak Jk the problem maps onto a Heisenberg chain locally coupled
to a dissipative Ohmic bath. At the decoupled fixed point, the dissipation is a marginally relevant
perturbation and drives long-range antiferromagnetic order along the chain. In the dynamical spin
structure factor we observe a quadratic low-energy dispersion akin to Landau-damped Goldstone
modes. At large Jk Kondo screening dominates, and the spin correlations of the chain inherit
the power law of the host metal, akin to a paramagnetic heavy Fermi liquid. In both phases we
observe heavy bands near the Fermi energy in the composite-fermion spectral function. Our results,
obtained from auxiliary-field quantum Monte Carlo simulations, provide a unique negative-sign-free
realization of a quantum transition between an antiferromagnetic metal and a heavy-fermion metal.
We discuss the relevance of our results in the context of scanning tunneling spectroscopy experiments
of magnetic adatom chains on metallic surfaces.

Introduction. A spin-1/2 antiferromagnetic chain em-
bedded in a higher-dimensional metal, with Kondo cou-
pling Jk between spins and electrons, represents an arena
for rich physics. For two-dimensional metals, this relates
to scanning tunneling microscopy (STM) experiments,
with the ability to build and probe assemblies of mag-
netic adatoms on surfaces [1–5]. In higher dimensions,
Yb2Pt2Pb provides a realization of one-dimensional spin
chains embedded in a three-dimensional metal [6, 7]. Due
to the dimensionality mismatch, such a system remains
metallic even for a half-filled conduction band. It can
host a variety of phases that include Kondo-breakdown or
orbital-selective Mott states [8, 9], heavy-fermion physics
in which the magnetic spins, albeit sub-extensive, partic-
ipate in the Luttinger volume, as well as non-Fermi-liquid
states [10]. The understanding of quantum transitions
between these states is of considerable interest both ex-
perimentally and theoretically.

In this letter, we will consider the above setup for
two-dimensional electrons in the presence of a Fermi sur-
face. In the limit of weak Kondo coupling, one can fol-
low the Hertz-Millis approach [11, 12] and perturbatively
integrate out the fermions to arrive at an e↵ective de-
scription of the spin chain locally coupled to an Ohmic
bath [13–17]. As argued in Ref. 17, for an O(3) quantum
rotor model coupled to an Ohmic bath, the dissipation
is marginally relevant and leads to long-range magnetic
ordering along the chain. Hence, unlike in conventional
heavy-fermions systems where Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions directly drive magnetic or-
dering [18, 19], here the ordering is stabilized only by
the dissipation. As the Kondo coupling increases, Kondo
screening will compete with dissipation-induced ordering.
In particular, in the strong-coupling limit, it is expected
that the spin-rotation symmetry will be restored in the

chain, and the spin-spin correlations of the chain will in-
herit the power-law decay of the host metal. The physics
of the Heisenberg spin chain on a metallic surface can
hence be cast into the flow diagram of Fig. 1(a) where
Kondo-singlet formation and dissipation-induced order
compete.
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FIG. 1. (a) RG flow diagram as suggested by the QMC data.
Green (red) bullets correspond to phases (critical points). We
observe an antiferromagnetic order-disorder transition with
hni the O(3) order parameter. In both phases Kondo screen-
ing, corresponding to a Higgs condensate hbi 6= 0, is present.
(b) Phase diagram in the Jh versus Jk plane as extracted from
QMC simulations at � / Lz with z = 2. The blue line at
Jk = 0 represents the decoupled Heisenberg chain that is un-
stable to dissipation-induced ordering upon Kondo coupling
to the fermions.

Model and Method. Our starting point is the Hamilto-
nian for a spin-1/2 chain on a metallic surface,
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dimensional electron gas. At weak Jk the problem maps onto a Heisenberg chain locally coupled
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low the Hertz-Millis approach [11, 12] and perturbatively
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ordering along the chain. Hence, unlike in conventional
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Yosida (RKKY) interactions directly drive magnetic or-
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the dissipation. As the Kondo coupling increases, Kondo
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FIG. 1. (a) RG flow diagram as suggested by the QMC data.
Green (red) bullets correspond to phases (critical points). We
observe an antiferromagnetic order-disorder transition with
hni the O(3) order parameter. In both phases Kondo screen-
ing, corresponding to a Higgs condensate hbi 6= 0, is present.
(b) Phase diagram in the Jh versus Jk plane as extracted from
QMC simulations at � / Lz with z = 2. The blue line at
Jk = 0 represents the decoupled Heisenberg chain that is un-
stable to dissipation-induced ordering upon Kondo coupling
to the fermions.
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imaginary time. In particular, Figs. S2 and S3 of Ref. 20
plot the space- and time-displaced correlation functions
within the large-N approximation and confirm the above.
The QMC data of Fig. 5 is consistent with this expecta-
tion.
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Using the ALF [24] implementation of the maximum
Entropy method [31, 32] we compute the dynamical spin

structure factor S(k,!) = Im�(k,!+i0+)
1�e��! . Fig. 6(a) plots

this quantity for the Heisenberg model. The data shows
the well known two spinon continuum [33–35]. At finite
Kondo couplings (Figs. 6(b)-(c)), the two-spinon contin-
uum is still apparent at elevated energies. However the
low-energy bound shows a marked deviation from the lin-
ear dispersion and is very suggestive of a ! / k2 law. In
fact, a field theory presented in Ref. 20 as well as a large-
S calculation [17] of a Heisenberg chain locally coupled to
an Ohmic bath confirms that dissipation stabilizes long-
range order and that the lower bound of the dispersion
relation follows an ! / k2 law akin to Landau-damped
Goldstone modes. Our dynamical data bears similarities
with spinon binding as observed in KCuF3 [36] and corre-
sponding to a dimensional crossover [37]. In the present
case, the elevated-energy spectrum shows the two-spinon
continuum while the low energy to corresponds the spin-
wave excitations of the Heisenberg chain coupled to an
Ohmic bath [20]. Finally, in the Kondo-screened phase
at Jk/t = 3 see Fig. 6 (d) the low-lying spectral weight
is depleted.

We now turn our attention to Kondo screening and
heavy-fermion physics. Consider the composite-fermion
operator  ̂†
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lytical continuation, we use the relation A (! = 0) '
(1/⇡)�G (⌧ = �/2). Confirming the k-dependent data,
we see that this quantity never vanishes at low tem-
peratures in both phases. Hence, the data supports
the point of view that Kondo screening is active in the
dissipation-induced ordered phase. It is interesting to
note that the temperature dependence of A (! = 0)
di↵ers in both phases. While it grows and saturates in
the Kondo-screened phase, it shows a maximum in the
ordered phase. Such a behavior can be understood in
terms of the onset of ordering that opens a pseudogap
in the spectral function, see Ref. 20. A (! = 0) is an
important quantity since it provides a link to STM ex-
periments. In fact, it corresponds to the zero bias signal
dIl/dV (V = 0) for tunneling processes between the tip
and the substrate that involve intermediate excited states
of the localized orbital. In the experiments described in
Refs. [1, 42] and modelled in Ref. [5] Jk can be tuned by
changing the width of the Cu2N islands between the Co
adatoms and Cu(100) surface. Provided that the chains
are long enough, our observation of distinct temperature
behaviors of A (! = 0) in the two phases provides a
means to experimentally distinguish them.

Conclusions. The physics of the Heisenberg chain cou-
pled to two-dimensional electrons can be understood by
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imaginary time. In particular, Figs. S2 and S3 of Ref. 20
plot the space- and time-displaced correlation functions
within the large-N approximation and confirm the above.
The QMC data of Fig. 5 is consistent with this expecta-
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the point of view that Kondo screening is active in the
dissipation-induced ordered phase. It is interesting to
note that the temperature dependence of A (! = 0)
di↵ers in both phases. While it grows and saturates in
the Kondo-screened phase, it shows a maximum in the
ordered phase. Such a behavior can be understood in
terms of the onset of ordering that opens a pseudogap
in the spectral function, see Ref. 20. A (! = 0) is an
important quantity since it provides a link to STM ex-
periments. In fact, it corresponds to the zero bias signal
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and the substrate that involve intermediate excited states
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We explore the physics of a spin-1/2 Heisenberg chain with Kondo interaction, Jk, to a two-
dimensional electron gas. At weak Jk the problem maps onto a Heisenberg chain locally coupled
to a dissipative Ohmic bath. At the decoupled fixed point, the dissipation is a marginally relevant
perturbation and drives long-range antiferromagnetic order along the chain. In the dynamical spin
structure factor we observe a quadratic low-energy dispersion akin to Landau-damped Goldstone
modes. At large Jk Kondo screening dominates, and the spin correlations of the chain inherit
the power law of the host metal, akin to a paramagnetic heavy Fermi liquid. In both phases we
observe heavy bands near the Fermi energy in the composite-fermion spectral function. Our results,
obtained from auxiliary-field quantum Monte Carlo simulations, provide a unique negative-sign-free
realization of a quantum transition between an antiferromagnetic metal and a heavy-fermion metal.
We discuss the relevance of our results in the context of scanning tunneling spectroscopy experiments
of magnetic adatom chains on metallic surfaces.

Introduction. A spin-1/2 antiferromagnetic chain em-
bedded in a higher-dimensional metal, with Kondo cou-
pling Jk between spins and electrons, represents an arena
for rich physics. For two-dimensional metals, this relates
to scanning tunneling microscopy (STM) experiments,
with the ability to build and probe assemblies of mag-
netic adatoms on surfaces [1–5]. In higher dimensions,
Yb2Pt2Pb provides a realization of one-dimensional spin
chains embedded in a three-dimensional metal [6, 7]. Due
to the dimensionality mismatch, such a system remains
metallic even for a half-filled conduction band. It can
host a variety of phases that include Kondo-breakdown or
orbital-selective Mott states [8, 9], heavy-fermion physics
in which the magnetic spins, albeit sub-extensive, partic-
ipate in the Luttinger volume, as well as non-Fermi-liquid
states [10]. The understanding of quantum transitions
between these states is of considerable interest both ex-
perimentally and theoretically.

In this letter, we will consider the above setup for
two-dimensional electrons in the presence of a Fermi sur-
face. In the limit of weak Kondo coupling, one can fol-
low the Hertz-Millis approach [11, 12] and perturbatively
integrate out the fermions to arrive at an e↵ective de-
scription of the spin chain locally coupled to an Ohmic
bath [13–17]. As argued in Ref. 17, for an O(3) quantum
rotor model coupled to an Ohmic bath, the dissipation
is marginally relevant and leads to long-range magnetic
ordering along the chain. Hence, unlike in conventional
heavy-fermions systems where Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions directly drive magnetic or-
dering [18, 19], here the ordering is stabilized only by
the dissipation. As the Kondo coupling increases, Kondo
screening will compete with dissipation-induced ordering.
In particular, in the strong-coupling limit, it is expected
that the spin-rotation symmetry will be restored in the

chain, and the spin-spin correlations of the chain will in-
herit the power-law decay of the host metal. The physics
of the Heisenberg spin chain on a metallic surface can
hence be cast into the flow diagram of Fig. 1(a) where
Kondo-singlet formation and dissipation-induced order
compete.
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FIG. 1. (a) RG flow diagram as suggested by the QMC data.
Green (red) bullets correspond to phases (critical points). We
observe an antiferromagnetic order-disorder transition with
hni the O(3) order parameter. In both phases Kondo screen-
ing, corresponding to a Higgs condensate hbi 6= 0, is present.
(b) Phase diagram in the Jh versus Jk plane as extracted from
QMC simulations at � / Lz with z = 2. The blue line at
Jk = 0 represents the decoupled Heisenberg chain that is un-
stable to dissipation-induced ordering upon Kondo coupling
to the fermions.

Model and Method. Our starting point is the Hamilto-
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ĉ†i ĉj + H.c

�
+

Jk

2

LX

r=1
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imaginary time. In particular, Figs. S2 and S3 of Ref. 20
plot the space- and time-displaced correlation functions
within the large-N approximation and confirm the above.
The QMC data of Fig. 5 is consistent with this expecta-
tion.
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Using the ALF [24] implementation of the maximum
Entropy method [31, 32] we compute the dynamical spin

structure factor S(k,!) = Im�(k,!+i0+)
1�e��! . Fig. 6(a) plots

this quantity for the Heisenberg model. The data shows
the well known two spinon continuum [33–35]. At finite
Kondo couplings (Figs. 6(b)-(c)), the two-spinon contin-
uum is still apparent at elevated energies. However the
low-energy bound shows a marked deviation from the lin-
ear dispersion and is very suggestive of a ! / k2 law. In
fact, a field theory presented in Ref. 20 as well as a large-
S calculation [17] of a Heisenberg chain locally coupled to
an Ohmic bath confirms that dissipation stabilizes long-
range order and that the lower bound of the dispersion
relation follows an ! / k2 law akin to Landau-damped
Goldstone modes. Our dynamical data bears similarities
with spinon binding as observed in KCuF3 [36] and corre-
sponding to a dimensional crossover [37]. In the present
case, the elevated-energy spectrum shows the two-spinon
continuum while the low energy to corresponds the spin-
wave excitations of the Heisenberg chain coupled to an
Ohmic bath [20]. Finally, in the Kondo-screened phase
at Jk/t = 3 see Fig. 6 (d) the low-lying spectral weight
is depleted.

We now turn our attention to Kondo screening and
heavy-fermion physics. Consider the composite-fermion
operator  ̂†

r,� = 2
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�0 ĉ†r,�0��0,� · Ŝr [38–40]. In the

large-N limit this quantity picks up the Higgs con-
densate or hybridization matrix element [20], charac-
teristic of Kondo screening [41]. Here we compute
the spectral function A (k,!) = �ImGret
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A (k,!) on an L = 24 lattice at �t = 48 (a) in the ordered
phase and (b) in the Kondo-screened phase. (c) Local zero-
bias signal A (! = 0) as a function of temperature T/t at
L = 44 and for various values of Jk/t in the ordered and
disordered phases.
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as a function of temperature and Jk. To avoid ana-
lytical continuation, we use the relation A (! = 0) '
(1/⇡)�G (⌧ = �/2). Confirming the k-dependent data,
we see that this quantity never vanishes at low tem-
peratures in both phases. Hence, the data supports
the point of view that Kondo screening is active in the
dissipation-induced ordered phase. It is interesting to
note that the temperature dependence of A (! = 0)
di↵ers in both phases. While it grows and saturates in
the Kondo-screened phase, it shows a maximum in the
ordered phase. Such a behavior can be understood in
terms of the onset of ordering that opens a pseudogap
in the spectral function, see Ref. 20. A (! = 0) is an
important quantity since it provides a link to STM ex-
periments. In fact, it corresponds to the zero bias signal
dIl/dV (V = 0) for tunneling processes between the tip
and the substrate that involve intermediate excited states
of the localized orbital. In the experiments described in
Refs. [1, 42] and modelled in Ref. [5] Jk can be tuned by
changing the width of the Cu2N islands between the Co
adatoms and Cu(100) surface. Provided that the chains
are long enough, our observation of distinct temperature
behaviors of A (! = 0) in the two phases provides a
means to experimentally distinguish them.

Conclusions. The physics of the Heisenberg chain cou-
pled to two-dimensional electrons can be understood by
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imaginary time. In particular, Figs. S2 and S3 of Ref. 20
plot the space- and time-displaced correlation functions
within the large-N approximation and confirm the above.
The QMC data of Fig. 5 is consistent with this expecta-
tion.

(c)

Jk/t=1.8Jk/t=0(a) (b)

Jk/t=3(d)Jk/t=2

 0

 1

 2

 3

 4

10-2
10-1
100
101
102

 0

 1

 2

 3

 4

 0  1  2  3  4  5  6
10-2
10-1
100
101
102

 0  1  2  3  4  5  6
10-2
10-1
100
101
102

 0
 1
 2
 3
 4

 0  1  2  3  4  5  6
10-2
10-1
100
101
102

�/t

�/t

k k

FIG. 6. S(k,!) as a function of energy !/t and momentum
k along the spin chain at �t = L = 44 and Jh/t = 1.

Using the ALF [24] implementation of the maximum
Entropy method [31, 32] we compute the dynamical spin

structure factor S(k,!) = Im�(k,!+i0+)
1�e��! . Fig. 6(a) plots

this quantity for the Heisenberg model. The data shows
the well known two spinon continuum [33–35]. At finite
Kondo couplings (Figs. 6(b)-(c)), the two-spinon contin-
uum is still apparent at elevated energies. However the
low-energy bound shows a marked deviation from the lin-
ear dispersion and is very suggestive of a ! / k2 law. In
fact, a field theory presented in Ref. 20 as well as a large-
S calculation [17] of a Heisenberg chain locally coupled to
an Ohmic bath confirms that dissipation stabilizes long-
range order and that the lower bound of the dispersion
relation follows an ! / k2 law akin to Landau-damped
Goldstone modes. Our dynamical data bears similarities
with spinon binding as observed in KCuF3 [36] and corre-
sponding to a dimensional crossover [37]. In the present
case, the elevated-energy spectrum shows the two-spinon
continuum while the low energy to corresponds the spin-
wave excitations of the Heisenberg chain coupled to an
Ohmic bath [20]. Finally, in the Kondo-screened phase
at Jk/t = 3 see Fig. 6 (d) the low-lying spectral weight
is depleted.

We now turn our attention to Kondo screening and
heavy-fermion physics. Consider the composite-fermion
operator  ̂†

r,� = 2
P
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FIG. 1. Crystal structure of tetragonal Ti4MnBi2. (a) A view of the crystal structure in the basal plane, depicting the central
Mn ion surrounded by an inner ring of eight Ti ions and an outer ring of eight Bi ions. The respective rings of Ti and Bi
ions are formed by two sets of four coplanar ions occupying the corners of square-planer lattices that are separated by d = c/2
along the c-axis and are at an angle of 45◦ with respect to each other. Extending along the c-axis, these rings constitute
tube-like structures of Ti and Bi that surround the linear chains of Mn-ions. (b) A view of the two unit cells of Ti4MnBi2
stacked on the top of each other along the c-axis. It is evident from (a) and (b) that the Mn-ions form linear chains running
along the c-axis of the tetragonal unitcell. The interchain distance between the two nearest Mn ions within the ab-plane is
dchain = a/

√
2 = 7.4208(3) Å and the intrachain distance between the two neighboring Mn-ions is dMn−Mn = c/2 = 2.4930(1) Å.

(c) The Mn-ions centered in a square-antiprism coordination polyhedra of Ti-ions. Two nearest neighbors Mn-ions capping the
respective square faces are also shown.

tal structure of Ti4MnBi2 depicted in Fig. 1 emphasizes
its 1D character. Linear chains of Mn atoms with a Mn-
Mn spacing of dMn-Mn = 2.4930(1) Å extend along the
tetragonal c-axis. The Mn chains are encased along the
c-direction in concentric tubes with an inner tube of Ti
atoms and a larger diameter tube of Bi atoms [Fig. 1(a)].
The distance between Mn chains dchain = 7.4208(3) Å is
substantially larger than dMn-Mn [Fig. 1(b)], suggesting
a pronounced one-dimensionality of the Mn subsystem.
The Mn-ions are centered in a square-antiprism coordi-
nation polyhedra of Ti-ions [Fig. 1(c)].

Electrical Resistivity

We begin by establishing that Ti4MnBi2 is intrinsi-
cally metallic. The temperature dependence of the c-axis
electrical resistivity ρc(T ) measured for temperatures be-
tween 0.5− 300 K is presented in Fig. 2. Similar results
were obtained on multiple crystals, with little variation
in the residual resistivity ρ0, which was found to vary be-
tween 100− 120 µΩ cm. The overall good quality of our
single crystals and the lack of significant sample depen-
dence suggest that disorder is unlikely to be solely respon-
sible for the large value of ρ0, implying that other sorts of
scattering processes including quantum fluctuations, may
be present at T = 0. A metallic temperature dependence
was found at all temperatures 0.5 K ≤ T ≤ 300 K, with
ρc(T ) increasing monotonically with increasing temper-
ature. Fermi liquid behavior was found for T <∼ 75 K
[inset, Fig. 2], where the resistivity data were fitted by
ρc = ρ0 + AT 2, with A = 1.103(3) × 10−3 µΩ cm/K2

FIG. 2. Temperature dependence of the electrical resistiv-
ity ρc(T ) of Ti4MnBi2 measured along the crystallographic
c-axis. The solid black curve is a fit by the Bloch-Grüneisen
model with an additional term −DT 3 ascribed to Mott sd
scattering (see text). Inset: ρc plotted as a function of tem-
perature squared T 2 for T <∼ 75 K. Solid black line is a linear
fit to the data.

(Table II). This value of A is enhanced relative to val-
ues found in simple metals and is similar to those found
in correlated d-electron compounds like La1.7Sr0.3CuO4

and Sr2RuO4 [35]. This is our first indication that the
conduction electrons in Ti4MnBi2 are significantly corre-
lated.

At higher temperatures, ρc(T ) does not approach the
linear temperature dependence that is expected in the
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Combining everything, at the leading order, I ⇠ I1 + I2 ⇠ log(⌧)
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. Therefore, the leading term in the Hertz-Millis
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nr(⌧) ·nr(⌧ 0), i.e., compared to the case of non-nested Fermi surface,

one obtains a multiplicative logarithmic correction.

SPIN AUTOCORRELATIONS FOR A NESTED FERMI SURFACE

For a generic, non-nested Fermi surface in two spatial dimensions, the AFM correlations decay as: hn(r) ·n(0)i ⇠
1/r3. However, as discussed in the main text, in the paramagnetic phase of our model, we find that the AFM
correlations both for the spin-chain and for the conduction electrons decay as: hn(r) · n(0)i ⇠ 1/r4 when r = r(1, 0)
lies along the direction of the chain. The change in the power-law compared to a generic Fermi surface is a consequence
of the nested Fermi surface, and we provide a brief derivation here.

Using Wick’s theorem, hn(r) · n(0)i ⇠ hc†r,�cr,�i2 ⇠
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where V = L2 is the total system
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2), one may now exploit the square shape of the corresponding Fermi surface

to decompose nF as nF (kx, ky) = f(kx)f(ky) where f(k) = 1 for k 2 (�⇡/
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2) and f(k) = 0 otherwise. With
this coordinate choice, r = (x + y)/
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2. Therefore, one finds
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where g(r) =
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f(k)eikr/
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2/L. One now recognizes that g(r) precisely corresponds to the single-particle Green’s

function for a 1d system with Fermi points at ±⇡/
p

2, and therefore, g(r) ⇠ 1/r. Thus, one obtains the result seen in
our numerics, namely, hn(r) ·n(0)i ⇠ 1/r4. In passing, we note that if r instead makes a ⇡/4 angle to the spin-chain,
then following the same steps, one finds that hn(r) · n(0)i ⇠ 1/r2.

STABILITY OF ORDERING FOR A DISSIPATIVE SPIN CHAIN

To gain insight into the stability of magnetic excitations on the spin chain in the presence of dissipative Kondo
coupling, let us first consider a one dimensional system with the following imaginary-time non-linear sigma action for
an O(3) order parameter n:
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where n(r, ⌧) ·n(r, ⌧) = 1 and � is the strength of the dissipation. Let us assume that the O(3) symmetry is sponta-
neously broken down to O(2) with the order-parameter pointing along the ẑ direction. One may then parameterize n

as: n(r, ⌧) =
⇣
�(r, ⌧),
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1 � �(r, ⌧)2

⌘
where � is a two-component vector that captures the transverse fluctuations of

n. Assuming |�(r, ⌧)| ⌧ 1, one may then obtain the e↵ective action Sdiss(�) in the putative symmetry-broken phase.
One finds Sdiss(�) = S0(�) + S1(�) + ... where
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and ‘...’ denotes higher order terms that are less relevant than S0(�) and S1(�). The action S0(�) is invariant under
the following scaling transformation: r ! �r, ⌧ ! �2⌧, �(r, ⌧) ! �(r, ⌧)/

p
�. On the other hand, under the same

scaling transformation, S1(�) ! S1(�)/�, and therefore, S1(�) is irrelevant at the RG fixed point governed by S0(�).
Terms such as

R
d⌧dr (@⌧�(r, ⌧))2 and
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d⌧dr (�.@⌧�)2 are even more irrelevant at this fixed point. Therefore, the

low-energy theory in the symmetry-broken phase is given by S0(�), which has dynamical critical exponent z = 2 and
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lies along the direction of the chain. The change in the power-law compared to a generic Fermi surface is a consequence
of the nested Fermi surface, and we provide a brief derivation here.
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our numerics, namely, hn(r) ·n(0)i ⇠ 1/r4. In passing, we note that if r instead makes a ⇡/4 angle to the spin-chain,
then following the same steps, one finds that hn(r) · n(0)i ⇠ 1/r2.
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1Laboratoire de Physique, École Normale Supérieure, CNRS, Université PSL,
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A quantum spin impurity coupled to a critical free field (the Bose-Kondo model) can be repre-
sented as a 0+1D field theory with long-range-in-time interactions that decay as |t� t0|�(2��). This
theory is a simpler analogue of nonlinear sigma models with topological Wess-Zumino-Witten terms
in higher dimensions. In this note we show that the RG flows for the impurity problem exhibit an
annihilation between two nontrivial RG fixed points at a critical value �c of the interaction exponent.
The calculation is controlled at large spin S. This clarifies the phase diagram of the Bose-Kondo
model and shows that it serves as a toy model for phenomena involving fixed-point annihilation and
“quasiuniversality” in higher dimensions.

The annihilation of a stable with an unstable fixed
point is a generic possibility in renomalization group
(RG) flows when a parameter such as the spatial dimen-
sionality, which does not flow, is varied [1–7]. When this
happens it leads to an interesting regime just beyond
the annihilation point. No physical fixed point exists in
this regime (though “annihilation” really means that the
real fixed points disappear into the complex plane, where
they may correspond to nonunitary conformal field the-
ories [8]). Nevertheless the RG flows become very slow.
This can yield particles with anomalously small masses,
or weakly first-order phase transitions with extremely
long correlation lengths [1] that show quasiuniversal [4, 9]
behaviour below this scale.

One generic class of examples includes field theories
with cubic terms that have continuous transitions in low
dimensions, which become first order (as predicted by
mean-field theory) in high dimensions. These include the
Potts model [3] (which also undergoes annilation in 2D
as a function of the number of states [1, 2, 10–12]) as well
as Landau theories for order parameters on complex or
real projective space [13, 14].

This note is motivated by a fixed point annihilation
phenomenon that was proposed to resolve debates about
Monte Carlo results for deconfined criticality [15] in
2+1D antiferromagnets [9, 16]. In Refs. [17, 18] this
was put in terms of a dimensional hierarchy of nonlinear
sigma models in d spacetime dimensions with SO(d+ 2)
global symmetry [19]. These sigma models have a topo-
logical Wess-Zumino-Witten (WZW) term in the action.
The case d = 2 is the well-known WZW theory with a
conformal fixed point [20], and d = 3 is an e↵ective field
theory for various competing order parameters in 2+1D
magnets [21, 22]. It was argued that fixed point annihi-
lation occurs between two and three dimensions.

Unfortunately, this example of fixed point annihila-
tion, like the others mentioned above, requires an integer-
valued parameter (here d) to be treated as continuously
variable. An annihilation that takes place at a noninte-
ger critical dimensionality may be useful conceptually for
understanding nearby values of d, but it cannot be real-
ized physically (and there may be ambiguities in defining

the continuous d theory). It would be instructive to have
a toy model that retained basic features of the WZW
example, without the unphysical feature of noninteger d.
Here we show that the simplest member of the “WZW”

hierarchy, in d = 1, provides such a model if we augment
it with a long-ranged interaction. This is a model of a
spin impurity in a gapless environment [23–27], and was
suggested as a model for fixed point annihilation in [18].
We find that many key features of the higher-dimensional
example are retained (fixed point annihilation, quasiuni-
versality, emergent symmetry). But since the fixed point
annihilation occurs in d = 1 the model is accessible to
numerical simulations and perhaps to experiment. The
model is analytically tractable at large spin.
The d = 1 theory without a long-range interaction is

simply the quantum mechanics of a spin-S (or more gen-
erally a rotor), described using the spin path integral with
its well-known Berry phase term [28]. The version with
a power-law interaction ⇠ 1/|t� t0|2�� describes a spin
with a retarded interaction, physically representing an in-
teraction with a gapless zero-temperature bath that has

FIG. 1. Fixed points and flows as a function of the exponent
� in the memory kernel K ⇠ 1/|t� t0|2��. h is the dimension-
less coupling of the 1D nonlinear sigma model. h = 0 is the
ordered fixed point and h = 1 (not shown) is a noninteract-
ing spin with 2S + 1 degenerate ground states. hs,u = Sgs,u
label the branches of stable and unstable fixed points.
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been integrated out. This is known as the “Bose-Kondo”
model [23–27, 29–39]. It falls into the larger family of
quantum impurity models describing a local quantum-
mechanical degree of freedom interacting with a bath of
critical fluctuations [26, 27, 40–42].

We study the model in a large spin limit that allows the
RG equation to be obtained to all orders in the coupling.
Using the background field method, the calculation is a
simple extension (to include the Berry phase term) of the
analysis by Kosterlitz of the long-range classical Heisen-
berg model in one dimension [43]. The beta function
shows an interesting structure, with two nontrivial fixed
points that annihilate with each other when the interac-
tion power law 2� � is varied through a critical value.
The flows as a function of � are qualitatively like those
suggested for the WZW model as a function of ✏ (in 2+ ✏
dimensions) [17, 18], except in the behaviour of one of
the nontrivial fixed points (the stable one) when � ! 0.

Model. We consider a Euclidean action for a spin of
size S with a long-ranged temporal interaction:

S =
1

2g

Z
dtdt0 K(t� t0)

�
~n(t)� ~n(t0)

�2
� iS ⌦[~n]. (1)

Here ~n = (n1, n2, n3), with ~n2 = 1, is the field appearing
in the coherent states path integral. This is a formulation
of the SO(3)-symmetric Bose-Kondo model, in which the
spin is coupled to a local magnetization ~m (associated
with additional “bulk” degrees of freedom) via a Hamil-
tonian Hint = J ~S.~m [23–27]. If ~m has SO(3)-invariant
autocorrelations obeying Wick’s theorem, then integrat-
ing ~m out yields (1) with g�1

/ J2S2 and with a kernel
K(t� t0) that is proportional to the autocorrelator of ~m.
We assume this to be a power law at large ⌧ = t� t0,
K(t� t0) / |t� t0|�(2��) with �1 < � < 1. For conve-
nience we normalize K as

K(⌧) =
C⇤�

|⌧ |2��
, C =

(1� �)

4�(�) sin(⇡�/2)
. (2)

The constant C is chosen so that the Fourier transform
of K(⌧) has a simple normalization (App. A) [43], and a
power of the UV cuto↵ frequency ⇤ is included in K(⌧)
so that g is dimensionless. Finally, the Berry phase term
⌦[~n] is the solid angle on the sphere traced out by the
trajectory, written in terms of an extension of the field
~n(t) to a field ~n(t, u) defined on a strip with u 2 [0, 1]
as [28]:

⌦[~n] =
1

2

Z 1

0
du

Z
dt✏µ⌫~n.(@µ~n⇥ @⌫~n) (3)

or more simply as ⌦[~n] =
R
dt(1� sin )�̇ in the coordi-

nates ~n = (cos cos�, cos sin�, sin ).
Before calculating the beta function, let us ask what

we can expect from stability considerations.
The action (1) has two trivial fixed points, at g = 0 and

at g = 1. That at g = 0 is a perfectly ordered state,
with no local fluctuations in ~n(t). The fixed point at

g = 1 describes a quantum spin with 2S + 1 degenerate
ground states.
By counting dimensions we see that when � is nega-

tive the ordered fixed point at g = 0 is unstable and the
g = 1 fixed point is stable. The simplest expectation
(confirmed in the large S calculation below) is that in
this � < 0 regime the model flows, for any positive g, to
g = 1. On the other hand when � is positive the ordered
fixed point becomes stable, so the model is in a stable or-
dered phase for small enough g. At the same time the
g = 1 fixed point becomes unstable.
The flows for infinitesimal g are similar to those in

a classical 1D model without the Berry phase term, be-
cause the Berry phase term in the action is subleading
in the limit g ! 0. As in the classical model, the change
in stability of the ordered fixed point is accompanied by
the appearance of a nontrivial unstable fixed point, rep-
resenting a phase transition, at a coupling gu that is of
order � for small positive � [43].
However the Berry phase term plays a role for non-

infinitesimal g. In particular, the g = 1 fixed point is
unstable for � > 0, unlike a simple classical disordered
fixed point. The simplest consistent hypothesis is there-
fore that for su�ciently small positive � there is another
nontrivial fixed point gs, with gs > gu, which is sta-
ble. This fixed point governs a stable large-g phase with
power-law correlations. [Heuristically, the Berry phase
term has prevented ~n(t) from being trivially disordered
at large g, leading instead to a stable “critical phase”.] At
small �, with S fixed, this stable fixed point can be stud-
ied by perturbative RG in the strength of the impurity-
spin coupling [26].

What happens to these fixed points as � is increased?
A simple guess (in analogy to the higher-dimensional
problem) is that at some critical value �c they merge
and annihilate, meaning that for a su�ciently long range
interaction the model is always in the ordered phase
(Fig. 1). We will confirm this directly when S is large.

RG results. At large S the interesting regime is where
the coupling g and the exponent � are both of order 1/S,
so we will write

h = g S, e� = � S. (4)

This scaling of the coupling ensures that the two terms
in the action are of comparable size in the limit of large
S. (If this is not the case, then one of the two terms
dominates the action for the “fast” modes that we inte-
grate out in the RG step, leading to a more trivial RG
equation.) The spin size S itself is quantised and does
not flow, but it serves as a large parameter that justi-
fies a one-loop calculation [20]. This calculation can be
done with the background field method [43, 44] and is
described in App. A.

Our basic result is the RG equation

dh

d⌧
=

1

S

✓
�e� h+

2

⇡

h2
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◆
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1

S2

◆
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from the availability of a controlled renormalization
group for a class of such of such problems, as de-
tailed below. The (Euclidean) action is thus com-
posed of three terms: S[g] = SGrad[g] + SWZ[g] +
SDiss[g]. SGrad = 1
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R
d⌧dx tr
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is the standard kinetic energy term for the matrix-valued
field g 2 SU(N) in the fundamental representation.
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is the WZW term which is defined by extending the
field g(x, ⌧) to one higher dimension as g̃(x, ⌧, u) so that
g̃(x, ⌧, u = 0) = g0 where g0 is any chosen reference
value, and g̃(x, ⌧, u = 1) = g(x, ⌧), the physical value
of g at coordinates (x, ⌧). The coordinates (x, ⌧, u) la-
beling g̃ belong to a three-ball B3 whose boundary S

2 is
the physical Euclidean space-time (x, ⌧). Finally, SDis =
k
2
�
R
d⌧d⌧

0
dxK(⌧�⌧

0) tr[1�g(⌧, x)g�1(⌧ 0, x)] is the dis-
sipation term where the kernel K is K(⌧�⌧

0) = A
|⌧�⌧ 0|3��

with the normalization A = (��2)
16⇡�(��1) cos(⇡�/2) cho-

sen such that the Fourier transform K̃(!) has a sim-
ple form suited for our RG analysis. Note that 0 <

� < 2. The global onsite symmetry of this model is

SU(N)L ⌦ SU(N)R where under SU(N)L, g ! Ug,
and under SU(N)R, g ! gV , where U, V are arbitrary
SU(N) matrices.
The exponent 3 � � for the Kernel K(⌧) is chosen so
that at k = 1, the dissipation is marginal, which allows
for a controlled 1/k expansion when � = �̃/k with �̃ an
O(1) number. The couplings � and � will turn out to
be of the order 1/k at all RG fixed points. This explains
the factor of k2 in front of the dissipation term, which
ensures that the three terms in the action scale as k.
Correspondingly, it will be expedient to introduce O(k0)
couplings �̃ = k� and �̃ = k�. It will turn out that the
dynamical exponent in our problem deviates from unity
only by O(1/k). Therefore, we also introduce an O(k0)
variable z̃ as z = 1 + z̃

k .

III. RENORMALIZATION GROUP FOR THE
MODEL

As detailed in the Supplement Material, at the leading
order in 1/k, we obtain the following beta functions for
the couplings in our action S[g]:
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where w =
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and CF = N2�1

2N is the

Casimir for SU(N) in the fundamental representation.
One may simplify these equations further by introduc-
ing the variables x = c�̃ and y = c�̃. Their respective
beta functions, �(x),�(y), can then be obtained from
the above equations (see SM). The main outcomes of
these RG equations are as follows: (i) When �̃ < 4CF ,
WZW CFT fixed point is perturbatively stable against
dissipation. This is because the scaling dimension �g

of the field g at the WZW fixed point at large k is
�g ⇡ 2CF /k, and therefore, SDiss is irrelevant at the
WZW fixed point when �̃ < 4CF . As the magnitude �̃

of dissipation increases, the system eventually undergoes
a single-parameter tuned second-order phase transition
beyond which �̃ flows to infinity. Energetical considera-
tions indicate that the large � phase is an ordered phase
where the SU(N)L⌦SU(N)R symmetry is broken to the
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1 Presentation of the model
We consider the following action in 2 Euclidean dimensions where the field g(x) 2 SU(N)
(gg�1 = 1)

S[g] = SDis + SGrad + SWZ , (1)

with the gradient term
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of level k and the dissipation term
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where the Kernel is

K(t� t0) =
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|t� t0|3��
, C =

(�� 2)

4�(�� 1) cos(⇡�/2)
. (5)

Note the negative sign in front of the dissipation term, which is crucial for consistency with
Hertz-Millis theory.

2 Splitting of dofs
The RG is performed by splitting the fast and slow modes as g = gsgf , by expressing
gf = eW = eiT

a�a , where T a
2 SU(N) Lie algebra and by expanding to quadratic order in

W . Doing so and using Stokes theorem on the WZ term, we get

S[gsgf ] = S[gs] + S(2)[W ] + S(2)
int [gs,W ] + S(1)

int [gs,W ] , (6)
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from the availability of a controlled renormalization
group for a class of such of such problems, as de-
tailed below. The (Euclidean) action is thus com-
posed of three terms: S[g] = SGrad[g] + SWZ[g] +
SDiss[g]. SGrad = 1
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is the WZW term which is defined by extending the
field g(x, ⌧) to one higher dimension as g̃(x, ⌧, u) so that
g̃(x, ⌧, u = 0) = g0 where g0 is any chosen reference
value, and g̃(x, ⌧, u = 1) = g(x, ⌧), the physical value
of g at coordinates (x, ⌧). The coordinates (x, ⌧, u) la-
beling g̃ belong to a three-ball B3 whose boundary S

2 is
the physical Euclidean space-time (x, ⌧). Finally, SDis =
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2
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dxK(⌧�⌧

0) tr[1�g(⌧, x)g�1(⌧ 0, x)] is the dis-
sipation term where the kernel K is K(⌧�⌧
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with the normalization A = (��2)
16⇡�(��1) cos(⇡�/2) cho-

sen such that the Fourier transform K̃(!) has a sim-
ple form suited for our RG analysis. Note that 0 <

� < 2. The global onsite symmetry of this model is

SU(N)L ⌦ SU(N)R where under SU(N)L, g ! Ug,
and under SU(N)R, g ! gV , where U, V are arbitrary
SU(N) matrices.
The exponent 3 � � for the Kernel K(⌧) is chosen so
that at k = 1, the dissipation is marginal, which allows
for a controlled 1/k expansion when � = �̃/k with �̃ an
O(1) number. The couplings � and � will turn out to
be of the order 1/k at all RG fixed points. This explains
the factor of k2 in front of the dissipation term, which
ensures that the three terms in the action scale as k.
Correspondingly, it will be expedient to introduce O(k0)
couplings �̃ = k� and �̃ = k�. It will turn out that the
dynamical exponent in our problem deviates from unity
only by O(1/k). Therefore, we also introduce an O(k0)
variable z̃ as z = 1 + z̃

k .

III. RENORMALIZATION GROUP FOR THE
MODEL

As detailed in the Supplement Material, at the leading
order in 1/k, we obtain the following beta functions for
the couplings in our action S[g]:
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2N is the

Casimir for SU(N) in the fundamental representation.
One may simplify these equations further by introduc-
ing the variables x = c�̃ and y = c�̃. Their respective
beta functions, �(x),�(y), can then be obtained from
the above equations (see SM). The main outcomes of
these RG equations are as follows: (i) When �̃ < 4CF ,
WZW CFT fixed point is perturbatively stable against
dissipation. This is because the scaling dimension �g

of the field g at the WZW fixed point at large k is
�g ⇡ 2CF /k, and therefore, SDiss is irrelevant at the
WZW fixed point when �̃ < 4CF . As the magnitude �̃

of dissipation increases, the system eventually undergoes
a single-parameter tuned second-order phase transition
beyond which �̃ flows to infinity. Energetical considera-
tions indicate that the large � phase is an ordered phase
where the SU(N)L⌦SU(N)R symmetry is broken to the
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from the availability of a controlled renormalization
group for a class of such of such problems, as de-
tailed below. The (Euclidean) action is thus com-
posed of three terms: S[g] = SGrad[g] + SWZ[g] +
SDiss[g]. SGrad = 1
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is the WZW term which is defined by extending the
field g(x, ⌧) to one higher dimension as g̃(x, ⌧, u) so that
g̃(x, ⌧, u = 0) = g0 where g0 is any chosen reference
value, and g̃(x, ⌧, u = 1) = g(x, ⌧), the physical value
of g at coordinates (x, ⌧). The coordinates (x, ⌧, u) la-
beling g̃ belong to a three-ball B3 whose boundary S

2 is
the physical Euclidean space-time (x, ⌧). Finally, SDis =
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with the normalization A = (��2)
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sen such that the Fourier transform K̃(!) has a sim-
ple form suited for our RG analysis. Note that 0 <

� < 2. The global onsite symmetry of this model is

SU(N)L ⌦ SU(N)R where under SU(N)L, g ! Ug,
and under SU(N)R, g ! gV , where U, V are arbitrary
SU(N) matrices.
The exponent 3 � � for the Kernel K(⌧) is chosen so
that at k = 1, the dissipation is marginal, which allows
for a controlled 1/k expansion when � = �̃/k with �̃ an
O(1) number. The couplings � and � will turn out to
be of the order 1/k at all RG fixed points. This explains
the factor of k2 in front of the dissipation term, which
ensures that the three terms in the action scale as k.
Correspondingly, it will be expedient to introduce O(k0)
couplings �̃ = k� and �̃ = k�. It will turn out that the
dynamical exponent in our problem deviates from unity
only by O(1/k). Therefore, we also introduce an O(k0)
variable z̃ as z = 1 + z̃

k .

III. RENORMALIZATION GROUP FOR THE
MODEL

As detailed in the Supplement Material, at the leading
order in 1/k, we obtain the following beta functions for
the couplings in our action S[g]:
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and CF = N2�1

2N is the

Casimir for SU(N) in the fundamental representation.
One may simplify these equations further by introduc-
ing the variables x = c�̃ and y = c�̃. Their respective
beta functions, �(x),�(y), can then be obtained from
the above equations (see SM). The main outcomes of
these RG equations are as follows: (i) When �̃ < 4CF ,
WZW CFT fixed point is perturbatively stable against
dissipation. This is because the scaling dimension �g

of the field g at the WZW fixed point at large k is
�g ⇡ 2CF /k, and therefore, SDiss is irrelevant at the
WZW fixed point when �̃ < 4CF . As the magnitude �̃

of dissipation increases, the system eventually undergoes
a single-parameter tuned second-order phase transition
beyond which �̃ flows to infinity. Energetical considera-
tions indicate that the large � phase is an ordered phase
where the SU(N)L⌦SU(N)R symmetry is broken to the

See also [Cuomo et al 2022; Hu, Si 2022; Weber, Vojta 2023; Cai, Si 2019]  
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from the availability of a controlled renormalization
group for a class of such of such problems, as de-
tailed below. The (Euclidean) action is thus com-
posed of three terms: S[g] = SGrad[g] + SWZ[g] +
SDiss[g]. SGrad = 1
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is the WZW term which is defined by extending the
field g(x, ⌧) to one higher dimension as g̃(x, ⌧, u) so that
g̃(x, ⌧, u = 0) = g0 where g0 is any chosen reference
value, and g̃(x, ⌧, u = 1) = g(x, ⌧), the physical value
of g at coordinates (x, ⌧). The coordinates (x, ⌧, u) la-
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sen such that the Fourier transform K̃(!) has a sim-
ple form suited for our RG analysis. Note that 0 <

� < 2. The global onsite symmetry of this model is

SU(N)L ⌦ SU(N)R where under SU(N)L, g ! Ug,
and under SU(N)R, g ! gV , where U, V are arbitrary
SU(N) matrices.
The exponent 3 � � for the Kernel K(⌧) is chosen so
that at k = 1, the dissipation is marginal, which allows
for a controlled 1/k expansion when � = �̃/k with �̃ an
O(1) number. The couplings � and � will turn out to
be of the order 1/k at all RG fixed points. This explains
the factor of k2 in front of the dissipation term, which
ensures that the three terms in the action scale as k.
Correspondingly, it will be expedient to introduce O(k0)
couplings �̃ = k� and �̃ = k�. It will turn out that the
dynamical exponent in our problem deviates from unity
only by O(1/k). Therefore, we also introduce an O(k0)
variable z̃ as z = 1 + z̃
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As detailed in the Supplement Material, at the leading
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2N is the

Casimir for SU(N) in the fundamental representation.
One may simplify these equations further by introduc-
ing the variables x = c�̃ and y = c�̃. Their respective
beta functions, �(x),�(y), can then be obtained from
the above equations (see SM). The main outcomes of
these RG equations are as follows: (i) When �̃ < 4CF ,
WZW CFT fixed point is perturbatively stable against
dissipation. This is because the scaling dimension �g

of the field g at the WZW fixed point at large k is
�g ⇡ 2CF /k, and therefore, SDiss is irrelevant at the
WZW fixed point when �̃ < 4CF . As the magnitude �̃

of dissipation increases, the system eventually undergoes
a single-parameter tuned second-order phase transition
beyond which �̃ flows to infinity. Energetical considera-
tions indicate that the large � phase is an ordered phase
where the SU(N)L⌦SU(N)R symmetry is broken to the
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from the availability of a controlled renormalization
group for a class of such of such problems, as de-
tailed below. The (Euclidean) action is thus com-
posed of three terms: S[g] = SGrad[g] + SWZ[g] +
SDiss[g]. SGrad = 1
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is the WZW term which is defined by extending the
field g(x, ⌧) to one higher dimension as g̃(x, ⌧, u) so that
g̃(x, ⌧, u = 0) = g0 where g0 is any chosen reference
value, and g̃(x, ⌧, u = 1) = g(x, ⌧), the physical value
of g at coordinates (x, ⌧). The coordinates (x, ⌧, u) la-
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SU(N)L ⌦ SU(N)R where under SU(N)L, g ! Ug,
and under SU(N)R, g ! gV , where U, V are arbitrary
SU(N) matrices.
The exponent 3 � � for the Kernel K(⌧) is chosen so
that at k = 1, the dissipation is marginal, which allows
for a controlled 1/k expansion when � = �̃/k with �̃ an
O(1) number. The couplings � and � will turn out to
be of the order 1/k at all RG fixed points. This explains
the factor of k2 in front of the dissipation term, which
ensures that the three terms in the action scale as k.
Correspondingly, it will be expedient to introduce O(k0)
couplings �̃ = k� and �̃ = k�. It will turn out that the
dynamical exponent in our problem deviates from unity
only by O(1/k). Therefore, we also introduce an O(k0)
variable z̃ as z = 1 + z̃
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Casimir for SU(N) in the fundamental representation.
One may simplify these equations further by introduc-
ing the variables x = c�̃ and y = c�̃. Their respective
beta functions, �(x),�(y), can then be obtained from
the above equations (see SM). The main outcomes of
these RG equations are as follows: (i) When �̃ < 4CF ,
WZW CFT fixed point is perturbatively stable against
dissipation. This is because the scaling dimension �g

of the field g at the WZW fixed point at large k is
�g ⇡ 2CF /k, and therefore, SDiss is irrelevant at the
WZW fixed point when �̃ < 4CF . As the magnitude �̃

of dissipation increases, the system eventually undergoes
a single-parameter tuned second-order phase transition
beyond which �̃ flows to infinity. Energetical considera-
tions indicate that the large � phase is an ordered phase
where the SU(N)L⌦SU(N)R symmetry is broken to the

2

Dissipative 

stable phase

Symmetry

broken

Symmetry

broken

WZW CFT

δ < δ1

di
ss

ip
at

io
n

di
ss

ip
at

io
n

WZW CFT

Symmetry

broken

di
ss

ip
at

io
n

(spin-stiffness)-1

(spin-stiffness)-1

(spin-stiffness)-1

δ1 < δ < δ2

δ > δ2

WZW CFT

5 10 15 20 25 30 x

5

10

15

20

y

Gaussian WZW CFT

Dissipative critical

point

25.2 25.4 25.6 25.8 x

0.1

0.2

0.3

0.4

0.5

y

WZW CFT

Dissipative critical

point

Dissipative

stable phase

5 10 15 20 25 30 x

5

10

15

y

WZW CFTGaussian

FIG. 1.

from the availability of a controlled renormalization
group for a class of such of such problems, as de-
tailed below. The (Euclidean) action is thus com-
posed of three terms: S[g] = SGrad[g] + SWZ[g] +
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is the WZW term which is defined by extending the
field g(x, ⌧) to one higher dimension as g̃(x, ⌧, u) so that
g̃(x, ⌧, u = 0) = g0 where g0 is any chosen reference
value, and g̃(x, ⌧, u = 1) = g(x, ⌧), the physical value
of g at coordinates (x, ⌧). The coordinates (x, ⌧, u) la-
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� < 2. The global onsite symmetry of this model is

SU(N)L ⌦ SU(N)R where under SU(N)L, g ! Ug,
and under SU(N)R, g ! gV , where U, V are arbitrary
SU(N) matrices.
The exponent 3 � � for the Kernel K(⌧) is chosen so
that at k = 1, the dissipation is marginal, which allows
for a controlled 1/k expansion when � = �̃/k with �̃ an
O(1) number. The couplings � and � will turn out to
be of the order 1/k at all RG fixed points. This explains
the factor of k2 in front of the dissipation term, which
ensures that the three terms in the action scale as k.
Correspondingly, it will be expedient to introduce O(k0)
couplings �̃ = k� and �̃ = k�. It will turn out that the
dynamical exponent in our problem deviates from unity
only by O(1/k). Therefore, we also introduce an O(k0)
variable z̃ as z = 1 + z̃
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Casimir for SU(N) in the fundamental representation.
One may simplify these equations further by introduc-
ing the variables x = c�̃ and y = c�̃. Their respective
beta functions, �(x),�(y), can then be obtained from
the above equations (see SM). The main outcomes of
these RG equations are as follows: (i) When �̃ < 4CF ,
WZW CFT fixed point is perturbatively stable against
dissipation. This is because the scaling dimension �g

of the field g at the WZW fixed point at large k is
�g ⇡ 2CF /k, and therefore, SDiss is irrelevant at the
WZW fixed point when �̃ < 4CF . As the magnitude �̃

of dissipation increases, the system eventually undergoes
a single-parameter tuned second-order phase transition
beyond which �̃ flows to infinity. Energetical considera-
tions indicate that the large � phase is an ordered phase
where the SU(N)L⌦SU(N)R symmetry is broken to the
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from the availability of a controlled renormalization
group for a class of such of such problems, as de-
tailed below. The (Euclidean) action is thus com-
posed of three terms: S[g] = SGrad[g] + SWZ[g] +
SDiss[g]. SGrad = 1
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is the WZW term which is defined by extending the
field g(x, ⌧) to one higher dimension as g̃(x, ⌧, u) so that
g̃(x, ⌧, u = 0) = g0 where g0 is any chosen reference
value, and g̃(x, ⌧, u = 1) = g(x, ⌧), the physical value
of g at coordinates (x, ⌧). The coordinates (x, ⌧, u) la-
beling g̃ belong to a three-ball B3 whose boundary S
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with the normalization A = (��2)
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sen such that the Fourier transform K̃(!) has a sim-
ple form suited for our RG analysis. Note that 0 <

� < 2. The global onsite symmetry of this model is

SU(N)L ⌦ SU(N)R where under SU(N)L, g ! Ug,
and under SU(N)R, g ! gV , where U, V are arbitrary
SU(N) matrices.
The exponent 3 � � for the Kernel K(⌧) is chosen so
that at k = 1, the dissipation is marginal, which allows
for a controlled 1/k expansion when � = �̃/k with �̃ an
O(1) number. The couplings � and � will turn out to
be of the order 1/k at all RG fixed points. This explains
the factor of k2 in front of the dissipation term, which
ensures that the three terms in the action scale as k.
Correspondingly, it will be expedient to introduce O(k0)
couplings �̃ = k� and �̃ = k�. It will turn out that the
dynamical exponent in our problem deviates from unity
only by O(1/k). Therefore, we also introduce an O(k0)
variable z̃ as z = 1 + z̃

k .
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As detailed in the Supplement Material, at the leading
order in 1/k, we obtain the following beta functions for
the couplings in our action S[g]:
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2N is the

Casimir for SU(N) in the fundamental representation.
One may simplify these equations further by introduc-
ing the variables x = c�̃ and y = c�̃. Their respective
beta functions, �(x),�(y), can then be obtained from
the above equations (see SM). The main outcomes of
these RG equations are as follows: (i) When �̃ < 4CF ,
WZW CFT fixed point is perturbatively stable against
dissipation. This is because the scaling dimension �g

of the field g at the WZW fixed point at large k is
�g ⇡ 2CF /k, and therefore, SDiss is irrelevant at the
WZW fixed point when �̃ < 4CF . As the magnitude �̃

of dissipation increases, the system eventually undergoes
a single-parameter tuned second-order phase transition
beyond which �̃ flows to infinity. Energetical considera-
tions indicate that the large � phase is an ordered phase
where the SU(N)L⌦SU(N)R symmetry is broken to the
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1 Presentation of the model
We consider the following action in 2 Euclidean dimensions where the field g(x) 2 SU(N)
(gg�1 = 1)

S[g] = SDis + SGrad + SWZ , (1)

with the gradient term

SGrad =
1

�1

Z
d2x Tr[@µg@µg

�1] , (2)

the Wess-Zumino term

SWZ = �
i k

12⇡

Z
d3y ✏ijk Tr[g�1@igg

�1@jgg
�1@kg] (3)

of level k and the dissipation term

SDis = �
1

�2

Z
dtdt0dxK(t� t0) Tr[g(t, x)g�1(t0, x)] , (4)

where the Kernel is

K(t� t0) =
C ⇤�

|t� t0|3��
, C =

(�� 2)

4�(�� 1) cos(⇡�/2)
. (5)

Note the negative sign in front of the dissipation term, which is crucial for consistency with
Hertz-Millis theory.

2 Splitting of dofs
The RG is performed by splitting the fast and slow modes as g = gsgf , by expressing
gf = eW = eiT

a�a , where T a
2 SU(N) Lie algebra and by expanding to quadratic order in

W . Doing so and using Stokes theorem on the WZ term, we get

S[gsgf ] = S[gs] + S(2)[W ] + S(2)
int [gs,W ] + S(1)

int [gs,W ] , (6)
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from the availability of a controlled renormalization
group for a class of such of such problems, as de-
tailed below. The (Euclidean) action is thus com-
posed of three terms: S[g] = SGrad[g] + SWZ[g] +
SDiss[g]. SGrad = 1
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is the WZW term which is defined by extending the
field g(x, ⌧) to one higher dimension as g̃(x, ⌧, u) so that
g̃(x, ⌧, u = 0) = g0 where g0 is any chosen reference
value, and g̃(x, ⌧, u = 1) = g(x, ⌧), the physical value
of g at coordinates (x, ⌧). The coordinates (x, ⌧, u) la-
beling g̃ belong to a three-ball B3 whose boundary S
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sen such that the Fourier transform K̃(!) has a sim-
ple form suited for our RG analysis. Note that 0 <

� < 2. The global onsite symmetry of this model is

SU(N)L ⌦ SU(N)R where under SU(N)L, g ! Ug,
and under SU(N)R, g ! gV , where U, V are arbitrary
SU(N) matrices.
The exponent 3 � � for the Kernel K(⌧) is chosen so
that at k = 1, the dissipation is marginal, which allows
for a controlled 1/k expansion when � = �̃/k with �̃ an
O(1) number. The couplings � and � will turn out to
be of the order 1/k at all RG fixed points. This explains
the factor of k2 in front of the dissipation term, which
ensures that the three terms in the action scale as k.
Correspondingly, it will be expedient to introduce O(k0)
couplings �̃ = k� and �̃ = k�. It will turn out that the
dynamical exponent in our problem deviates from unity
only by O(1/k). Therefore, we also introduce an O(k0)
variable z̃ as z = 1 + z̃
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As detailed in the Supplement Material, at the leading
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Casimir for SU(N) in the fundamental representation.
One may simplify these equations further by introduc-
ing the variables x = c�̃ and y = c�̃. Their respective
beta functions, �(x),�(y), can then be obtained from
the above equations (see SM). The main outcomes of
these RG equations are as follows: (i) When �̃ < 4CF ,
WZW CFT fixed point is perturbatively stable against
dissipation. This is because the scaling dimension �g

of the field g at the WZW fixed point at large k is
�g ⇡ 2CF /k, and therefore, SDiss is irrelevant at the
WZW fixed point when �̃ < 4CF . As the magnitude �̃

of dissipation increases, the system eventually undergoes
a single-parameter tuned second-order phase transition
beyond which �̃ flows to infinity. Energetical considera-
tions indicate that the large � phase is an ordered phase
where the SU(N)L⌦SU(N)R symmetry is broken to the

2

Dissipative 

stable phase

Symmetry

broken

Symmetry

broken

WZW CFT

δ < δ1

di
ss

ip
at

io
n

di
ss

ip
at

io
n

WZW CFT

Symmetry

broken

di
ss

ip
at

io
n

(spin-stiffness)-1

(spin-stiffness)-1

(spin-stiffness)-1

δ1 < δ < δ2

δ > δ2

WZW CFT

5 10 15 20 25 30 x

5

10

15

20

y

Gaussian WZW CFT

Dissipative critical

point

25.2 25.4 25.6 25.8 x

0.1

0.2

0.3

0.4

0.5

y

WZW CFT

Dissipative critical

point

Dissipative

stable phase

5 10 15 20 25 30 x

5

10

15

y

WZW CFTGaussian

FIG. 1.

from the availability of a controlled renormalization
group for a class of such of such problems, as de-
tailed below. The (Euclidean) action is thus com-
posed of three terms: S[g] = SGrad[g] + SWZ[g] +
SDiss[g]. SGrad = 1
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is the WZW term which is defined by extending the
field g(x, ⌧) to one higher dimension as g̃(x, ⌧, u) so that
g̃(x, ⌧, u = 0) = g0 where g0 is any chosen reference
value, and g̃(x, ⌧, u = 1) = g(x, ⌧), the physical value
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variable z̃ as z = 1 + z̃

k .

III. RENORMALIZATION GROUP FOR THE
MODEL

As detailed in the Supplement Material, at the leading
order in 1/k, we obtain the following beta functions for
the couplings in our action S[g]:

�(�̃) =
1

k

"
� z̃�̃+

Nc�̃
2

8⇡

 
w �

c
2
�̃
2

(8⇡)2
w

3

!#
, (1)

�(�̃) =
1

k

"
(�̃ � z̃)�̃ �

CF

2⇡
c�̃�̃w

#
, (2)

�(c) =
1

k

"
z̃c�

Nc
2
�̃

16⇡

 
1 +

c
2
�̃
2

(8⇡)2

!
(w � w

3) (3)

�
CF

32⇡2
c
4
�̃
2
�̃w +

N

2(8⇡)3
c
6
�̃
3
�̃
2
w

3 +
N

(8⇡)2
c
4
�̃
2
�̃w

3

#
,

where w =
⇣
1 + 1

8⇡ c
2
�̃�̃

⌘�1/2
and CF = N2�1

2N is the

Casimir for SU(N) in the fundamental representation.
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beta functions, �(x),�(y), can then be obtained from
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dissipation. This is because the scaling dimension �g

of the field g at the WZW fixed point at large k is
�g ⇡ 2CF /k, and therefore, SDiss is irrelevant at the
WZW fixed point when �̃ < 4CF . As the magnitude �̃

of dissipation increases, the system eventually undergoes
a single-parameter tuned second-order phase transition
beyond which �̃ flows to infinity. Energetical considera-
tions indicate that the large � phase is an ordered phase
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and under SU(N)R, g ! gV , where U, V are arbitrary
SU(N) matrices.
The exponent 3 � � for the Kernel K(⌧) is chosen so
that at k = 1, the dissipation is marginal, which allows
for a controlled 1/k expansion when � = �̃/k with �̃ an
O(1) number. The couplings � and � will turn out to
be of the order 1/k at all RG fixed points. This explains
the factor of k2 in front of the dissipation term, which
ensures that the three terms in the action scale as k.
Correspondingly, it will be expedient to introduce O(k0)
couplings �̃ = k� and �̃ = k�. It will turn out that the
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only by O(1/k). Therefore, we also introduce an O(k0)
variable z̃ as z = 1 + z̃

k .

III. RENORMALIZATION GROUP FOR THE
MODEL

As detailed in the Supplement Material, at the leading
order in 1/k, we obtain the following beta functions for
the couplings in our action S[g]:

�(�̃) =
1

k

"
� z̃�̃+

Nc�̃
2

8⇡

 
w �

c
2
�̃
2

(8⇡)2
w

3

!#
, (1)

�(�̃) =
1

k

"
(�̃ � z̃)�̃ �

CF

2⇡
c�̃�̃w

#
, (2)

�(c) =
1

k

"
z̃c�

Nc
2
�̃

16⇡

 
1 +

c
2
�̃
2

(8⇡)2

!
(w � w

3) (3)

�
CF

32⇡2
c
4
�̃
2
�̃w +

N

2(8⇡)3
c
6
�̃
3
�̃
2
w

3 +
N

(8⇡)2
c
4
�̃
2
�̃w

3

#
,

where w =
⇣
1 + 1

8⇡ c
2
�̃�̃

⌘�1/2
and CF = N2�1

2N is the

Casimir for SU(N) in the fundamental representation.
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beta functions, �(x),�(y), can then be obtained from
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these RG equations are as follows: (i) When �̃ < 4CF ,
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of dissipation increases, the system eventually undergoes
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from the availability of a controlled renormalization
group for a class of such of such problems, as de-
tailed below. The (Euclidean) action is thus com-
posed of three terms: S[g] = SGrad[g] + SWZ[g] +
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is the WZW term which is defined by extending the
field g(x, ⌧) to one higher dimension as g̃(x, ⌧, u) so that
g̃(x, ⌧, u = 0) = g0 where g0 is any chosen reference
value, and g̃(x, ⌧, u = 1) = g(x, ⌧), the physical value
of g at coordinates (x, ⌧). The coordinates (x, ⌧, u) la-
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� < 2. The global onsite symmetry of this model is

SU(N)L ⌦ SU(N)R where under SU(N)L, g ! Ug,
and under SU(N)R, g ! gV , where U, V are arbitrary
SU(N) matrices.
The exponent 3 � � for the Kernel K(⌧) is chosen so
that at k = 1, the dissipation is marginal, which allows
for a controlled 1/k expansion when � = �̃/k with �̃ an
O(1) number. The couplings � and � will turn out to
be of the order 1/k at all RG fixed points. This explains
the factor of k2 in front of the dissipation term, which
ensures that the three terms in the action scale as k.
Correspondingly, it will be expedient to introduce O(k0)
couplings �̃ = k� and �̃ = k�. It will turn out that the
dynamical exponent in our problem deviates from unity
only by O(1/k). Therefore, we also introduce an O(k0)
variable z̃ as z = 1 + z̃
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Casimir for SU(N) in the fundamental representation.
One may simplify these equations further by introduc-
ing the variables x = c�̃ and y = c�̃. Their respective
beta functions, �(x),�(y), can then be obtained from
the above equations (see SM). The main outcomes of
these RG equations are as follows: (i) When �̃ < 4CF ,
WZW CFT fixed point is perturbatively stable against
dissipation. This is because the scaling dimension �g

of the field g at the WZW fixed point at large k is
�g ⇡ 2CF /k, and therefore, SDiss is irrelevant at the
WZW fixed point when �̃ < 4CF . As the magnitude �̃

of dissipation increases, the system eventually undergoes
a single-parameter tuned second-order phase transition
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tions indicate that the large � phase is an ordered phase
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from the availability of a controlled renormalization
group for a class of such of such problems, as de-
tailed below. The (Euclidean) action is thus com-
posed of three terms: S[g] = SGrad[g] + SWZ[g] +
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field g(x, ⌧) to one higher dimension as g̃(x, ⌧, u) so that
g̃(x, ⌧, u = 0) = g0 where g0 is any chosen reference
value, and g̃(x, ⌧, u = 1) = g(x, ⌧), the physical value
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and under SU(N)R, g ! gV , where U, V are arbitrary
SU(N) matrices.
The exponent 3 � � for the Kernel K(⌧) is chosen so
that at k = 1, the dissipation is marginal, which allows
for a controlled 1/k expansion when � = �̃/k with �̃ an
O(1) number. The couplings � and � will turn out to
be of the order 1/k at all RG fixed points. This explains
the factor of k2 in front of the dissipation term, which
ensures that the three terms in the action scale as k.
Correspondingly, it will be expedient to introduce O(k0)
couplings �̃ = k� and �̃ = k�. It will turn out that the
dynamical exponent in our problem deviates from unity
only by O(1/k). Therefore, we also introduce an O(k0)
variable z̃ as z = 1 + z̃
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Casimir for SU(N) in the fundamental representation.
One may simplify these equations further by introduc-
ing the variables x = c�̃ and y = c�̃. Their respective
beta functions, �(x),�(y), can then be obtained from
the above equations (see SM). The main outcomes of
these RG equations are as follows: (i) When �̃ < 4CF ,
WZW CFT fixed point is perturbatively stable against
dissipation. This is because the scaling dimension �g

of the field g at the WZW fixed point at large k is
�g ⇡ 2CF /k, and therefore, SDiss is irrelevant at the
WZW fixed point when �̃ < 4CF . As the magnitude �̃

of dissipation increases, the system eventually undergoes
a single-parameter tuned second-order phase transition
beyond which �̃ flows to infinity. Energetical considera-
tions indicate that the large � phase is an ordered phase
where the SU(N)L⌦SU(N)R symmetry is broken to the

, δ̃ = O(1)

(Kinetic energy)

(Berry phase)

(Landau damping)

[work with Simon Martin

(to appear soon)]

Spin-1/2 Heisenberg chain with ohmic dissipation corresponds to . In this case,

dissipation marginally relevant, and numerics indicates it induces ordering [Lafroncie, Affleck, Berciu 2005; 

Weber, Luitz, Assaad 2021].

N = 2, k = 1, δ = 1
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Figure 4 | Signatures of Fermi-liquid and non-Fermi-liquid behaviour in

the resistivity of Yb(Rh0.94Ir0.06)2Si2. Temperature dependence of the

resistivity ⇢(T) at selected magnetic fields. The lines indicate Fermi-liquid

behaviour, that is, fits to ⇢(T) = ⇢0 +AT
n

with the exponent n = 2 and ⇢0

being the residual resistivity, for temperatures below TFL (marked by blue

arrows). Bottom inset: The field dependence of the coefficient

A = (⇢ �⇢0)/T
n

in the Fermi-liquid regime. The red line corresponds to

A(H) / (H�H
A
c

)
�1

yielding a critical field of µ0H
A
c

= 30(5) mT. Top

inset: Colour-coded representation of the resistivity exponent calculated as

n = dlog(⇢ �⇢0)/dlogT. The energy scales TN, T
?

and TFL are reproduced

from Fig. 1, top panel. The red square on the abscissa depicts H
A
c

, the critical

field of the divergence of the A coefficient (see bottom inset). The error

bars represent standard errors.

ref. 22 resembles our experimental observations. Also for YbAgGe,
a finite field range was reported where the resistivity exhibits
similar non-Fermi-liquid behaviour to the lowest temperatures23.
However, the specific heat of YbAgGe shows a saturation ofC(T )/T
in this field range, discarding a spin-liquid ground state24. In
contrast, preliminarymeasurements on 6% Ir down to 0.06 K reveal
a strong divergence of C(T )/T with decreasing temperature in the
field range below 50mT (not shown), supporting our claimof a spin
liquid. In addition, the susceptibility continues to increase towards
the lowest temperatures (see Fig. 2a). The experimental evidence
of such a new, non-magnetic ground state is fascinating and will
certainlymotivate future experimental and theoretical studies.

Figure 5 shows the evolution of the two different QCPs as a
function of Ir/Co substitution. The following main results can
be deduced from this figure. (1) The antiferromagnetic state is
stabilized through the application of positive chemical pressure,
as expected. (2) The position of the suggested breakdown of
the Kondo effect depends only weakly on chemical pressure—
although the Kondo effect itself is known to be strongly pressure
dependent. (3) As a consequence, for positive pressure, the
antiferromagnetic QCP at HN is located in the regime with intact
Kondo screening (HN >H

?) where the SDW theory is expected to
be applicable in accordance with our observations. (4) For negative
chemical pressure, on the other hand, HN is separated from H

?

towards lower fields with an intermediate spin-liquid-type ground
state emerging. Obviously, here, antiferromagnetic order and the
Fermi-liquid ground state are not connected by a single QCP,
but are separated by a spin liquid, that is, a non-Fermi-liquid
range as previously observed for MnSi (ref. 25) and, perhaps, in
�-YbAlB4 (refs 26, 27).
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To conclude, the application of chemical pressure provides a
wider view on the global phase diagram of YbRh2Si2 by lifting
the coincidence of the multiple energy scales in the stoichiometric
compound. The results and their interpretation presented here pose
a formidable challenge for those theories describing the breakdown
of the Kondo effect near an antiferromagnetic QCP in Kondo
lattice systems. It remains to be explored under which conditions
antiferromagnetic ordering and the Fermi-surface reconstruction
may eventually become separated as observed for YbRh2Si2 with
Ir substitution. Equally important, it needs to be understood
why in pure YbRh2Si2, the antiferromagnetic QCP coincides with
the Kondo breakdown.

Methods
Single crystals were grown from In flux, analogous to the stoichiometric samples
described earlier12. The In flux was subsequently removed in hydrochloric acid.
The presented results prove the absence of residual In. X-ray diffraction confirms
the single crystallinity. All low-temperature measurements were carried out with
the magnetic field aligned perpendicular to the crystallographic c axis, H ? c .
The a.c.-susceptibility measurements were carried out at low frequencies with
a modulation field amplitude of 4 µT down to 0.02 K. As no imaginary signal
was detected, the real part � 0 is a direct measure of the field derivative of the
magnetization. The temperature-dependent susceptibility � 0(T ) was measured in
selected static magnetic fields. The isothermal susceptibility � 0(H ) was measured
as a function of a field applied in addition to the modulation field. The electrical
resistivity ⇢ was monitored by a standard four-point lock-in technique at low
frequencies down to 0.02 K. An extremely small out-of-phase signal of less
than 1% proves the high quality of the spot-welded contacts. With the help
of low-temperature transformers, a very high sensitivity of better than 0.1 nV
was realized. In all samples, the resistivity was measured perpendicular to the
crystallographic c axis, and the magnetic field was applied parallel to the current.
The magnetic field dependence of the magnetization M (H ) was isothermally
measured in a high-resolution Faraday magnetometer down to 0.05 K (ref. 28).
Background contributions from the sample platform and the torque exerted on
the sample have been subtracted. The magnetization was analysed in the form
M̃ =M +� 0

H by fitting

Z
H

0
A2 �(A2 �A1)/(1+ (H 0/H0)p) dH 0 (1)

to the data from which the crossover field H0 was obtained14. M̃ is preferred
for the analysis as it enables a more precise fitting compared with M itself,
although the conclusions drawn from M (H ) are identical (see ref. 14 and its
supporting online material).
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finite B range (factor of 45 in T, factor of 2.3 in B consid-
ering the expected crossover to a quadratic dependence at
even lower T in the AFM state at B< Bc1 ¼ 0:3 T, see
Fig. 3) has not previously been observed in any HF com-
pound [9–11]. In analogy with YbRh2Si2 [16], the resis-
tivity !ðBÞ isotherms have been examined. Clear crossover
behavior is seen for B ? c and B k c which is character-
ized by inflection points [16] denoted as Binfl in Figs. 1(b)
and 1(c), respectively. It is clear from these figures that Binfl

increases with increasing T. Like Co- and Ir-substituted
YbRh2Si2 [9], the crossover behavior for the Ge-
substituted compound investigated here is found to be al-
most identical with the one of pure YbRh2Si2 [Fig. 1(b)].

This is further supported by another measure of the
crossover scale T$, the position Tmax of maxima in iso-B
"ðTÞ curves [16], cf. Fig. 2. Like !ðBÞ, also the "ðTÞ data
show that, while TN is strongly suppressed upon substitut-
ing YbRh2Si2 with Ge, T$ does not move (Fig. 2, inset).

Figure 3 summarizes all characteristic features of
YbRh2ðSi0:95Ge0:05Þ2 in a T-B phase diagram. As indicated
by the shaded area, a finite range of NFL behavior at zero T
appears between the critical fields Bc1 and Bc2 for the
suppression of TN and T$.

In pure YbRh2Si2, the in-T linear resistivity extends to
the lowest accessible T (20 mK) at a single critical B, yet in
YbRh2ðSi0:95Ge0:05Þ2 this canonical behavior is violated,
and instead, in-T linear resistivity extends to the lowest T
over a substantial B range. In isolation, this behavior might
be dismissed as an anomaly. However, similar behavior has
recently been observed also in other Yb-based HF com-
pounds [9–11].

Conservatively, we might attribute these observations to
disorder. In the Hertz-Millis theory, the in-T linear resis-
tivity of HF systems is itself attributed to disorder [18,19].
Furthermore, disorder is expected to smear a well-defined
QCP into a region [20].

However, various aspects speak against this conservative
view point. First, it is unlikely that the smearing of a QCP
will be ‘‘asymmetric’’. The position of the T$ line in
YbRh2ðSi1%xGexÞ2 and hence of the entrance into the
LFL phase is not affected by going from x ¼ 0 to x ¼
0:05 (see Refs. [15,16] for the phase diagram of
YbRh2Si2); the NFL region in YbRh2ðSi0:95Ge0:05Þ2 thus
spreads only to the left of T$. Second, the NFL power law
dependencies are identical for YbRh2ðSi0:95Ge0:05Þ2 and
YbRh2Si2 [12]. Thus, either both systems are disorder
dominated or none. And finally, values for the normalized
linear rise of resistivity !!=!0 are, with &4 for
YbRh2ðSi0:95Ge0:05Þ2 [21],&5 for early YbRh2Si2 samples
[22], and & 20 for the new generation of ultrapure
YbRh2Si2 (where ! ¼ !0 þ AT# with # ¼ 1( 0:2 holds
up to 20 K) [23], all beyond the maximum value of unity
expected within the Hertz-Millis type scenario for disor-
dered systems [18]. !!=!0 values more compatible with
this scenario are observed for CeCu5:9Au0:1 (!!=!0 &
0:5) [24] and YbAgGe (!!=!0 & 1) [10], values much
larger than unity for CeCoIn5 (!!=!0 & 100 for I ? c)
[25]. Of course, the significance of !!=!0 in estimating
the role of disorder is questionable in systems such as
YbRh2Si2 and YbRh2ðSi0:95Ge0:05Þ2 where the Hertz-
Millis theory fails [12,15,16].

FIG. 3 (color online). Phase diagram of YbRh2ðSi0:95Ge0:05Þ2
for B k c. Symbols represent Binfl (r) and the upper boundary of
LFL behavior (.). The dashed TLFL line is the polynomial fit
shown in the inset of Fig. 1(a). Data points from measurements
with B ? c are included by multiplying B with the factor 11: )
symbolizes Binfl, * displays Tmax from "acðTÞ. The solid T$ line
is taken from the inset of Fig. 2. Hexagons represent T$ [16] (or
THall [15]) of YbRh2Si2. j marks TN observed by specific heat.
The dotted TN line indicates the typical evolution of TN for
YbRh2Si2, TNðBÞ ¼ TNð0Þð1% B=BcÞ0:36 [9], using the respec-
tive parameters for YbRh2ðSi0:95Ge0:05Þ2 (TNð0Þ ¼ 18 mK, Bc ¼
11+ B?c

c & 0:3 T) [12]. The hatched area 0:3 T , B , 0:66 T
marks the zero T NFL phase characterized by !!- T. The inset
compares the evolution of the resistivity exponent ", derived
from the dependence ð!% !0Þ - T" (see also Ref. [12]), for
YbRh2Si2 (top) and YbRh2ðSi0:95Ge0:05Þ2 (bottom) in the same B
and T range.
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 space-time rotation of dissipative spin-chain =


Hamiltonians of spatially long-range interacting spin-chains

π/2

⃗S(x, τ) . ⃗S(x, τ′￼)
(τ − τ′￼)α

⇒
⃗S(x, τ) . ⃗S(x′￼, τ)

(x − x′￼)α
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Non-local propagation of correlations in quantum
systems with long-range interactions
Philip Richerme1, Zhe-Xuan Gong1, Aaron Lee1, Crystal Senko1, Jacob Smith1, Michael Foss-Feig1, Spyridon Michalakis2,
Alexey V. Gorshkov1 & Christopher Monroe1

The maximum speed with which information can propagate in a quan-
tum many-body system directly affects how quickly disparate parts of
the system can become correlated1–4 and how difficult the system will be
to describe numerically5. For systems with only short-range interactions,
Lieb and Robinson derived a constant-velocity bound that limits corre-
lations to within a linear effective ‘light cone’6. However, little is known
about the propagation speed in systems with long-range interactions,
because analytic solutions rarely exist and because the best long-range
bound7 is too loose to accurately describe the relevant dynamical time-
scales for any known spin model. Here we apply a variable-range Ising
spin chain Hamiltonian and a variable-range XY spin chain Hamiltonian
to a far-from-equilibrium quantum many-body system and observe its
time evolution. For several different interaction ranges, we determine
the spatial and time-dependent correlations, extract the shape of the light
cone and measure the velocity with which correlations propagate through
the system. This work opens the possibility for studying a wide range of
many-body dynamics in quantum systems that are otherwise intractable.

Lieb–Robinson bounds6 have strongly influenced our understanding of
locally interacting, quantum many-body systems. They restrict the many-
body dynamics to a well-defined causal region outside of which correlations
are exponentially suppressed8, analogous to causal light cones that arise in
relativistic theories. These bounds have enabled a number of important
proofs in condensed-matter physics5,7,9–11, and also constrain the timescales
on which quantum systems might thermalize12–14 and the maximum speed
that information can be sent through a quantum channel15. Recent experi-
mental work has observed linear (that is, Lieb–Robinson-like) correlation
growth over six sites in a one-dimensional quantum gas16.

When interactions in a quantum system are long range, the speed with
which correlations build up between distant particles is no longer guaranteed
to obey the Lieb–Robinson prediction. Indeed, for sufficiently long-range
interactions, the notion of locality is expected to break down completely17.
Inapplicability of the Lieb–Robinson bound means that comparatively
little can be predicted about the growth and propagation of correlations
in long-range-interacting systems, although there have been several
recent theoretical and numerical advances2,3,7,17–20.

Here we report direct measurements of the shape of the causal region
and the speed at which correlations propagate in an Ising spin chain and
a newly implemented XY spin chain. The experiment is effectively deco-
herence free and serves as an initial probe of the many-body dynamics of
isolated quantum systems. Within this broad experimental framework,
studies of entanglement growth21, thermalization12,14 or other dynamical
processes—with or without controlled decoherence—can be realized. Scal-
ing such quantum simulations to larger system sizes is straightforward
(Methods), unlike ground-state or equilibrium studies that typically must
consider diabatic effects22,23.

To induce the spread of correlations, we perform a global quench by
suddenly switching on the spin–spin couplings across the entire chain and
allowing the system to evolve coherently. The dynamics following a global
quench can be highly non-intuitive; one picture is that entangled quasi-
particles created at each site propagate outwards, correlating distant parts

of the system through multiple interference pathways13. This process differs
substantially from local quenches21, where a single site emits quasiparticles
that may travel ballistically3,13, resulting in a different causal region and prop-
agation speed than in a global quench (even for the same spin model).

The effective spin-1/2 system is encoded into the 2S1/2jF 5 0, mF 5 0æ
and jF 5 1, mF 5 0æ hyperfine ‘clock’ states of trapped 171Yb1 ions, denoted
j#æz and j"æz, respectively24. We initialize a chain of 11 ions by optically pump-
ing to the product state j###…æz (Fig. 1). At time t 5 0, we quench the
system by applying phonon-mediated, laser-induced forces25–27 to yield an
Ising or XY model Hamiltonian (Methods)

HIsing~
X

ivj

Ji,js
x
i sx

j ð1Þ

HXY~
1
2

X

ivj

Ji,j sx
i sx

j zsz
i sz

j

! "
ð2Þ

where sc
i (c 5 x, y, z) is the Pauli matrix acting on the ith spin, Ji,j (in cyclic

frequency) is the coupling strength between spins i and j, and we use units
in which Planck’s constant equals 1. For both model Hamiltonians, the

1Joint Quantum Institute, University of Maryland Department of Physics and National Institute of Standards and Technology, College Park, Maryland 20742, USA. 2Institute for Quantum Information and
Matter, California Institute of Technology, Pasadena, California 91125, USA.

1 2

3

Ci, j

Figure 1 | Sketch of experimental protocol. Step (1): the experiment is
initialized by optically pumping all 11 spins to the state |#æz. Step (2): after
initialization, the system is quenched by applying laser-induced forces on the
ions, yielding an effective Ising or XY spin chain (see text for details). Step (3):
after allowing dynamical evolution of the system, the projection of each spin
along the ẑ direction is imaged onto a charge-coupled device (CCD) camera.
Such measurements allow us to construct any possible correlation function Ci,j

along ẑ.
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spin–spin interaction matrix Ji,j contains tunable, long-range couplings
that fall off approximately algebraically as Ji,j / 1/ji 2 jja (ref. 26). We
vary the interaction range a by adjusting a combination of trap and laser
parameters22 (Methods), choosing a < 0.63, 0.83, 1.00 or 1.19 for these
experiments.

After quenching to the Ising or XY model with our chosen value of a,
we allow coherent evolution for various lengths of time before resolving
the spin state of each ion using a charge-coupled device camera. The exper-
iments at each time step are repeated 4,000 times to collect statistics. To
observe the build-up of correlations, we use the measured spin states to
construct the connected correlation function

Ci,j tð Þ~ sz
i tð Þsz

j tð Þ
D E

{ sz
i tð Þ

! "
sz

j tð Þ
D E

ð3Þ

between any pair of ions at any time. Because the system is initially in a
product state, Ci,j(0) 5 0 everywhere. As the system evolves away from a
product state, evaluating equation (3) at all points in space and time pro-
vides the shape of the light-cone boundary and the correlation propagation
velocity for our long-range spin models.

Figure 2 shows the results of globally quenching the system to a long-
range Ising model for four different interaction ranges. In each case, we
extract the light-cone boundary by measuring the time it takes a cor-
relation of fixed amplitude (here Ci,j~0:04<0:1Cmax

i,j , where Cmax
i,j is

the largest connected correlation between two ions) to travel an ion–ion
separationdistancer.Forstrongly long-range interactions(a# 1),weobserve
accelerating information transfer through the chain. This fast propagation
of correlations is not surprising, because even the direct long-range coup-
ling between distant spins produces correlations in a time t / 1/Ji,j < ra.
However, increasingpropagationvelocitiesquicklysurpass theLieb–Robinson
velocity for a system with equivalent nearest-neighbour-only interactions,
vLR 5 12eJmax, where e is Euler’s number and Jmax is the maximum Ising
coupling strength for a given spin–spin coupling matrix (Fig. 2c, f, i). This
serves as experimental confirmation that predictions based on the Lieb–
Robinson result—including those that bound the growth of entanglement
or set thermalization timescales— are no longer applicable when interac-
tions are sufficiently long range.

For the specific case of the pure Ising model, the correlations at any time
can be predicted by an exact analytic solution18,28:

Ci,j tð Þ~ 1
2
P

k=i,j
cos 2 Ji,kzJj,k

# $
t

% &

z
1
2
P

k=i,j
cos 2 Ji,k{Jj,k

# $
t

% &

{P
k=i

cos 2Ji,kt½ $ P
k=j

cos 2Jj,kt
% &

ð4Þ

In equation (4), correlations can only build up between sites i and j that
are coupled either directly or through a single intermediate spin k; pro-
cesses which couple through more than one intermediate site are pro-
hibited. For instance, if the Ji,j couplings are nearest-neighbour-only then
Ci,j(t) 5 0 for all ji 2 jj. 2. This property holds for any commuting
Hamiltonian (Methods) and explains why the spatial correlations shown
in Fig. 2 become weaker for shorter-range systems.

The products of cosines in equation (4) with many different oscillation
frequencies result in the observed decay of correlations when t >0:1=Jmax.
At later times, rephasing of these oscillations creates revivals in the spin–
spin correlation. One such partial revival occurs at t 5 2.44/Jmax for a 5
0.63 (Extended Data Fig. 1), verifying that our system remains coherent on
atimescalemuchlongerthanthatwhichdeterminesthelight-coneboundary.

We repeat the quench experiments for an XY model Hamiltonian
using the same set of interaction ranges a (Fig. 3). Dynamical evolution
and the spread of correlations in long-range-interacting XY models are
much more complex than in the Ising case because the Hamiltonian con-
tains non-commuting terms. As a result, there exists no exact analytic solu-
tion comparable to equation (4).

Compared with the correlations observed for the Ising Hamiltonian,
correlations in the XY model are much stronger at longer distances (for
example, compare Fig. 2j with Fig. 3j). Processes coupling through mul-
tiple intermediate sites (which were disallowed in the commuting Ising
Hamiltonian) now have a critical role in building correlations between
distant spins. These processes may also explain our observation of a steeper
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Figure 2 | Measured quench dynamics in a long-range Ising model.
a–c, Spatial and time-dependent correlations (a), extracted light-cone
boundary (b) and correlation propagation velocity (c) following a global
quench of a long-range Ising model with a 5 0.63. The curvature of the
boundary shows an increasing propagation velocity (b), quickly exceeding the
short-range Lieb–Robinson velocity bound, vLR (c). Solid lines give a power-law
fit to the data, which slightly depends on the choice of fixed contour Ci,j.
d–l, Complementary plots for a 5 0.83 (d–f), a 5 1.00 (g–i) and a 5 1.19 (j–l).
As the range of the interactions decreases, correlations do not

propagate as far or as quickly through the chain; the short-range velocity
bound vLR is not exceeded for our shortest-range interaction. m, n, Nearest-
neighbour (m) and tenth-nearest-neighbour (n) correlations for our shortest-
and longest-range interactions show excellent agreement with the
decoherence-free exact solution (with no adjustable parameters)
from equation (4) (solid). The dashed blue curves show an improved
long-range bound valid for any commuting Hamiltonian (Methods). Error
bars, 1 s.d.
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power-law scaling of the light-cone boundary in the XY model. However,
without an exact solution there is no a-priori reason to assume a power-law
light-cone edge (used for the fits in Fig. 3); deviations from power-law
behaviour might reveal themselves for larger system sizes.

An important observation in Fig. 3j–l is that of faster-than-linear light-
cone growth for our shortest-range interaction, with a 5 1.19. Although
faster-than-linear growth is expected for a , 1 (see discussion of Ising
model), there is no consensus on whether such behaviour is generically
expected for a . 1. Our experimental observation has prompted us to nu-
merically check the light-cone shape for a 5 1.19; we find that faster-than-
linear scaling persists in systems of up to 22 spins before our calculations
break down (Extended Data Fig. 2).

Whether such scaling continues beyond ,30 spins is a question that,
at present, quantum simulators are best positioned to answer. In Figs 2m,
n and 3m, n, the excellent agreement between data and theory demon-
strates that experiments produce the correct results in a regime still solv-
able by classical computers. For larger systems, where numerical evolution
of the Schrödinger equation fails, the quality of quantum simulations
could still be benchmarked against the exact Ising solution of equation (4).
Finding close agreement in the Ising case would then build confidence in
an XY model simulation, which cannot be validated by any other known
method.

For the XY model, we additionally study the spatial decay of correla-
tions outside the light-cone boundary. The data (Fig. 4) is well described
by fits to exponentially decaying functions. Recent theoretical work20

predicts an initial decay of spatial correlations bounded by an expo-
nential, followed by a power-law decay; we speculate that much larger
system sizes and several hundred thousand repetitions of each data point
(to reduce the shot-noise uncertainty sufficiently) would be necessary to
see this effect.

A perturbative treatment of time evolution under the XY Hamiltonian
yields the short-time approximation for the correlation function Ci,j(t) <
(Ji,jt)

2. These values are plotted as dashed lines along with the data in
Fig. 4. Although the perturbative result matches the data early on, it fails
to describe the dynamics at longer evolution times. The discrepancies
indicate that the light-cone shapes observed in the XY model are fun-
damentally non-perturbative; rather, they result from the build-up of
correlations through multiple intermediate sites and cannot be described
by any known analytical method.
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Figure 3 | Measured quench dynamics in a long-range XY model. Global
quench of a long-range XY model with four different interaction ranges.
a–l, Panel descriptions match those in Fig. 2. In each case, when compared
with the Ising model, correlations between distant sites in the XY model are
stronger and build up more quickly. For the shortest-range interaction (j–l),
we observe a faster-than-linear growth of the light-cone boundary,

despite having a . 1; no known analytic theory predicts this effect.
m, n, Measured nearest-neighbour and tenth-nearest-neighbour correlations
closely match the numerical solution found by evolving the Schrödinger
equation of an XY model (equation (2)) with no free parameters and no
decoherence. Error bars, 1 s.d.
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Figure 4 | Correlations and dynamics beyond the perturbative regime.
Decay of spatial correlations outside the light-cone boundaries for a long-range XY
model with a 5 0.63, 0.83, 1.00 or 1.19. The hatched region indicates the area inside
the light-cone boundary Ci,j 5 0.15. The data corresponds to times indicated by
tickmarks on the left axis. Solid lines give an exponential fit to the data and dashed
lines show the predictions from a perturbative calculation. Perturbation theory
does not accurately describe the dynamics at later times. Associated data and
theoretical results are similarly coloured to guide the eye. Error bars, 1 s.d.
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Several platforms: ion traps, cavity mediated interactions, dipolar systems, Rydberg atoms…

power-law scaling of the light-cone boundary in the XY model. However,
without an exact solution there is no a-priori reason to assume a power-law
light-cone edge (used for the fits in Fig. 3); deviations from power-law
behaviour might reveal themselves for larger system sizes.

An important observation in Fig. 3j–l is that of faster-than-linear light-
cone growth for our shortest-range interaction, with a 5 1.19. Although
faster-than-linear growth is expected for a , 1 (see discussion of Ising
model), there is no consensus on whether such behaviour is generically
expected for a . 1. Our experimental observation has prompted us to nu-
merically check the light-cone shape for a 5 1.19; we find that faster-than-
linear scaling persists in systems of up to 22 spins before our calculations
break down (Extended Data Fig. 2).

Whether such scaling continues beyond ,30 spins is a question that,
at present, quantum simulators are best positioned to answer. In Figs 2m,
n and 3m, n, the excellent agreement between data and theory demon-
strates that experiments produce the correct results in a regime still solv-
able by classical computers. For larger systems, where numerical evolution
of the Schrödinger equation fails, the quality of quantum simulations
could still be benchmarked against the exact Ising solution of equation (4).
Finding close agreement in the Ising case would then build confidence in
an XY model simulation, which cannot be validated by any other known
method.

For the XY model, we additionally study the spatial decay of correla-
tions outside the light-cone boundary. The data (Fig. 4) is well described
by fits to exponentially decaying functions. Recent theoretical work20

predicts an initial decay of spatial correlations bounded by an expo-
nential, followed by a power-law decay; we speculate that much larger
system sizes and several hundred thousand repetitions of each data point
(to reduce the shot-noise uncertainty sufficiently) would be necessary to
see this effect.

A perturbative treatment of time evolution under the XY Hamiltonian
yields the short-time approximation for the correlation function Ci,j(t) <
(Ji,jt)

2. These values are plotted as dashed lines along with the data in
Fig. 4. Although the perturbative result matches the data early on, it fails
to describe the dynamics at longer evolution times. The discrepancies
indicate that the light-cone shapes observed in the XY model are fun-
damentally non-perturbative; rather, they result from the build-up of
correlations through multiple intermediate sites and cannot be described
by any known analytical method.
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Typically, 0 < α < 3.



Summary and some questions

• Broad message: possible to construct sign-problem-free models that 
sometime allow unbiased simulation of physics potentially relevant to Heavy 
fermions, e.g., non-Fermi liquids, Heavy fermions, Landau damping induced 
order, …


• New, stable critical phases in dissipative SU(N)k spin-chains. Interesting RG 
flow with fixed-point annihilation reminiscent of Bose-Kondo single-impurity 
problem. Potentially new, infinite class of CFTs in a relativistic analog.


• Nature of quantum critical point in hybrid-dimensionality systems with Fermi 
surface using Polchinski/Shankar RG? Detailed understanding of Yb2PT2Pb? 
Relation to c-theorems for defect CFTs, and logarithmic BCFTs? ([Metlitski 

2020; Cuomo, Zhang 2023]).
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is realized by Kondo coupling a variant of the Balents-Fisher-
Girvin (BFG) model [25–27], first introduced in Ref. [28],
to conduction electrons. The BFG model supports a transi-
tion from a ferromagnetic phase to a gapped Z2 spin-liquid
(Fig. 1(a)). When this model is weakly coupled to conduction
electrons, the spin-liquid gives way to an FL* phase where
the conduction electrons form a Dirac semi-metal, while the
local moments continue to form a Z2 spin-liquid (Fig.1(b)).
Since our unit cell contains two c-electrons and three f-spins,
this result stands at odds with the Luttinger sum rule. As the
Kondo coupling is increased beyond a threshold, one loses the
topological order of local moments, and enters a conventional
phase with electron like quasiparticles. We will characterize
the Kondo breakdown by studying the spectral function of the
conduction electrons, and also via the mutual information be-
tween the conduction electrons and local moments.

Model and limiting cases: We investigate the following
generalized Kondo lattice model (KLM) described by Ĥ =
Ĥc + ĤS + ĤK with:

Ĥc = �t

X
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ĉ
†
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f,�
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Here, ĉ
†
xxx,� creates a conduction electron in a Wannier

state centered at xxx with a z-component of spin �, SSS
c
xxx =

1
2

P
s,s0 ĉ

†
xxx,s�s,s0 ĉxxx,s0 is the spin operator and hxxx,yyyi are the

nearest neighbors of a honeycomb lattice. SSS
f
iii is a spin-1/2

degree of freedom located on the kagome lattice correspond-
ing to the median of the honeycomb lattice (see Fig.2). The
Hamiltonian ĤS is a variant of the BFG model (Ref. [25, 28])
with nearest neighbor, hiii, jjji, spin flip amplitude J

? and in-
teraction, Jz that minimizes the total z-component of spin on
a hexagon: Ŝ

f,z
7 =

P
iii27 Ŝ

f,z
iii . The conduction electrons

and the local moments are Kondo coupled, according to ĤK ,
along nearest neighbor bonds hxxx, iiii between the kagome and
Honeycomb lattices (Fig. 2). The factor (�1)xxx that takes the
value 1 (�1) on the A (B) sublattice of the Honeycomb lattice
is necessary to avoid the negative sign problem. In particular
it cannot be gauged away since the kagome lattice is not bipar-
tite. Referring back to Fig.1, Jz plays the role of frustration,
and JK is the Kondo coupling.

Let us consider various limiting cases of the Hamiltonian
Ĥ . When J

? � J
z
, JK , the local moments order in an

an XY -ferromagnetic ground state. Taking into account the
(�1)xxx factor in the Kondo coupling, we see that this terms
induces an anti-ferromagnetic in-plane mass term for the con-
duction electrons. Hence, in this limit one obtains a magneti-
cally ordered insulating phase.

Next, consider JK � J
? & J

z
, t. First, let us set all

couplings except JK to zero. Performing the unitary transfor-
mation ĉxxx,# ! �(�1)xxxĉx,# maps the Kondo interaction to an

FIG. 2. (color online) Left: The model - The conduction (c-
) electrons hop, with matrix element t, between nearest neighbor
sites of the honeycomb lattice denoted by the red and blue circles.
The kagome lattice (black) supports impurity spins described by the
Balents-Fisher-Girvin model with nearest neighbor spin-flip J? and
interactions on hexagons of strength Jz (green). The two systems
are Kondo-coupled with strength JK for each bond in the elemental
triangles (thick red and blue bonds). For details see Eq. (1). Right:

Various patches � used to extract the Renyi mutual information. Sub-
sets (b) and (c) belong to the triangle sequence, (d) and (e) are built
out of unit cells.

anti-ferromagnetic Heisenberg coupling between the conduc-
tion electrons and the local moments. This interaction is not
frustrated, and the ground state is AFM ordered with opposite
polarizations on the kagome sites and the Honeycomb lattice.
Undoing the above transformation, the in-plane magnetization
of the conduction electrons will be parallel for one honeycomb
sublattice and anti-parallel for the other, relative to the local
moments. Next, turning on a small J?

, J
z with J

? & J
z , the

local moments will preferably order in the XY plane. Com-
paring to the limit J? � J

z
, JK , one finds that the in-plane

symmetry breaking pattern is identical and in the absence of
any out-of-plane component, this phase is expected to be adi-
abatically connected to the aforementioned magnetically or-
dered insulating phase in the J

? � J
z
, JK limit. Note that

an out-of-plane component will spontaneously break the sym-
metry Ŝ

f,z
iii ! �Ŝ

f,z
iii , Ŝ

f,x
iii ! Ŝ

f,x
iii , Ŝ

f,y
iii ! Ŝ

f,y
iii (see the

supplemental material for a detailed discussion of the symme-
tries). Due to symmetry breaking and associated stiffness, this
phase is stable also to switching on a small hopping t.

Most interesting is the limit J
z � J

? � JK . When
only J

z and t are non-zero, the conduction electrons form a
Dirac semimetal while the local moments can be described as
a classical system with a ground state degeneracy that scales
exponentially with the system size [25]. Allowing a small
J
?
/J

z ⌧ 1 lifts this macroscopic degeneracy and leads to
a Z2 topologically ordered spin liquid of the local moments
[25]. Remarkably, as discussed in Refs. [7, 8], introducing a
small Kondo coupling JK leaves the state unchanged because
perturbatively the Kondo coupling is irrelevant at the renor-
malization group fixed point where conduction electrons form
a Dirac semimetal while the local moments are in a gapped Z2

topologically ordered state. Therefore, at low energies, the lo-
cal moments decouple from the conduction electrons and one
obtains a non-Fermi liquid FL* phase with a ‘small’ Fermi
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along nearest neighbor bonds hxxx, iiii between the kagome and
Honeycomb lattices (Fig. 2). The factor (�1)xxx that takes the
value 1 (�1) on the A (B) sublattice of the Honeycomb lattice
is necessary to avoid the negative sign problem. In particular
it cannot be gauged away since the kagome lattice is not bipar-
tite. Referring back to Fig.1, Jz plays the role of frustration,
and JK is the Kondo coupling.

Let us consider various limiting cases of the Hamiltonian
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Ŝ
f,+
iii Ŝ
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state centered at xxx with a z-component of spin �, SSS
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nearest neighbors of a honeycomb lattice. SSS
f
iii is a spin-1/2

degree of freedom located on the kagome lattice correspond-
ing to the median of the honeycomb lattice (see Fig.2). The
Hamiltonian ĤS is a variant of the BFG model (Ref. [25, 28])
with nearest neighbor, hiii, jjji, spin flip amplitude J

? and in-
teraction, Jz that minimizes the total z-component of spin on
a hexagon: Ŝ

f,z
7 =

P
iii27 Ŝ

f,z
iii . The conduction electrons

and the local moments are Kondo coupled, according to ĤK ,
along nearest neighbor bonds hxxx, iiii between the kagome and
Honeycomb lattices (Fig. 2). The factor (�1)xxx that takes the
value 1 (�1) on the A (B) sublattice of the Honeycomb lattice
is necessary to avoid the negative sign problem. In particular
it cannot be gauged away since the kagome lattice is not bipar-
tite. Referring back to Fig.1, Jz plays the role of frustration,
and JK is the Kondo coupling.

Let us consider various limiting cases of the Hamiltonian
Ĥ . When J

? � J
z
, JK , the local moments order in an

an XY -ferromagnetic ground state. Taking into account the
(�1)xxx factor in the Kondo coupling, we see that this terms
induces an anti-ferromagnetic in-plane mass term for the con-
duction electrons. Hence, in this limit one obtains a magneti-
cally ordered insulating phase.

Next, consider JK � J
? & J

z
, t. First, let us set all

couplings except JK to zero. Performing the unitary transfor-
mation ĉxxx,# ! �(�1)xxxĉx,# maps the Kondo interaction to an

FIG. 2. (color online) Left: The model - The conduction (c-
) electrons hop, with matrix element t, between nearest neighbor
sites of the honeycomb lattice denoted by the red and blue circles.
The kagome lattice (black) supports impurity spins described by the
Balents-Fisher-Girvin model with nearest neighbor spin-flip J? and
interactions on hexagons of strength Jz (green). The two systems
are Kondo-coupled with strength JK for each bond in the elemental
triangles (thick red and blue bonds). For details see Eq. (1). Right:

Various patches � used to extract the Renyi mutual information. Sub-
sets (b) and (c) belong to the triangle sequence, (d) and (e) are built
out of unit cells.

anti-ferromagnetic Heisenberg coupling between the conduc-
tion electrons and the local moments. This interaction is not
frustrated, and the ground state is AFM ordered with opposite
polarizations on the kagome sites and the Honeycomb lattice.
Undoing the above transformation, the in-plane magnetization
of the conduction electrons will be parallel for one honeycomb
sublattice and anti-parallel for the other, relative to the local
moments. Next, turning on a small J?

, J
z with J

? & J
z , the

local moments will preferably order in the XY plane. Com-
paring to the limit J? � J

z
, JK , one finds that the in-plane

symmetry breaking pattern is identical and in the absence of
any out-of-plane component, this phase is expected to be adi-
abatically connected to the aforementioned magnetically or-
dered insulating phase in the J

? � J
z
, JK limit. Note that

an out-of-plane component will spontaneously break the sym-
metry Ŝ
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supplemental material for a detailed discussion of the symme-
tries). Due to symmetry breaking and associated stiffness, this
phase is stable also to switching on a small hopping t.

Most interesting is the limit J
z � J

? � JK . When
only J

z and t are non-zero, the conduction electrons form a
Dirac semimetal while the local moments can be described as
a classical system with a ground state degeneracy that scales
exponentially with the system size [25]. Allowing a small
J
?
/J

z ⌧ 1 lifts this macroscopic degeneracy and leads to
a Z2 topologically ordered spin liquid of the local moments
[25]. Remarkably, as discussed in Refs. [7, 8], introducing a
small Kondo coupling JK leaves the state unchanged because
perturbatively the Kondo coupling is irrelevant at the renor-
malization group fixed point where conduction electrons form
a Dirac semimetal while the local moments are in a gapped Z2

topologically ordered state. Therefore, at low energies, the lo-
cal moments decouple from the conduction electrons and one
obtains a non-Fermi liquid FL* phase with a ‘small’ Fermi

Hs is the “Balents-Fisher-Girvin” model that supports

a topologically ordered Z2 spin-liquid when Jz >> J⟂

The above model does not have a sign-problem at half-filling,

(via employing fermion representation of spins).
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f,z
iii ! �Ŝ
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only J
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Dirac semimetal while the local moments can be described as
a classical system with a ground state degeneracy that scales
exponentially with the system size [25]. Allowing a small
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z ⌧ 1 lifts this macroscopic degeneracy and leads to
a Z2 topologically ordered spin liquid of the local moments
[25]. Remarkably, as discussed in Refs. [7, 8], introducing a
small Kondo coupling JK leaves the state unchanged because
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topologically ordered state. Therefore, at low energies, the lo-
cal moments decouple from the conduction electrons and one
obtains a non-Fermi liquid FL* phase with a ‘small’ Fermi

Kondo breakdown via geometric frustration

[Hofmann, Assaad, TG 2019]
c fermions (honeycomb lattice)

localized spins (kagome lattice)



Schematic Phase Diagram obtained from QMC

FL* phase has a small Fermi surface, i.e. violates Luttinger theorem.
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Kondo Breakdown via Fractionalization in a Frustrated Kondo Lattice Model
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We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the
kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model
that is known to host a Z2 spin liquid and a ferromagnetic phase. The model is amenable to sign free auxiliary
field quantum Monte Carlo simulations. While in the ferromagnetic phase the Dirac electrons acquire a gap,
they remain massless in the Z2 spin liquid phase due to the breakdown of Kondo screening. Since our model
has an odd number of spins per unit cell, this phase is a non-Fermi liquid that violates the conventional Luttinger
theorem which relates the Fermi surface volume to the particle density in a Fermi liquid. This non-Fermi liquid
is a specific realization of the so called fractionalized Fermi liquid proposed in the context of heavy fermions.
We probe the Kondo breakdown in this non-Fermi liquid phase via conventional observables such as the spectral
function, and also by studying the mutual information between the electrons and the spins.

Introduction: Electron-electron interactions can localize
charge carriers and generate insulating states with local mo-
ments [1]. What happens when these local moments (f-spins)
are Kondo coupled with magnitude JK to extended Bloch
conduction (c-) electrons? For a single local moment, the
answer is known: the Kondo coupling is relevant and the f-
electron is screened by the conduction electrons [2, 3]. For
a lattice of f-electrons i.e. Kondo lattice systems, the prob-
lem is much harder, and the answer is not known in gen-
eral. However, in the absence of any magnetic ordering, Lieb-
Shultz-Mattis-Hastings-Oshikawa theorem [4–6] puts strong
constraints on the possible outcomes. Specifically, in addi-
tion to a heavy Fermi liquid phase where the Fermi surface is
‘large’ since it includes the local moments, there exists a dis-
tinct possibility where f-spins decouple from the conduction
electrons at low-energies and enter a spin-liquid phase [7, 8].
In such a ‘fractionalized Fermi liquid’ phase (henceforth de-
noted as ‘FL* phase’ following Refs.[7, 8]), the conduction
electron Fermi surface is ‘small’ in that it does not include
local moments, and therefore the conventional Luttinger the-
orem [9] is violated.

From an experimental standpoint, a possible breakdown of
Kondo screening is relevant to some of the most challeng-
ing issues in heavy fermion materials [7, 10, 11]. There are
at least two conceptually different scenarios where a break-
down of Kondo screening might play a role: in materials
such as YbRh2Si2 [12] and CeCu6�xAux [13], one observes
signatures that indicate that Kondo screening might abruptly
change across the transition from a heavy Fermi liquid phase
to a magnetically ordered phase. For example, in YbRh2Si2,
one observes a jump in the Hall coefficient across the phase
transition while in CeCu6�xAux, one finds that the single ion
Kondo energy scale TK exhibits an abrupt change close the
quantum critical point. A different scenario, which is per-
haps more closely related to this paper is the transition from
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FIG. 1. (color online) (a) Schematic phase diagram of the BFG
model in the absence of Kondo coupling. (b) Schematic phase dia-
gram of the BFG model in the presence of Kondo coupling.

a heavy Fermi liquid to a non-magnetic phase across which
Kondo screening breaks down. Signatures of such a phase
were seen in Co and Ir doped YbRh2Si2 [14]. Following
Refs. [4, 7, 8] and as discussed above briefly, in the ab-
sence of any other symmetry breaking (e.g. lattice translation)
such a non-magnetic phase is inconsistent with a Fermi liquid
ground state if the Kondo screening is not operative and the
unit cell contains an odd number of spin-1/2 spins. The local
moments in such a phase are then forced to either have a gap-
less spectrum or topological order [5]. We also note that as
discussed in Ref. [15], the Kondo breakdown is also closely
related to the concept of ‘orbital selective Mott transition’.
In addition, there are several other heavy fermionic materials
such as CePdAl [16–19], -(ET)4Hg2.89Br8 [20], YbAgGe
[21], YbAl3C3 [22] and Yb2Pt2Pb [23] whose phenomenol-
ogy seems to be poorly understood, and where microscopic
considerations suggest that the geometric frustration between
local moments plays an important role.

In this paper we will introduce a generalized Kondo lat-
tice model which hosts the aforementioned Kondo breakdown
transition between a conventional phase with electron like
quasiparticles, and an FL* phase with Z2 topological order.
From a technical standpoint, the most salient feature of our
model is that it does not suffer from fermion sign problem
even in the presence of the Kondo coupling [24]. Our model
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FIG. 3. (color online) We consider lattices L = 3⇥3 and L = 3⇥6
unit cells at an inverse temperature � = 12 and at Jz = 7.5 (a) Spin-
spin correlations SAFM (See text), (b) Renyi mutual informations
I2(�c,�f ) per site of the patch �c [ �f for L = 3 ⇥ 6. Here we
consider the patches listed in Fig. 2(b)-(e). (c) Conduction electron
spectral function at the Dirac point KKK for the 3⇥ 6 lattice. (d) Same
as (c), but at the �-point. The imaginary time data from which panels
(c) and (d) stem are presented in the supplemental material.

It is interesting to consider other measures for Kondo
screening. The Renyi mutual information I2 between the c-
electrons and the f-spins introduced above provides one such
measure. It is important to note that this quantity is both IR
and UV sensitive since we are considering mutual informa-
tion between two Hilbert spaces that overlap in real space.
Despite the decoupling of conduction electrons and local mo-
ments at low energies in the FL* phase, one therefore doesn’t
except that the mutual information will be exactly zero in this
phase. It vanishes only at the RG fixed point corresponding
to JK = 0, where these two Hilbert spaces completely de-
couple. In the opposite limit when the c-electrons and f-spins
are maximally entangled, the Renyi mutual information will
attain its maximum possible value of 4 log(2)/5 per site (re-
call that the unit cell of our model contains three f-spins and
two c-electrons ). In the magnetically ordered phase, one ex-
pects that the Renyi mutual information will not be close to
this maximum due to the entanglement between the local mo-
ments themselves. From Fig. 3 (b) and Fig. 4 (b) we see that
the QMC data is consistent with this expectation. The most
notable feature is that the Renyi mutual information per site is
an order of magnitude smaller in the FL* phase compared to
the magnetically ordered phase. Furthermore, even on a lim-
ited size lattices such as ours, one can already see signatures
of the transition from the magnetically ordered phase to the
FL* phase as evidenced by the change of slope in the coeffi-
cient of the Renyi mutual information at the transition.

Conclusion and discussion: In this paper we introduced a
model amenable to negative sign free Monte Carlo simula-
tions that can host a fractionalized Fermi liquid (FL*) phase.
The most prominent feature of this phase is a violation of the

FIG. 4. (color online) We consider lattices L = 3⇥3 and L = 3⇥6
unit cells at an inverse temperature � = 12 and at JK = 1 (a) Spin-
spin correlations SAFM (See text), (b) Renyi mutual informations
I2(�c,�f ) per site of the patch �c [ �f for L = 3 ⇥ 6. Here we
consider the patches listed in Fig. 2(b)-(e). (c) Conduction electron
spectral function at the Dirac point KKK for the 3⇥ 6 lattice. (d) same
as (c), but at the �-point. The imaginary time data from which panels
(c) and (d) stem are presented in the supplemental material.

Luttinger theorem due to the onset of topological order. This
proof of principle calculation paves the way to many other in-
vestigations. We have considered a model where the fraction-
alization inherent to topological order is ‘emergent’ i.e. the
lattice model is written in terms of spins. A different, and pos-
sibly numerically more tractable approach would be to simu-
late directly a theory of spinons coupled to Z2 gauge fields
following Refs. [61–63] and where spinons are also Kondo
coupled to conduction electrons. Such an approach might be
particularly useful for studying the quantum phase transition
between the FL* phase and the magnetically ordered phase.
A field theory description of this transition was provided in
Ref.[60] where it was found that the Kondo coupling is irrele-
vant at the critical point due to the large anomalous exponent
of the spins, and therefore one expects that the conduction
electrons have a well defined electron-like quasiparticle even
at the critical point, while the local moments will inherit the
critical exponents of the 3D XY* transition [26, 59].

It might be also interesting to explore the possibility of ob-
taining non-trivial symmetry protected topological phases in
frustrated Kondo models along the lines of Ref. [64] where it
was shown that under certain conditions, one can obtain sym-
metric states without any topological order even when the unit
cell contains an odd number of spins but the magnetic unit cell
has an integral number of spins.

Another avenue to explore would be the universal sublead-
ing contribution of the Renyi entanglement entropy for a spa-
tial bipartition. In the FL* phase one expects that this contri-
bution is given as � = �topo + �Dirac, where �topo = log(2)
is the topological entanglement entropy corresponding to the
topological order of the local moments, while �Dirac is the
shape-dependent universal contribution from the Dirac con-
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Luttinger theorem due to the onset of topological order. This
proof of principle calculation paves the way to many other in-
vestigations. We have considered a model where the fraction-
alization inherent to topological order is ‘emergent’ i.e. the
lattice model is written in terms of spins. A different, and pos-
sibly numerically more tractable approach would be to simu-
late directly a theory of spinons coupled to Z2 gauge fields
following Refs. [61–63] and where spinons are also Kondo
coupled to conduction electrons. Such an approach might be
particularly useful for studying the quantum phase transition
between the FL* phase and the magnetically ordered phase.
A field theory description of this transition was provided in
Ref.[60] where it was found that the Kondo coupling is irrele-
vant at the critical point due to the large anomalous exponent
of the spins, and therefore one expects that the conduction
electrons have a well defined electron-like quasiparticle even
at the critical point, while the local moments will inherit the
critical exponents of the 3D XY* transition [26, 59].

It might be also interesting to explore the possibility of ob-
taining non-trivial symmetry protected topological phases in
frustrated Kondo models along the lines of Ref. [64] where it
was shown that under certain conditions, one can obtain sym-
metric states without any topological order even when the unit
cell contains an odd number of spins but the magnetic unit cell
has an integral number of spins.

Another avenue to explore would be the universal sublead-
ing contribution of the Renyi entanglement entropy for a spa-
tial bipartition. In the FL* phase one expects that this contri-
bution is given as � = �topo + �Dirac, where �topo = log(2)
is the topological entanglement entropy corresponding to the
topological order of the local moments, while �Dirac is the
shape-dependent universal contribution from the Dirac con-
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surface which was introduced in Refs.[7, 8]. Physically, in this
phase the local moments are highly entangled with each other
such that the formation of Kondo singlets or the tendency to
magnetically order is suppressed.

The phases discussed above, especially the FL* phase,
should be contrasted with the conventional heavy Fermi liq-
uid that satisfies the Luttinger sum rule. Since our model has
two electrons and three spins per unit cell, the most prominent
feature is that this state has a ‘large’ Fermi surface which en-
closes half of the BZ whereas the Fermi volume of the afore-
mentioned fractionalized FL* phase vanishes. The nature of
the Fermi liquid state strongly depends on symmetries. If par-
ticle hole-symmetry (PHS) is imposed in the paramagnetic
phase, then one would expect a flat-band pinned at the Fermi
level, a generically unstable state [29–37]. A hybridization be-
tween c- and f -electrons necessarily breaks either PHS - with
uniform hybridization - or TRS - when the (�1)xxx phase in the
Kondo coupling is carried over to the hybridization. The latter
requires fine-tuning to remain paramagnetic whereas the for-
mer can generate a non-magnetic heavy Fermi liquid. In the
range of parameters considered in this paper, we do not find
such a phase. A more detailed discussion can be found in the
supplemental material.

Method and observables: We simulate the Hamiltonian in
Eq. (1) using the auxiliary field quantum Monte Carlo (QMC)
method [38–40]. We follow the strategy outlined in Ref. [24]
where it was shown that Hamiltonians of the form Ĥ do not
suffer from fermion sign problem when J

? � 0 and the con-
duction bands are particle-hole symmetric. In this approach
local moments are fermionized, SSSf

iii = 1
2

P
s,s0 f̂

†
iii,s�s,s0 f̂iii,s0 ,

with the constraint
P

s f̂
†
iii,sf̂iii,s = 1. As in simulations of the

generic Kondo lattice model [41, 42] this constraint can be
imposed very efficiently since it corresponds to a local con-
servation law. The details of our implementation are sum-
marized in the supplemental material and we have used the
ALF package [43] to carry out the simulations. Despite the
absence of sign problem, the simulations of this model are
challenging. Fermionization leads to a large number of aux-
iliary fields (33 per unit cell), and the condition number on
scales corresponding to the ratio of band width to the small-
est relevant scale (e.g. vison gap in the Z2 spin liquid phase)
is large. As a consequence, we have used an imaginary time
step �⌧ t = 0.01. The biggest challenge turns out to be large
autocorrelation times. We tried to improve this issue by using
global moves that mimic vison excitations, as well as by im-
plementing parallel tempering schemes. Nevertheless, these
long autocorrelation times remain the limiting factor to ac-
cess system sizes bigger than those presented here, in partic-
ular 3 ⇥ 3 and 6 ⇥ 3 unit cells. For both lattices sizes, and
the considered periodic boundary conditions, Dirac points are
present. However, only the 6 ⇥ 3 allows to satisfy Ŝ

f,z
7 = 0

for all hexagons.
We compute spin-spin correlations SAFM =

1/L
P

IIIJJJhŜx
III Ŝ

x
JJJ + Ŝ

y
III Ŝ

y
JJJi where the net spin per unit

cell III , ŜSSIII =
P

iii2III ŜSS
f

iii +
P

xxx2III(�1)xxxŜSS
c

xxx, captures the

aforementioned ferromagnetic-antiferromagnetic order of the
f-spins and conduction electrons. The spectral function of the
conduction electrons Ac(kkk,!) = � 1

⇡ Im G
ret
c (kkk,!) can be

extracted from the imaginary time resolved Greens function
Gc(kkk, ⌧) =

P
↵,�hĉ

†
kkk,↵,�(⌧)ĉkkk,↵,�(0)i using the MaxEnt

method [44, 45]. Here ↵ is the orbital index. The auxiliary
field QMC method also allows to study the entanglement
properties of fermionic models [46–51]. In particular, as
shown in Refs. [47, 48], the second Renyi entropy S2 can
be computed from the knowledge of Greens-functions GA,
restricted to subsystem A for two independent Monte Carlo
samples. An alternative approach exploits the replica trick,
e.g. for fermionic [52–55], bosonic [28], and spin systems
[56, 57]. For a given subsystem of conduction electrons �c

and of spins �f , the Renyi mutual information between �c

and �f is I2(�c,�f ) ⌘ S2(�c [ �f ) � S2(�c) � S2(�f ).
We use the two sequences for � as shown in Fig. 2(b), (c)
and, Fig. 2(d),(e). In the calculation of the Renyi mutual
information we restore the C3 lattice symmetry by averaging
over rotationally equivalent �s.

Results: From here on, we fix J
? = t and use t = 1 as

the unit of energy. The BFG model shows a transition from
the ferromagnetic state to the Z2 spin liquid at Jz

c ' 7.07
[28]. Alongside with spin excitations, the Z2 spin liquid hosts
vison excitations. Recent simulations of the dynamics of the
BFG model [58] estimate the spin and vison gaps at Jz = 8.3
to �s ' 7.12 and �v ' 0.2. We expect that the vison gap
remains non-zero at the transition and that the spin gap scales
as (Jz � J

z
c )

⌫z with dynamical critical exponent z = 1 and
⌫ ' 0.67, which correspond to the exponents of the 3D XY*
model [26, 59, 60].

Fig. 3 shows a scan at Jz = 7.5 as a function of JK . We
have set the temperature to � = 12. From the above dis-
cussion, this choice of temperature places us well below the
spin gap and allows us to resolve the vison gap. As apparent
in Fig. 3(c), the single particle spectral function at the Dirac
point remains gapless. As a function of JK it looses spectral
weight and a full gap opens sightly before JK = 1.5. At this
energy scale the spin-spin correlations SAFM show a marked
upturn (see Fig. 3(a)). In the presence of long ranged magnetic
order SAFM scales as the volume of the system. Comparison
between the 3⇥ 3 and 3⇥ 6 lattices shows that SAFM grows
as a function of system size beyond JK = 1.5.

Small values of JK are associated with small energy scales
which may be difficult to resolve on our finite sized systems
at finite temperatures. To confirm above result, we present a
scan at fixed JK = 1 and vary J

z in Fig. 4. Upon analysis
of Figs. 4(a) and 4(c) one concludes that the magnetic order
and the single particle gap track each other. In particular the
single particle gap closes in the Z2 spin liquid phase.

Signatures of the Z2 spin liquid phase can be picked up in
the spectrum of the conduction electrons. In Fig. 3(d) and
Fig. 4(d) we plot the single particle spectral function at the �
point. One notices that in the FL* phase, spectral weight at
low energies is apparent. We associate this feature with the
vison excitations of the Z2 spin liquid.
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We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the
kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model
that is known to host a Z2 spin liquid and a ferromagnetic phase. The model is amenable to sign free auxiliary
field quantum Monte Carlo simulations. While in the ferromagnetic phase the Dirac electrons acquire a gap,
they remain massless in the Z2 spin liquid phase due to the breakdown of Kondo screening. Since our model
has an odd number of spins per unit cell, this phase is a non-Fermi liquid that violates the conventional Luttinger
theorem which relates the Fermi surface volume to the particle density in a Fermi liquid. This non-Fermi liquid
is a specific realization of the so called fractionalized Fermi liquid proposed in the context of heavy fermions.
We probe the Kondo breakdown in this non-Fermi liquid phase via conventional observables such as the spectral
function, and also by studying the mutual information between the electrons and the spins.

Introduction: Electron-electron interactions can localize
charge carriers and generate insulating states with local mo-
ments [1]. What happens when these local moments (f-spins)
are Kondo coupled with magnitude JK to extended Bloch
conduction (c-) electrons? For a single local moment, the
answer is known: the Kondo coupling is relevant and the f-
electron is screened by the conduction electrons [2, 3]. For
a lattice of f-electrons i.e. Kondo lattice systems, the prob-
lem is much harder, and the answer is not known in gen-
eral. However, in the absence of any magnetic ordering, Lieb-
Shultz-Mattis-Hastings-Oshikawa theorem [4–6] puts strong
constraints on the possible outcomes. Specifically, in addi-
tion to a heavy Fermi liquid phase where the Fermi surface is
‘large’ since it includes the local moments, there exists a dis-
tinct possibility where f-spins decouple from the conduction
electrons at low-energies and enter a spin-liquid phase [7, 8].
In such a ‘fractionalized Fermi liquid’ phase (henceforth de-
noted as ‘FL* phase’ following Refs.[7, 8]), the conduction
electron Fermi surface is ‘small’ in that it does not include
local moments, and therefore the conventional Luttinger the-
orem [9] is violated.

From an experimental standpoint, a possible breakdown of
Kondo screening is relevant to some of the most challeng-
ing issues in heavy fermion materials [7, 10, 11]. There are
at least two conceptually different scenarios where a break-
down of Kondo screening might play a role: in materials
such as YbRh2Si2 [12] and CeCu6�xAux [13], one observes
signatures that indicate that Kondo screening might abruptly
change across the transition from a heavy Fermi liquid phase
to a magnetically ordered phase. For example, in YbRh2Si2,
one observes a jump in the Hall coefficient across the phase
transition while in CeCu6�xAux, one finds that the single ion
Kondo energy scale TK exhibits an abrupt change close the
quantum critical point. A different scenario, which is per-
haps more closely related to this paper is the transition from
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FIG. 1. (color online) (a) Schematic phase diagram of the BFG
model in the absence of Kondo coupling. (b) Schematic phase dia-
gram of the BFG model in the presence of Kondo coupling.

a heavy Fermi liquid to a non-magnetic phase across which
Kondo screening breaks down. Signatures of such a phase
were seen in Co and Ir doped YbRh2Si2 [14]. Following
Refs. [4, 7, 8] and as discussed above briefly, in the ab-
sence of any other symmetry breaking (e.g. lattice translation)
such a non-magnetic phase is inconsistent with a Fermi liquid
ground state if the Kondo screening is not operative and the
unit cell contains an odd number of spin-1/2 spins. The local
moments in such a phase are then forced to either have a gap-
less spectrum or topological order [5]. We also note that as
discussed in Ref. [15], the Kondo breakdown is also closely
related to the concept of ‘orbital selective Mott transition’.
In addition, there are several other heavy fermionic materials
such as CePdAl [16–19], -(ET)4Hg2.89Br8 [20], YbAgGe
[21], YbAl3C3 [22] and Yb2Pt2Pb [23] whose phenomenol-
ogy seems to be poorly understood, and where microscopic
considerations suggest that the geometric frustration between
local moments plays an important role.

In this paper we will introduce a generalized Kondo lat-
tice model which hosts the aforementioned Kondo breakdown
transition between a conventional phase with electron like
quasiparticles, and an FL* phase with Z2 topological order.
From a technical standpoint, the most salient feature of our
model is that it does not suffer from fermion sign problem
even in the presence of the Kondo coupling [24]. Our model
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FIG. 3. (color online) We consider lattices L = 3⇥3 and L = 3⇥6
unit cells at an inverse temperature � = 12 and at Jz = 7.5 (a) Spin-
spin correlations SAFM (See text), (b) Renyi mutual informations
I2(�c,�f ) per site of the patch �c [ �f for L = 3 ⇥ 6. Here we
consider the patches listed in Fig. 2(b)-(e). (c) Conduction electron
spectral function at the Dirac point KKK for the 3⇥ 6 lattice. (d) Same
as (c), but at the �-point. The imaginary time data from which panels
(c) and (d) stem are presented in the supplemental material.

It is interesting to consider other measures for Kondo
screening. The Renyi mutual information I2 between the c-
electrons and the f-spins introduced above provides one such
measure. It is important to note that this quantity is both IR
and UV sensitive since we are considering mutual informa-
tion between two Hilbert spaces that overlap in real space.
Despite the decoupling of conduction electrons and local mo-
ments at low energies in the FL* phase, one therefore doesn’t
except that the mutual information will be exactly zero in this
phase. It vanishes only at the RG fixed point corresponding
to JK = 0, where these two Hilbert spaces completely de-
couple. In the opposite limit when the c-electrons and f-spins
are maximally entangled, the Renyi mutual information will
attain its maximum possible value of 4 log(2)/5 per site (re-
call that the unit cell of our model contains three f-spins and
two c-electrons ). In the magnetically ordered phase, one ex-
pects that the Renyi mutual information will not be close to
this maximum due to the entanglement between the local mo-
ments themselves. From Fig. 3 (b) and Fig. 4 (b) we see that
the QMC data is consistent with this expectation. The most
notable feature is that the Renyi mutual information per site is
an order of magnitude smaller in the FL* phase compared to
the magnetically ordered phase. Furthermore, even on a lim-
ited size lattices such as ours, one can already see signatures
of the transition from the magnetically ordered phase to the
FL* phase as evidenced by the change of slope in the coeffi-
cient of the Renyi mutual information at the transition.

Conclusion and discussion: In this paper we introduced a
model amenable to negative sign free Monte Carlo simula-
tions that can host a fractionalized Fermi liquid (FL*) phase.
The most prominent feature of this phase is a violation of the

FIG. 4. (color online) We consider lattices L = 3⇥3 and L = 3⇥6
unit cells at an inverse temperature � = 12 and at JK = 1 (a) Spin-
spin correlations SAFM (See text), (b) Renyi mutual informations
I2(�c,�f ) per site of the patch �c [ �f for L = 3 ⇥ 6. Here we
consider the patches listed in Fig. 2(b)-(e). (c) Conduction electron
spectral function at the Dirac point KKK for the 3⇥ 6 lattice. (d) same
as (c), but at the �-point. The imaginary time data from which panels
(c) and (d) stem are presented in the supplemental material.

Luttinger theorem due to the onset of topological order. This
proof of principle calculation paves the way to many other in-
vestigations. We have considered a model where the fraction-
alization inherent to topological order is ‘emergent’ i.e. the
lattice model is written in terms of spins. A different, and pos-
sibly numerically more tractable approach would be to simu-
late directly a theory of spinons coupled to Z2 gauge fields
following Refs. [61–63] and where spinons are also Kondo
coupled to conduction electrons. Such an approach might be
particularly useful for studying the quantum phase transition
between the FL* phase and the magnetically ordered phase.
A field theory description of this transition was provided in
Ref.[60] where it was found that the Kondo coupling is irrele-
vant at the critical point due to the large anomalous exponent
of the spins, and therefore one expects that the conduction
electrons have a well defined electron-like quasiparticle even
at the critical point, while the local moments will inherit the
critical exponents of the 3D XY* transition [26, 59].

It might be also interesting to explore the possibility of ob-
taining non-trivial symmetry protected topological phases in
frustrated Kondo models along the lines of Ref. [64] where it
was shown that under certain conditions, one can obtain sym-
metric states without any topological order even when the unit
cell contains an odd number of spins but the magnetic unit cell
has an integral number of spins.

Another avenue to explore would be the universal sublead-
ing contribution of the Renyi entanglement entropy for a spa-
tial bipartition. In the FL* phase one expects that this contri-
bution is given as � = �topo + �Dirac, where �topo = log(2)
is the topological entanglement entropy corresponding to the
topological order of the local moments, while �Dirac is the
shape-dependent universal contribution from the Dirac con-
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screening. The Renyi mutual information I2 between the c-
electrons and the f-spins introduced above provides one such
measure. It is important to note that this quantity is both IR
and UV sensitive since we are considering mutual informa-
tion between two Hilbert spaces that overlap in real space.
Despite the decoupling of conduction electrons and local mo-
ments at low energies in the FL* phase, one therefore doesn’t
except that the mutual information will be exactly zero in this
phase. It vanishes only at the RG fixed point corresponding
to JK = 0, where these two Hilbert spaces completely de-
couple. In the opposite limit when the c-electrons and f-spins
are maximally entangled, the Renyi mutual information will
attain its maximum possible value of 4 log(2)/5 per site (re-
call that the unit cell of our model contains three f-spins and
two c-electrons ). In the magnetically ordered phase, one ex-
pects that the Renyi mutual information will not be close to
this maximum due to the entanglement between the local mo-
ments themselves. From Fig. 3 (b) and Fig. 4 (b) we see that
the QMC data is consistent with this expectation. The most
notable feature is that the Renyi mutual information per site is
an order of magnitude smaller in the FL* phase compared to
the magnetically ordered phase. Furthermore, even on a lim-
ited size lattices such as ours, one can already see signatures
of the transition from the magnetically ordered phase to the
FL* phase as evidenced by the change of slope in the coeffi-
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tions that can host a fractionalized Fermi liquid (FL*) phase.
The most prominent feature of this phase is a violation of the
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spectral function at the Dirac point KKK for the 3⇥ 6 lattice. (d) same
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Luttinger theorem due to the onset of topological order. This
proof of principle calculation paves the way to many other in-
vestigations. We have considered a model where the fraction-
alization inherent to topological order is ‘emergent’ i.e. the
lattice model is written in terms of spins. A different, and pos-
sibly numerically more tractable approach would be to simu-
late directly a theory of spinons coupled to Z2 gauge fields
following Refs. [61–63] and where spinons are also Kondo
coupled to conduction electrons. Such an approach might be
particularly useful for studying the quantum phase transition
between the FL* phase and the magnetically ordered phase.
A field theory description of this transition was provided in
Ref.[60] where it was found that the Kondo coupling is irrele-
vant at the critical point due to the large anomalous exponent
of the spins, and therefore one expects that the conduction
electrons have a well defined electron-like quasiparticle even
at the critical point, while the local moments will inherit the
critical exponents of the 3D XY* transition [26, 59].

It might be also interesting to explore the possibility of ob-
taining non-trivial symmetry protected topological phases in
frustrated Kondo models along the lines of Ref. [64] where it
was shown that under certain conditions, one can obtain sym-
metric states without any topological order even when the unit
cell contains an odd number of spins but the magnetic unit cell
has an integral number of spins.

Another avenue to explore would be the universal sublead-
ing contribution of the Renyi entanglement entropy for a spa-
tial bipartition. In the FL* phase one expects that this contri-
bution is given as � = �topo + �Dirac, where �topo = log(2)
is the topological entanglement entropy corresponding to the
topological order of the local moments, while �Dirac is the
shape-dependent universal contribution from the Dirac con-

Renyi mutual information between conduction electrons and spins:

3

surface which was introduced in Refs.[7, 8]. Physically, in this
phase the local moments are highly entangled with each other
such that the formation of Kondo singlets or the tendency to
magnetically order is suppressed.

The phases discussed above, especially the FL* phase,
should be contrasted with the conventional heavy Fermi liq-
uid that satisfies the Luttinger sum rule. Since our model has
two electrons and three spins per unit cell, the most prominent
feature is that this state has a ‘large’ Fermi surface which en-
closes half of the BZ whereas the Fermi volume of the afore-
mentioned fractionalized FL* phase vanishes. The nature of
the Fermi liquid state strongly depends on symmetries. If par-
ticle hole-symmetry (PHS) is imposed in the paramagnetic
phase, then one would expect a flat-band pinned at the Fermi
level, a generically unstable state [29–37]. A hybridization be-
tween c- and f -electrons necessarily breaks either PHS - with
uniform hybridization - or TRS - when the (�1)xxx phase in the
Kondo coupling is carried over to the hybridization. The latter
requires fine-tuning to remain paramagnetic whereas the for-
mer can generate a non-magnetic heavy Fermi liquid. In the
range of parameters considered in this paper, we do not find
such a phase. A more detailed discussion can be found in the
supplemental material.

Method and observables: We simulate the Hamiltonian in
Eq. (1) using the auxiliary field quantum Monte Carlo (QMC)
method [38–40]. We follow the strategy outlined in Ref. [24]
where it was shown that Hamiltonians of the form Ĥ do not
suffer from fermion sign problem when J

? � 0 and the con-
duction bands are particle-hole symmetric. In this approach
local moments are fermionized, SSSf

iii = 1
2

P
s,s0 f̂

†
iii,s�s,s0 f̂iii,s0 ,

with the constraint
P

s f̂
†
iii,sf̂iii,s = 1. As in simulations of the

generic Kondo lattice model [41, 42] this constraint can be
imposed very efficiently since it corresponds to a local con-
servation law. The details of our implementation are sum-
marized in the supplemental material and we have used the
ALF package [43] to carry out the simulations. Despite the
absence of sign problem, the simulations of this model are
challenging. Fermionization leads to a large number of aux-
iliary fields (33 per unit cell), and the condition number on
scales corresponding to the ratio of band width to the small-
est relevant scale (e.g. vison gap in the Z2 spin liquid phase)
is large. As a consequence, we have used an imaginary time
step �⌧ t = 0.01. The biggest challenge turns out to be large
autocorrelation times. We tried to improve this issue by using
global moves that mimic vison excitations, as well as by im-
plementing parallel tempering schemes. Nevertheless, these
long autocorrelation times remain the limiting factor to ac-
cess system sizes bigger than those presented here, in partic-
ular 3 ⇥ 3 and 6 ⇥ 3 unit cells. For both lattices sizes, and
the considered periodic boundary conditions, Dirac points are
present. However, only the 6 ⇥ 3 allows to satisfy Ŝ

f,z
7 = 0

for all hexagons.
We compute spin-spin correlations SAFM =

1/L
P

IIIJJJhŜx
III Ŝ

x
JJJ + Ŝ

y
III Ŝ

y
JJJi where the net spin per unit

cell III , ŜSSIII =
P

iii2III ŜSS
f

iii +
P

xxx2III(�1)xxxŜSS
c

xxx, captures the

aforementioned ferromagnetic-antiferromagnetic order of the
f-spins and conduction electrons. The spectral function of the
conduction electrons Ac(kkk,!) = � 1

⇡ Im G
ret
c (kkk,!) can be

extracted from the imaginary time resolved Greens function
Gc(kkk, ⌧) =

P
↵,�hĉ

†
kkk,↵,�(⌧)ĉkkk,↵,�(0)i using the MaxEnt

method [44, 45]. Here ↵ is the orbital index. The auxiliary
field QMC method also allows to study the entanglement
properties of fermionic models [46–51]. In particular, as
shown in Refs. [47, 48], the second Renyi entropy S2 can
be computed from the knowledge of Greens-functions GA,
restricted to subsystem A for two independent Monte Carlo
samples. An alternative approach exploits the replica trick,
e.g. for fermionic [52–55], bosonic [28], and spin systems
[56, 57]. For a given subsystem of conduction electrons �c

and of spins �f , the Renyi mutual information between �c

and �f is I2(�c,�f ) ⌘ S2(�c [ �f ) � S2(�c) � S2(�f ).
We use the two sequences for � as shown in Fig. 2(b), (c)
and, Fig. 2(d),(e). In the calculation of the Renyi mutual
information we restore the C3 lattice symmetry by averaging
over rotationally equivalent �s.

Results: From here on, we fix J
? = t and use t = 1 as

the unit of energy. The BFG model shows a transition from
the ferromagnetic state to the Z2 spin liquid at Jz

c ' 7.07
[28]. Alongside with spin excitations, the Z2 spin liquid hosts
vison excitations. Recent simulations of the dynamics of the
BFG model [58] estimate the spin and vison gaps at Jz = 8.3
to �s ' 7.12 and �v ' 0.2. We expect that the vison gap
remains non-zero at the transition and that the spin gap scales
as (Jz � J

z
c )

⌫z with dynamical critical exponent z = 1 and
⌫ ' 0.67, which correspond to the exponents of the 3D XY*
model [26, 59, 60].

Fig. 3 shows a scan at Jz = 7.5 as a function of JK . We
have set the temperature to � = 12. From the above dis-
cussion, this choice of temperature places us well below the
spin gap and allows us to resolve the vison gap. As apparent
in Fig. 3(c), the single particle spectral function at the Dirac
point remains gapless. As a function of JK it looses spectral
weight and a full gap opens sightly before JK = 1.5. At this
energy scale the spin-spin correlations SAFM show a marked
upturn (see Fig. 3(a)). In the presence of long ranged magnetic
order SAFM scales as the volume of the system. Comparison
between the 3⇥ 3 and 3⇥ 6 lattices shows that SAFM grows
as a function of system size beyond JK = 1.5.

Small values of JK are associated with small energy scales
which may be difficult to resolve on our finite sized systems
at finite temperatures. To confirm above result, we present a
scan at fixed JK = 1 and vary J

z in Fig. 4. Upon analysis
of Figs. 4(a) and 4(c) one concludes that the magnetic order
and the single particle gap track each other. In particular the
single particle gap closes in the Z2 spin liquid phase.

Signatures of the Z2 spin liquid phase can be picked up in
the spectrum of the conduction electrons. In Fig. 3(d) and
Fig. 4(d) we plot the single particle spectral function at the �
point. One notices that in the FL* phase, spectral weight at
low energies is apparent. We associate this feature with the
vison excitations of the Z2 spin liquid.
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We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the
kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model
that is known to host a Z2 spin liquid and a ferromagnetic phase. The model is amenable to sign free auxiliary
field quantum Monte Carlo simulations. While in the ferromagnetic phase the Dirac electrons acquire a gap,
they remain massless in the Z2 spin liquid phase due to the breakdown of Kondo screening. Since our model
has an odd number of spins per unit cell, this phase is a non-Fermi liquid that violates the conventional Luttinger
theorem which relates the Fermi surface volume to the particle density in a Fermi liquid. This non-Fermi liquid
is a specific realization of the so called fractionalized Fermi liquid proposed in the context of heavy fermions.
We probe the Kondo breakdown in this non-Fermi liquid phase via conventional observables such as the spectral
function, and also by studying the mutual information between the electrons and the spins.

Introduction: Electron-electron interactions can localize
charge carriers and generate insulating states with local mo-
ments [1]. What happens when these local moments (f-spins)
are Kondo coupled with magnitude JK to extended Bloch
conduction (c-) electrons? For a single local moment, the
answer is known: the Kondo coupling is relevant and the f-
electron is screened by the conduction electrons [2, 3]. For
a lattice of f-electrons i.e. Kondo lattice systems, the prob-
lem is much harder, and the answer is not known in gen-
eral. However, in the absence of any magnetic ordering, Lieb-
Shultz-Mattis-Hastings-Oshikawa theorem [4–6] puts strong
constraints on the possible outcomes. Specifically, in addi-
tion to a heavy Fermi liquid phase where the Fermi surface is
‘large’ since it includes the local moments, there exists a dis-
tinct possibility where f-spins decouple from the conduction
electrons at low-energies and enter a spin-liquid phase [7, 8].
In such a ‘fractionalized Fermi liquid’ phase (henceforth de-
noted as ‘FL* phase’ following Refs.[7, 8]), the conduction
electron Fermi surface is ‘small’ in that it does not include
local moments, and therefore the conventional Luttinger the-
orem [9] is violated.

From an experimental standpoint, a possible breakdown of
Kondo screening is relevant to some of the most challeng-
ing issues in heavy fermion materials [7, 10, 11]. There are
at least two conceptually different scenarios where a break-
down of Kondo screening might play a role: in materials
such as YbRh2Si2 [12] and CeCu6�xAux [13], one observes
signatures that indicate that Kondo screening might abruptly
change across the transition from a heavy Fermi liquid phase
to a magnetically ordered phase. For example, in YbRh2Si2,
one observes a jump in the Hall coefficient across the phase
transition while in CeCu6�xAux, one finds that the single ion
Kondo energy scale TK exhibits an abrupt change close the
quantum critical point. A different scenario, which is per-
haps more closely related to this paper is the transition from
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FIG. 1. (color online) (a) Schematic phase diagram of the BFG
model in the absence of Kondo coupling. (b) Schematic phase dia-
gram of the BFG model in the presence of Kondo coupling.

a heavy Fermi liquid to a non-magnetic phase across which
Kondo screening breaks down. Signatures of such a phase
were seen in Co and Ir doped YbRh2Si2 [14]. Following
Refs. [4, 7, 8] and as discussed above briefly, in the ab-
sence of any other symmetry breaking (e.g. lattice translation)
such a non-magnetic phase is inconsistent with a Fermi liquid
ground state if the Kondo screening is not operative and the
unit cell contains an odd number of spin-1/2 spins. The local
moments in such a phase are then forced to either have a gap-
less spectrum or topological order [5]. We also note that as
discussed in Ref. [15], the Kondo breakdown is also closely
related to the concept of ‘orbital selective Mott transition’.
In addition, there are several other heavy fermionic materials
such as CePdAl [16–19], -(ET)4Hg2.89Br8 [20], YbAgGe
[21], YbAl3C3 [22] and Yb2Pt2Pb [23] whose phenomenol-
ogy seems to be poorly understood, and where microscopic
considerations suggest that the geometric frustration between
local moments plays an important role.

In this paper we will introduce a generalized Kondo lat-
tice model which hosts the aforementioned Kondo breakdown
transition between a conventional phase with electron like
quasiparticles, and an FL* phase with Z2 topological order.
From a technical standpoint, the most salient feature of our
model is that it does not suffer from fermion sign problem
even in the presence of the Kondo coupling [24]. Our model
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We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the
kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model
that is known to host a Z2 spin liquid and a ferromagnetic phase. The model is amenable to sign free auxiliary
field quantum Monte Carlo simulations. While in the ferromagnetic phase the Dirac electrons acquire a gap,
they remain massless in the Z2 spin liquid phase due to the breakdown of Kondo screening. Since our model
has an odd number of spins per unit cell, this phase is a non-Fermi liquid that violates the conventional Luttinger
theorem which relates the Fermi surface volume to the particle density in a Fermi liquid. This non-Fermi liquid
is a specific realization of the so called fractionalized Fermi liquid proposed in the context of heavy fermions.
We probe the Kondo breakdown in this non-Fermi liquid phase via conventional observables such as the spectral
function, and also by studying the mutual information between the electrons and the spins.

Introduction: Electron-electron interactions can localize
charge carriers and generate insulating states with local mo-
ments [1]. What happens when these local moments (f-spins)
are Kondo coupled with magnitude JK to extended Bloch
conduction (c-) electrons? For a single local moment, the
answer is known: the Kondo coupling is relevant and the f-
electron is screened by the conduction electrons [2, 3]. For
a lattice of f-electrons i.e. Kondo lattice systems, the prob-
lem is much harder, and the answer is not known in gen-
eral. However, in the absence of any magnetic ordering, Lieb-
Shultz-Mattis-Hastings-Oshikawa theorem [4–6] puts strong
constraints on the possible outcomes. Specifically, in addi-
tion to a heavy Fermi liquid phase where the Fermi surface is
‘large’ since it includes the local moments, there exists a dis-
tinct possibility where f-spins decouple from the conduction
electrons at low-energies and enter a spin-liquid phase [7, 8].
In such a ‘fractionalized Fermi liquid’ phase (henceforth de-
noted as ‘FL* phase’ following Refs.[7, 8]), the conduction
electron Fermi surface is ‘small’ in that it does not include
local moments, and therefore the conventional Luttinger the-
orem [9] is violated.

From an experimental standpoint, a possible breakdown of
Kondo screening is relevant to some of the most challeng-
ing issues in heavy fermion materials [7, 10, 11]. There are
at least two conceptually different scenarios where a break-
down of Kondo screening might play a role: in materials
such as YbRh2Si2 [12] and CeCu6�xAux [13], one observes
signatures that indicate that Kondo screening might abruptly
change across the transition from a heavy Fermi liquid phase
to a magnetically ordered phase. For example, in YbRh2Si2,
one observes a jump in the Hall coefficient across the phase
transition while in CeCu6�xAux, one finds that the single ion
Kondo energy scale TK exhibits an abrupt change close the
quantum critical point. A different scenario, which is per-
haps more closely related to this paper is the transition from
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FIG. 1. (color online) (a) Schematic phase diagram of the BFG
model in the absence of Kondo coupling. (b) Schematic phase dia-
gram of the BFG model in the presence of Kondo coupling.

a heavy Fermi liquid to a non-magnetic phase across which
Kondo screening breaks down. Signatures of such a phase
were seen in Co and Ir doped YbRh2Si2 [14]. Following
Refs. [4, 7, 8] and as discussed above briefly, in the ab-
sence of any other symmetry breaking (e.g. lattice translation)
such a non-magnetic phase is inconsistent with a Fermi liquid
ground state if the Kondo screening is not operative and the
unit cell contains an odd number of spin-1/2 spins. The local
moments in such a phase are then forced to either have a gap-
less spectrum or topological order [5]. We also note that as
discussed in Ref. [15], the Kondo breakdown is also closely
related to the concept of ‘orbital selective Mott transition’.
In addition, there are several other heavy fermionic materials
such as CePdAl [16–19], -(ET)4Hg2.89Br8 [20], YbAgGe
[21], YbAl3C3 [22] and Yb2Pt2Pb [23] whose phenomenol-
ogy seems to be poorly understood, and where microscopic
considerations suggest that the geometric frustration between
local moments plays an important role.

In this paper we will introduce a generalized Kondo lat-
tice model which hosts the aforementioned Kondo breakdown
transition between a conventional phase with electron like
quasiparticles, and an FL* phase with Z2 topological order.
From a technical standpoint, the most salient feature of our
model is that it does not suffer from fermion sign problem
even in the presence of the Kondo coupling [24]. Our model
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the critical point is rather unconventional, and


has a rather large anomalous dimension.

⟨S+( ⃗r, τ)S−(0,0)⟩ ∼
1

(r2 + τ2)1+η

 𝜂 1.37 > 1 

(for Wilson-Fisher fixed point, 𝜂  0.03)

≈
≈

[Chubukov, Senthil, Sachdev, 1994; 
Isakov, Hastings, Melko, 2011]
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We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the
kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model
that is known to host a Z2 spin liquid and a ferromagnetic phase. The model is amenable to sign free auxiliary
field quantum Monte Carlo simulations. While in the ferromagnetic phase the Dirac electrons acquire a gap,
they remain massless in the Z2 spin liquid phase due to the breakdown of Kondo screening. Since our model
has an odd number of spins per unit cell, this phase is a non-Fermi liquid that violates the conventional Luttinger
theorem which relates the Fermi surface volume to the particle density in a Fermi liquid. This non-Fermi liquid
is a specific realization of the so called fractionalized Fermi liquid proposed in the context of heavy fermions.
We probe the Kondo breakdown in this non-Fermi liquid phase via conventional observables such as the spectral
function, and also by studying the mutual information between the electrons and the spins.

Introduction: Electron-electron interactions can localize
charge carriers and generate insulating states with local mo-
ments [1]. What happens when these local moments (f-spins)
are Kondo coupled with magnitude JK to extended Bloch
conduction (c-) electrons? For a single local moment, the
answer is known: the Kondo coupling is relevant and the f-
electron is screened by the conduction electrons [2, 3]. For
a lattice of f-electrons i.e. Kondo lattice systems, the prob-
lem is much harder, and the answer is not known in gen-
eral. However, in the absence of any magnetic ordering, Lieb-
Shultz-Mattis-Hastings-Oshikawa theorem [4–6] puts strong
constraints on the possible outcomes. Specifically, in addi-
tion to a heavy Fermi liquid phase where the Fermi surface is
‘large’ since it includes the local moments, there exists a dis-
tinct possibility where f-spins decouple from the conduction
electrons at low-energies and enter a spin-liquid phase [7, 8].
In such a ‘fractionalized Fermi liquid’ phase (henceforth de-
noted as ‘FL* phase’ following Refs.[7, 8]), the conduction
electron Fermi surface is ‘small’ in that it does not include
local moments, and therefore the conventional Luttinger the-
orem [9] is violated.

From an experimental standpoint, a possible breakdown of
Kondo screening is relevant to some of the most challeng-
ing issues in heavy fermion materials [7, 10, 11]. There are
at least two conceptually different scenarios where a break-
down of Kondo screening might play a role: in materials
such as YbRh2Si2 [12] and CeCu6�xAux [13], one observes
signatures that indicate that Kondo screening might abruptly
change across the transition from a heavy Fermi liquid phase
to a magnetically ordered phase. For example, in YbRh2Si2,
one observes a jump in the Hall coefficient across the phase
transition while in CeCu6�xAux, one finds that the single ion
Kondo energy scale TK exhibits an abrupt change close the
quantum critical point. A different scenario, which is per-
haps more closely related to this paper is the transition from
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FIG. 1. (color online) (a) Schematic phase diagram of the BFG
model in the absence of Kondo coupling. (b) Schematic phase dia-
gram of the BFG model in the presence of Kondo coupling.

a heavy Fermi liquid to a non-magnetic phase across which
Kondo screening breaks down. Signatures of such a phase
were seen in Co and Ir doped YbRh2Si2 [14]. Following
Refs. [4, 7, 8] and as discussed above briefly, in the ab-
sence of any other symmetry breaking (e.g. lattice translation)
such a non-magnetic phase is inconsistent with a Fermi liquid
ground state if the Kondo screening is not operative and the
unit cell contains an odd number of spin-1/2 spins. The local
moments in such a phase are then forced to either have a gap-
less spectrum or topological order [5]. We also note that as
discussed in Ref. [15], the Kondo breakdown is also closely
related to the concept of ‘orbital selective Mott transition’.
In addition, there are several other heavy fermionic materials
such as CePdAl [16–19], -(ET)4Hg2.89Br8 [20], YbAgGe
[21], YbAl3C3 [22] and Yb2Pt2Pb [23] whose phenomenol-
ogy seems to be poorly understood, and where microscopic
considerations suggest that the geometric frustration between
local moments plays an important role.

In this paper we will introduce a generalized Kondo lat-
tice model which hosts the aforementioned Kondo breakdown
transition between a conventional phase with electron like
quasiparticles, and an FL* phase with Z2 topological order.
From a technical standpoint, the most salient feature of our
model is that it does not suffer from fermion sign problem
even in the presence of the Kondo coupling [24]. Our model
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Kondo coupling irrelevant at the critical point due to critical exponent 𝜂 > 1,

a consequence of fractionaliztion.

dJK

dl
= (1 − η)JK

[TG, Senthil 2010]

(⟨S(r) S(0)⟩ ∼ 1/r1+η)
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Figure 1 | Construction of XXZ chains. a, IETS spectra taken on a single Co
atom on Cu2N at 0T and 2T applied along the hard axis. Left inset: atomic
arrangement near the Co atom. Right inset: energy diagram indicating the
separation between the±1/2 and±3/2 doublets. b, Atomic design for XXZ
chains and indication of the transverse field direction. Large (small) grey
circles represent Cu (N) atoms. c, Lowest excitation energies of an N=8
chain for a transverse field up to 9 T. EG and Bcrit are indicated, as well as
the transverse magnetizationM and average number of domain walls n
between each ground state change. d, Same as c for N=9.

The model H1/2 with J nnn⊥ = 0, uniform gi and Jz/J⊥ ≈ 1/8 has
a phase transition at giµBBx ≈ 1.5J⊥ from an antiferromagnetic
to a paramagnetic phase5. The additional next-nearest neighbour
coupling J nnn⊥ generated by the Schrieffer–Wolff transformation
affects neither the qualitative features of the spectrum nor the
existence of the phase transition, effectively reducing H1/2 to an
XXZ Hamiltonian in a transverse field. For finite-size realizations
the antiferromagnetic phase is characterized by a number of level
crossings, where the ground state switches between sectors of
even and odd total magnetization, reflecting the Z2 symmetry
corresponding to a π-rotation of all spins around the field axis25.

Figure 1c,d shows the calculated lowest excitation energies
of H1/2 for an even-numbered (N = 8) and an odd-numbered
(N =9) chain, respectively, for a transverse field up to 9 T. Below
the transition to the paramagnetic phase, just below 6T, several
ground state crossings are predicted, with their number increasing
with chain length. Starting from a state with Néel-like order
near zero field, each crossing corresponds to a stepwise increase
of the total magnetization M along the field and the average
number of antiferromagnetic domain walls n inside the chain
(Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in
finite chains, but becomes degenerate with the ground state
in the thermodynamic limit, where it corresponds (through a
Jordan–Wigner transformation26,27) to the topological edge states
recently observed in ferromagnetic chains on a superconducting
surface28. Below the critical field Bcrit, the ground state and this zero
mode are separated from the higher excited states by an energy
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Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an
N=5 chain in transverse fields ranging from 0T to 9T, in increments of
200mT. b, Same as a, but taken on atom 1 of an N=6 chain. IETS curves
were normalized to correct for tip height variations. Conductance values
listed at the colour bars are indicative only: owing to normalization, scaling
between spectra may vary by ∼20%. c,d, Theoretical spectra
corresponding to a,b, respectively, calculated using a spin-3/2model
(equation (1)). The Kondo peak appearing at the first ground state crossing
in b is under-represented in the theory (d). e,f, Same as c,d, but calculated
using a spin-1/2 XXZ model (equation (2)).

gap EG. As the length of the chain increases, EG remains finite and
forms the characteristic energy separating the ground state from the
continuum—except at Bcrit, where it vanishes. Just below this point,
spin liquid behaviour is predicted5.

We constructed chains of Co atoms of various length
and performed low-temperature IETS measurements
(T=330mK<EG/kB) on each atom in a chain while varying
the strength of the transverse field. To obtain an extensive data
set, a fully automated measurement sequence was employed (see
Methods). Figure 2a,b shows measurements taken on the first atom
of an odd-length (5 atoms) and an even-length chain (6 atoms),
respectively, recorded for every 200mT from 0 to 9 T. At voltages
below 5.5mV, transitions within the manifold of mz = ±1/2
states are observed; excitations at higher voltages correspond to
transitions to the mz =±3/2 manifold. The spectra show sudden
changes in both excitation energy and intensity at field values
corresponding to expected ground state crossings: near 3.5 T for
N =5 and near 1.5 T and 4.0 T for N =6.
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Atomic spin-chain realization of a model for
quantum criticality
R. Toskovic1†, R. van den Berg2†, A. Spinelli1, I. S. Eliens2, B. van den Toorn1, B. Bryant1, J.-S. Caux2

and A. F. Otte1*
The ability to manipulate single atoms has opened up the door
to constructing interestinganduseful quantumstructures from
the ground up1. On the one hand, nanoscale arrangements of
magnetic atoms are at the heart of future quantum computing
and spintronic devices2,3; on the other hand, they can be used
as fundamental building blocks for the realization of textbook
many-body quantum models4, illustrating key concepts such
as quantum phase transitions, topological order or frustration
as a function of system size. Here, we use low-temperature
scanning tunnellingmicroscopy toconstruct arraysofmagnetic
atoms on a surface, designed to behave like spin-1/2 XXZ
Heisenberg chains in a transverse field, for which a quantum
phase transition from an antiferromagnetic to a paramagnetic
phase is predicted in the thermodynamic limit5. Site-resolved
measurementson thesefinite-size realizations revealanumber
of sudden ground state changes when the field approaches
the critical value, each corresponding to a new domain wall
entering the chains. We observe that these state crossings
becomecloser for longer chains, suggesting theonsetof critical
behaviour.Our resultspresentopportunities for furtherstudies
on quantum behaviour of many-body systems, as a function of
their size and structural complexity.

Since the birth of quantummechanics, lattice spin systems6 have
represented a natural starting point for understanding collective
quantum dynamics. Today, scanning tunnelling microscopy (STM)
techniques allow one to experimentally build and probe realizations
of exchange-coupled lattice spins in different geometries7–9. In linear
arrangements, quantum effects are strongest10 and notions such
as quantum phase transitions11 are most easily understood, the
simplest illustration being the Ising model in a transverse field12,13.
In this work, using STM, we construct finite-size versions of amodel
in the same universality class, namely the spin-1/2 XXZ chain in
a transverse field5, which has previously been realized in the bulk
material Cs2CoCl4 (refs 14,15). Our set-up allows us to probe the
chainswith single-spin resolutionwhile tuning an externally applied
transverse field through the critical regime.

The chains are created by manipulating Co atoms evaporated
onto a Cu2N/Cu(100) surface (see Methods), which provides
efficient decoupling for the magnetic d-shell electrons from
the underlying bulk electrons7. Employing inelastic electron
tunnelling spectroscopy (IETS)16,17 at sufficiently low temperature
(330mK) allows us to determine the magnetic anisotropy vector
of each atom18 as well as the strength of the exchange coupling
between neighbouring atoms19. It was previously demonstrated
that Co atoms on this surface behave as spin S = 3/2 objects

experiencing a strong uniaxial hard-axis anisotropy pointing in-
plane, perpendicular to the bond with the neighbouring N atoms20.
As a result, the mz =±3/2 states split off approximately 5.5meV
above the mz =±1/2 doublet (see Fig. 1a). As we will show below,
by exploiting themagneto-crystalline anisotropy, we thus effectively
reduce the spins from 3/2 to 1/2. The Cu2N islands were kept small
(∼6 nm) to ensure limited variation in anisotropy and substrate
coupling between different atoms inside the chains21.

The Co atoms are manipulated into the arrangement shown
in Fig. 1b, such that their interaction is governed by the spin-
3/2 nearest neighbour antiferromagnetic isotropic Heisenberg
exchange:

H3/2= J
N−1∑

i=1

Si ·Si+1+D
N∑

i=1

(Szi )2 −gµBBx

N∑

i=1

Sxi (1)

with interaction strength J = 0.24meV (ref. 22), subjected to an
external magnetic field B (with g -factor g = 2.3 (ref. 20)) applied
perpendicular to the surface. This weak interaction was chosen
specifically from a set of possible configurations22 to provide a
critical point at an accessible field value. Because J and all other
relevant energy scales (kBT , µBB) stay well below the anisotropy
energy 2D≈5.5meV, excitations to±3/2 doublets can be projected
out through a Schrieffer–Wolff transformation up to first order
in 1/D (refs 15,23,24). This results in an effective spin-1/2
Hamiltonian:

H1/2 =
N−1∑

i=1

J⊥(Sxi Sxi+1+Syi S
y
i+1)+ JzSzi Szi+1

+ J nnn⊥

N−2∑

i=1

Sxi Sxi+2+Syi S
y
i+2 −µBBx

N∑

i=1

giSxi (2)

with nearest and next-nearest neighbour exchange parameters and
bulk/boundary g -factors given by:

J⊥=4J , Jz = J − 39J 2
8D , J nnn⊥ =−3J 2

D ,

gi=






2g
(
1− 3J

2D

)
if i=2, . . . ,N −1

2g
(
1− 3J

4D

)
if i=1,N

(3)

© 2016 Macmillan Publishers Limited. All rights reserved
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Coupling with Cu substrate leads to an effective Kondo lattice model.
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Figure 1 | Construction of XXZ chains. a, IETS spectra taken on a single Co
atom on Cu2N at 0T and 2T applied along the hard axis. Left inset: atomic
arrangement near the Co atom. Right inset: energy diagram indicating the
separation between the±1/2 and±3/2 doublets. b, Atomic design for XXZ
chains and indication of the transverse field direction. Large (small) grey
circles represent Cu (N) atoms. c, Lowest excitation energies of an N=8
chain for a transverse field up to 9 T. EG and Bcrit are indicated, as well as
the transverse magnetizationM and average number of domain walls n
between each ground state change. d, Same as c for N=9.

The model H1/2 with J nnn⊥ = 0, uniform gi and Jz/J⊥ ≈ 1/8 has
a phase transition at giµBBx ≈ 1.5J⊥ from an antiferromagnetic
to a paramagnetic phase5. The additional next-nearest neighbour
coupling J nnn⊥ generated by the Schrieffer–Wolff transformation
affects neither the qualitative features of the spectrum nor the
existence of the phase transition, effectively reducing H1/2 to an
XXZ Hamiltonian in a transverse field. For finite-size realizations
the antiferromagnetic phase is characterized by a number of level
crossings, where the ground state switches between sectors of
even and odd total magnetization, reflecting the Z2 symmetry
corresponding to a π-rotation of all spins around the field axis25.

Figure 1c,d shows the calculated lowest excitation energies
of H1/2 for an even-numbered (N = 8) and an odd-numbered
(N =9) chain, respectively, for a transverse field up to 9 T. Below
the transition to the paramagnetic phase, just below 6T, several
ground state crossings are predicted, with their number increasing
with chain length. Starting from a state with Néel-like order
near zero field, each crossing corresponds to a stepwise increase
of the total magnetization M along the field and the average
number of antiferromagnetic domain walls n inside the chain
(Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in
finite chains, but becomes degenerate with the ground state
in the thermodynamic limit, where it corresponds (through a
Jordan–Wigner transformation26,27) to the topological edge states
recently observed in ferromagnetic chains on a superconducting
surface28. Below the critical field Bcrit, the ground state and this zero
mode are separated from the higher excited states by an energy
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Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an
N=5 chain in transverse fields ranging from 0T to 9T, in increments of
200mT. b, Same as a, but taken on atom 1 of an N=6 chain. IETS curves
were normalized to correct for tip height variations. Conductance values
listed at the colour bars are indicative only: owing to normalization, scaling
between spectra may vary by ∼20%. c,d, Theoretical spectra
corresponding to a,b, respectively, calculated using a spin-3/2model
(equation (1)). The Kondo peak appearing at the first ground state crossing
in b is under-represented in the theory (d). e,f, Same as c,d, but calculated
using a spin-1/2 XXZ model (equation (2)).

gap EG. As the length of the chain increases, EG remains finite and
forms the characteristic energy separating the ground state from the
continuum—except at Bcrit, where it vanishes. Just below this point,
spin liquid behaviour is predicted5.

We constructed chains of Co atoms of various length
and performed low-temperature IETS measurements
(T=330mK<EG/kB) on each atom in a chain while varying
the strength of the transverse field. To obtain an extensive data
set, a fully automated measurement sequence was employed (see
Methods). Figure 2a,b shows measurements taken on the first atom
of an odd-length (5 atoms) and an even-length chain (6 atoms),
respectively, recorded for every 200mT from 0 to 9 T. At voltages
below 5.5mV, transitions within the manifold of mz = ±1/2
states are observed; excitations at higher voltages correspond to
transitions to the mz =±3/2 manifold. The spectra show sudden
changes in both excitation energy and intensity at field values
corresponding to expected ground state crossings: near 3.5 T for
N =5 and near 1.5 T and 4.0 T for N =6.
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data of Ref. [11]. For a particle-hole symmetric conduc-
tion band, our model can be simulated with the auxiliary
field quantum Monte Carlo (QMC) algorithm without en-
countering the negative sign problem. We have used the
finite temperature algorithm13–15 of the ALF-project16

and followed Refs. [17 and 18] for the implementation of
our Kondo model. In the QMC calculation we consider
a 20 ⇥ 20 square lattice with unit lattice constant and
hopping matrix element t and consider a linear arrange-
ment of magnetic adatoms at distance �l = (0, 3) or
�l = (3, 2) from each other (up to L = 7). To overcome
the finite size e↵ects we included an orbital magnetic field
corresponding to a single flux quantum traversing the
whole lattice19, and a rather large value of the Kondo
interaction Jk/t = 2 so as to ensure that the Kondo scale
of the single impurity problem remains larger than the
finite size level spacing of the conduction electrons. Fi-
nally we consider Jh/t = 1.8.

In the case of a single adatom (L = 1), the problem
reduces to that of a single impurity. The low tempera-
ture STM signal observed in Ref. [11] consists of a sin-
gle peak, the Kondo resonance, consistent with a tun-
neling process from sample to tip that goes through the
localized d-orbital of the Co adatoms. To account for
this in the realm of the Kondo model we compute co-
tunneling processes20–22 given by: Al(!) = �ImG

ret
l (!)

with G
ret
l (!) = �i

R1
0 d⌧e

i!⌧
P

�

⌦�
d̃l,�(⌧), d̃†

l,�(0)
 ↵

and d̃
†
l,� = ĉ

†
l,��

Ŝ
�

l + �ĉ
†
l,�Ŝ

z

l . Here � = ± runs over

the two spin polarization and Ŝ
±
l = Ŝ

x

l ± iŜ
y

l . This form
can be obtained by starting from the single impurity An-
derson model and applying the canonical Schrie↵er-Wolf
transformation (see supplemental material of Ref. [23])
and agrees with the expression given in Ref. [24].

Let us start by showing examples of spectral functions
at level crossings obtained from QMC by stochastic an-
alytic continuation25. As apparent from Fig. 1a), for a
single impurity we observe the characteristic temperature
dependence of a Kondo resonance at zero field. Fig. 1
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FIG. 1. The spectral function computed using stochastic an-
alytical continuation algorithm25 at a given level crossings up
to L = 4. For L > 1 we choose Jh/t = 1.8 and Jk/t = 2. The
corresponding Kondo scale is extracted in Fig. 3.

also shows the magnetic field induced Kondo resonances.
For the two site chain there is a single level crossing be-
tween the singlet and the triplet at gµBh

z = �0,1
1 . In the

generic Kondo problem, time reversal symmetry protects
the two-fold degeneracy of the impurity state. Here par-
ity protects the level crossings and a Kondo resonance
is apparent on both adatom sites, see Fig. 1b). For the
three site chain two level crossings occur before satura-
tion. The ground state is a spin-1/2 doublet in zero field
and resonances are seen on the first and third adatoms,
see Fig. 1c). At the second level crossing, the resonance is
seen only on the central adatom, see Fig. 1d). For L = 4,
Kondo resonances emerge on outer adatoms at the first
level crossing, see Fig.1e), and on the central adatoms for
the second level crossing, see Fig. 1.f).

These results have been obtained at temperatures al-
ready representative of the low temperature regime, and
they reproduce the main features of the experimental
results (see Supplemental Material, Ref. [26], Fig. 12).
However, to make a quantitative comparison with the
experiments, which correspond to much lower temper-
ature, we will concentrate on the zero bias di↵erential
conductance measured in the STM experiment10–12 as

dIl/dV (V = 0) = 2
e
2

~

Z 1

�1
d!

⇣
� df(!)

d!

⌘
Al(!) (2)

where f(!) is a Fermi function. In the low temperature
limit the above maps onto:
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~ Al(! = 0) ' 2
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⇡~�Gl(⌧ = �/2)

(3)
where Gl(⌧) =

P
�
hd̃l,�(⌧)d̃†

l,�(0)i is the imaginary time
Green function which can be directly computed in the
auxiliary field QMC. This approach avoids analytical
continuation and our discussion will be based on the field
dependence of this quantity. In the zero temperature
limit the above equation is exact, and a more precise ac-
count of the zero bias di↵erential conductance at finite
temperature without using the analytical continuation
can be obtained following Refs. [27–29].

The QMC results of the local spectral function at zero
frequency for kBT/t = 1/30 are compared to the zero
bias conductance reported in Ref. [11] as a function of
external magnetic field in Fig. 2. Noticeably, up to four
atoms the zero frequency spectral function shows excel-
lent agreement with the corresponding zero bias con-
ductance measured in the experiment. The tempera-
ture scales in the QMC and STM are comparable: the
data presented in Fig. 2 are computed below kBT

l

k
/8t,

where T
l

k
is an estimate of Kondo temperature from scal-

ing of local spin susceptibility19,30 at each level crossings
(see below), while the STM data are taken at 330 mK
⇠ T

Co

k
/8 (kBT/t ⇠ 1/35 in QMC).

To associate an adatom dependent Kondo tempera-
ture to each level crossing, we compute the local trans-

verse susceptibility, �l =
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l (0)+h.ci, where
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�⌧Ĥ . Interestingly we observe in Fig. 3
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data of Ref. [11]. For a particle-hole symmetric conduc-
tion band, our model can be simulated with the auxiliary
field quantum Monte Carlo (QMC) algorithm without en-
countering the negative sign problem. We have used the
finite temperature algorithm13–15 of the ALF-project16

and followed Refs. [17 and 18] for the implementation of
our Kondo model. In the QMC calculation we consider
a 20 ⇥ 20 square lattice with unit lattice constant and
hopping matrix element t and consider a linear arrange-
ment of magnetic adatoms at distance �l = (0, 3) or
�l = (3, 2) from each other (up to L = 7). To overcome
the finite size e↵ects we included an orbital magnetic field
corresponding to a single flux quantum traversing the
whole lattice19, and a rather large value of the Kondo
interaction Jk/t = 2 so as to ensure that the Kondo scale
of the single impurity problem remains larger than the
finite size level spacing of the conduction electrons. Fi-
nally we consider Jh/t = 1.8.

In the case of a single adatom (L = 1), the problem
reduces to that of a single impurity. The low tempera-
ture STM signal observed in Ref. [11] consists of a sin-
gle peak, the Kondo resonance, consistent with a tun-
neling process from sample to tip that goes through the
localized d-orbital of the Co adatoms. To account for
this in the realm of the Kondo model we compute co-
tunneling processes20–22 given by: Al(!) = �ImG
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the two spin polarization and Ŝ
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y

l . This form
can be obtained by starting from the single impurity An-
derson model and applying the canonical Schrie↵er-Wolf
transformation (see supplemental material of Ref. [23])
and agrees with the expression given in Ref. [24].

Let us start by showing examples of spectral functions
at level crossings obtained from QMC by stochastic an-
alytic continuation25. As apparent from Fig. 1a), for a
single impurity we observe the characteristic temperature
dependence of a Kondo resonance at zero field. Fig. 1
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FIG. 1. The spectral function computed using stochastic an-
alytical continuation algorithm25 at a given level crossings up
to L = 4. For L > 1 we choose Jh/t = 1.8 and Jk/t = 2. The
corresponding Kondo scale is extracted in Fig. 3.

also shows the magnetic field induced Kondo resonances.
For the two site chain there is a single level crossing be-
tween the singlet and the triplet at gµBh

z = �0,1
1 . In the

generic Kondo problem, time reversal symmetry protects
the two-fold degeneracy of the impurity state. Here par-
ity protects the level crossings and a Kondo resonance
is apparent on both adatom sites, see Fig. 1b). For the
three site chain two level crossings occur before satura-
tion. The ground state is a spin-1/2 doublet in zero field
and resonances are seen on the first and third adatoms,
see Fig. 1c). At the second level crossing, the resonance is
seen only on the central adatom, see Fig. 1d). For L = 4,
Kondo resonances emerge on outer adatoms at the first
level crossing, see Fig.1e), and on the central adatoms for
the second level crossing, see Fig. 1.f).

These results have been obtained at temperatures al-
ready representative of the low temperature regime, and
they reproduce the main features of the experimental
results (see Supplemental Material, Ref. [26], Fig. 12).
However, to make a quantitative comparison with the
experiments, which correspond to much lower temper-
ature, we will concentrate on the zero bias di↵erential
conductance measured in the STM experiment10–12 as
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limit the above maps onto:
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l,�(0)i is the imaginary time
Green function which can be directly computed in the
auxiliary field QMC. This approach avoids analytical
continuation and our discussion will be based on the field
dependence of this quantity. In the zero temperature
limit the above equation is exact, and a more precise ac-
count of the zero bias di↵erential conductance at finite
temperature without using the analytical continuation
can be obtained following Refs. [27–29].

The QMC results of the local spectral function at zero
frequency for kBT/t = 1/30 are compared to the zero
bias conductance reported in Ref. [11] as a function of
external magnetic field in Fig. 2. Noticeably, up to four
atoms the zero frequency spectral function shows excel-
lent agreement with the corresponding zero bias con-
ductance measured in the experiment. The tempera-
ture scales in the QMC and STM are comparable: the
data presented in Fig. 2 are computed below kBT
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ing of local spin susceptibility19,30 at each level crossings
(see below), while the STM data are taken at 330 mK
⇠ T

Co

k
/8 (kBT/t ⇠ 1/35 in QMC).

To associate an adatom dependent Kondo tempera-
ture to each level crossing, we compute the local trans-

verse susceptibility, �l =
R

�

0 d⌧hŜ+
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l (0)+h.ci, where

Ŝ
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excitation spectrum of the isolated spin-1/2 Heisenberg
chain is well understood and consists of a two-spinon con-
tinuum bounded by ⇡

2 Jh sin(k)  !(k)  ⇡Jh sin
�

k

2

�
.

Fig. 5 plots the dynamical spin spectral function for dif-
ferent values of Jk/t. Remarkably, the spin dynamics of
the Heisenberg chain remains una↵ected by conduction
electron for Jk/t . 2. In the screened phase at Jk/t > 2
spinons bind and low-energy spectral weight is depleted.

In Kondo lattices, a Kondo-breakdown transition im-
plies an abrupt change of the Luttinger volume. In
our setup such a notion cannot be applied since the lo-
calized spin-1/2 moments are sub-extensive. Neverthe-
less, we can consider the spectral function of the con-
duction electrons that directly couple to the localized
spin-1/2 moments and investigate how it evolves across
the transition. Let An(k, !) = � 1
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try is present along the x-direction and ĉk,n,� =
1p
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m=1 eikmĉi=(m,n),� is the partial Fourier transform.

Fig. 6 plots A0(k, !) corresponding to the conduction
electrons that couple to the Heisenberg chain. At Jk = 0
the spectral function shows a dominant ✏(k) = 2t cos(ka)
dispersion. In the Kondo-breakdown phase and even at
relatively large values of Jk/t = 1.5 we observe no signs
of hybridization with the spins. In contrast in the Kondo-
screened phase, Jk/t & 2, a clear signature of hybridiza-
tion is apparent.

STM experiments of magnetic adatoms on metallic
surfaces, separated by an insulating bu↵er layer shown
in Ref. [13, 14], measure tunneling between tip and
substrate occurring through the localized orbitals. In
our setup we can access this quantity by carrying out
a Schrie↵er-Wol↵ transformation of the localized elec-
tron creation operator in the realm of the Anderson
model [20, 30, 31]. In particular, Al(!) = �ImGret
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FIG. 7. Zero-bias tunneling through the magnetic adatom.

two spin polarizations and Ŝ±
l = Ŝx

l ± iŜy

l . To evaluate
the zero-bias tunneling signal we estimate Al(! = 0) '
1
⇡
�Gl(⌧ = �/2). Fig. 7 plots this quantity. Remarkably,

in the Kondo-breakdown phase, we are not able to dis-
tinguish the signal from zero. This supports the notion
that spins and conduction electrons decouple at low en-
ergies. As Jk ! 1 the spin binds in a singlet with the
conduction electron and the tunneling signal through the
adatom drops. A more detailed numerical analysis [32,
33] of the STM signal across the transition is certainly of
great interest.

Conclusion: We have shown that a one-dimensional
spin chain coupled via a Kondo interaction to 2D Dirac
fermions provides a realization of a continuous Kondo-
breakdown transition. Weak coupling Jk is irrelevant and
gapless spinons exist while propagating along the one-
dimensional chain. The reason for the absence of Kondo
screening in this phase is qualitatively similar to its ab-
sence at deconfined quantum critical points in 2D [34]: in
both cases, the anomalous dimension of the spin operator
is ‘large’ due to fractionalization, which makes conduc-
tion electrons ine↵ectual at Kondo screening. Beyond the
transition, Kondo screening appears and gapless spinons
bind. The Kondo-screened phase is adiabatically con-
nected to the strong-coupling limit, where each spin binds
with a conduction electron into a spin singlet. Larger sys-
tems will be needed to determine the critical exponents
such as the anomalous dimension of the local moments.
In addition, since the number of adatoms in experiments
is tunable [14–16], it will be very useful to determine how
many of them are needed to resolve Kondo breakdown in
an interacting spin chain.

The choice of Dirac fermions which only possess Fermi
points simplifies the problem and allows for an RG anal-
ysis. This is in contrast to the conventional Hertz-Millis-
Moriya approach [35–37] where one integrates out the
fermions to obtain an e↵ective non-local action for local
moments. Indeed, past work on Fermi surface coupled
to a spin-chain employed Hertz-Millis-Moriya approach,
and concluded that the Kondo interaction is relevant
(marginal) for an XXZ (Heisenberg) chain, thus desta-
bilizing the Luttinger liquid for infinitesimal Kondo cou-
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excitation spectrum of the isolated spin-1/2 Heisenberg
chain is well understood and consists of a two-spinon con-
tinuum bounded by ⇡

2 Jh sin(k)  !(k)  ⇡Jh sin
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Fig. 5 plots the dynamical spin spectral function for dif-
ferent values of Jk/t. Remarkably, the spin dynamics of
the Heisenberg chain remains una↵ected by conduction
electron for Jk/t . 2. In the screened phase at Jk/t > 2
spinons bind and low-energy spectral weight is depleted.

In Kondo lattices, a Kondo-breakdown transition im-
plies an abrupt change of the Luttinger volume. In
our setup such a notion cannot be applied since the lo-
calized spin-1/2 moments are sub-extensive. Neverthe-
less, we can consider the spectral function of the con-
duction electrons that directly couple to the localized
spin-1/2 moments and investigate how it evolves across
the transition. Let An(k, !) = � 1
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Fig. 6 plots A0(k, !) corresponding to the conduction
electrons that couple to the Heisenberg chain. At Jk = 0
the spectral function shows a dominant ✏(k) = 2t cos(ka)
dispersion. In the Kondo-breakdown phase and even at
relatively large values of Jk/t = 1.5 we observe no signs
of hybridization with the spins. In contrast in the Kondo-
screened phase, Jk/t & 2, a clear signature of hybridiza-
tion is apparent.

STM experiments of magnetic adatoms on metallic
surfaces, separated by an insulating bu↵er layer shown
in Ref. [13, 14], measure tunneling between tip and
substrate occurring through the localized orbitals. In
our setup we can access this quantity by carrying out
a Schrie↵er-Wol↵ transformation of the localized elec-
tron creation operator in the realm of the Anderson
model [20, 30, 31]. In particular, Al(!) = �ImGret
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two spin polarizations and Ŝ±
l = Ŝx

l ± iŜy

l . To evaluate
the zero-bias tunneling signal we estimate Al(! = 0) '
1
⇡
�Gl(⌧ = �/2). Fig. 7 plots this quantity. Remarkably,

in the Kondo-breakdown phase, we are not able to dis-
tinguish the signal from zero. This supports the notion
that spins and conduction electrons decouple at low en-
ergies. As Jk ! 1 the spin binds in a singlet with the
conduction electron and the tunneling signal through the
adatom drops. A more detailed numerical analysis [32,
33] of the STM signal across the transition is certainly of
great interest.

Conclusion: We have shown that a one-dimensional
spin chain coupled via a Kondo interaction to 2D Dirac
fermions provides a realization of a continuous Kondo-
breakdown transition. Weak coupling Jk is irrelevant and
gapless spinons exist while propagating along the one-
dimensional chain. The reason for the absence of Kondo
screening in this phase is qualitatively similar to its ab-
sence at deconfined quantum critical points in 2D [34]: in
both cases, the anomalous dimension of the spin operator
is ‘large’ due to fractionalization, which makes conduc-
tion electrons ine↵ectual at Kondo screening. Beyond the
transition, Kondo screening appears and gapless spinons
bind. The Kondo-screened phase is adiabatically con-
nected to the strong-coupling limit, where each spin binds
with a conduction electron into a spin singlet. Larger sys-
tems will be needed to determine the critical exponents
such as the anomalous dimension of the local moments.
In addition, since the number of adatoms in experiments
is tunable [14–16], it will be very useful to determine how
many of them are needed to resolve Kondo breakdown in
an interacting spin chain.

The choice of Dirac fermions which only possess Fermi
points simplifies the problem and allows for an RG anal-
ysis. This is in contrast to the conventional Hertz-Millis-
Moriya approach [35–37] where one integrates out the
fermions to obtain an e↵ective non-local action for local
moments. Indeed, past work on Fermi surface coupled
to a spin-chain employed Hertz-Millis-Moriya approach,
and concluded that the Kondo interaction is relevant
(marginal) for an XXZ (Heisenberg) chain, thus desta-
bilizing the Luttinger liquid for infinitesimal Kondo cou-
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FIG. 3. Equal-time spin-spin correlation function, C(r), as a
function of distance r along the spin chain on a log-log scale
for various values of Jk/t at Jh/t = 1 and Lx = Ly = L =
�. The grey dashed line corresponds to 1/r decay and the
corresponding static spin structure factors S(k) are shown in
the insets.

a partial particle-transformation, d̂†l," ! eiQ·ld̂l,", and

ĉ†l," ! �eiQ·lĉl,", and then using time reversal symme-
try to prove that the eigenvalues of the fermion matrix
occur in complex conjugate pairs. For a given system of
linear length L, the QMC simulations are performed at
an inverse temperature �(= 1/kBT ) = L and at a fix
Jh/t = 1. At L = 20 we checked that the the choice
� = 2L shows similar results as � = L. For the con-
sidered periodic boundary conditions, L = 4n + 2 corre-
sponds to open-shell configurations and is known to show
less finite-size e↵ects than L = 4n + 4 sized systems.

QMC results: Fig. 3 plots the spin-spin correlations
C(r) = 4hŜz

0 Ŝz

r
i as a function of distance r for various

values of Jk/t. In the limit of vanishing Kondo coupling,
our results are consistent with the exact asymptotic form:
C(r) / (�1)r

p
ln r/r. The 1/r decay of the spin-spin

correlations in the Heisenberg model, is tied to SU(2)
spin symmetry. If the Kondo coupling is irrelevant, then
we expect

P
l Ŝl to remain a good quantum number of

the low-energy e↵ective theory. Thereby the asymptotic
form of the spin-spin correlations should equally follow a
(�1)r/r form. Remarkably, the data supports this point
of view up to Jk/t . 2. On the other hand, in the Kondo-
screened phase for Jk/t & 2, the equal-time correlations
decay with a power larger than unity. In this phase, we
expect the spin-spin correlations to inherit the power-law
of the Dirac fermions hŜz,c

l Ŝz,c

l+ri / 1/r4. (see Fig. S3
of Ref. [24]). The insets of Fig. 3 plot the static spin
structure factor S(k) = 1

L

P
r
e�ik·rC(r) as a function of

momentum k. Noticeably, both at Jk = 0 and Jk/t = 1.5
we observe systematic growth of S(k) at k = ⇡, reflecting
the (�1)r/r real space decay. At Jk/t = 2 we observe a
cusp feature but a saturation of S(k = ⇡) with system
size thus suggesting a power law with exponent 1 < K� <
2. Finally, in the Kondo-screened phase at Jk/t = 3,
S(k) converges to a smooth function implying K� > 2.
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FIG. 4. Left: Magnetic susceptibility �(k = ⇡) as a function
of Jk/t for Jh/t = 1 and � = L. Right: Plots @F/@Jk as a
function of Jk/t.
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FIG. 5. Dynamical spin structure factor, S(k, !), along spin
chain as a function of energy (!/t) and momentum (k) for
L = � = 44 at Jh/t = 1.

A detailed overview of the QMC data is given in Sec. IV
of Ref. [24].

To confirm the above, we have computed the spin sus-

ceptibility �(k) =
R

�

0 d⌧S(k, ⌧) with S(k, ⌧) given as:

S(k, ⌧) =
X

r

e�ik·rhSz(r, ⌧)Sz(r = 0, ⌧ = 0)i. (3)

Lorentz invariance, inherent to spin chains, renders space
and time interchangeable such that the time displaced
correlation function scales as 1/

p
r2 + (vs⌧)2 with vs the

spin velocity. Setting � = L, we hence expect �(k = ⇡)
to diverge as L. Fig. 4 (a) plots �(k = ⇡) at � = L =
4n + 2. A similar data at L = 4n + 4 can be found in
Fig. S8 of Ref. [24]. For both cases we see two phases,
one in which �(k = ⇡) scales as L and one in which it
scales to a L-independent constant. In Fig. 4 (b) we plot
1
L

@F

@Jk
= 2

3L

P
L

l=1hĉ
†
l�ĉl · Ŝli so as to inquire the nature

of the transition. The data favors a smooth curve, and
hence a continuous quantum phase transition.

We now consider the dynamical spin structure factor,
that relates to the imaginary-time correlation functions
through S(k, ⌧) = 1

⇡

R
d! e

�⌧!

1�e��! �00(k, !). To extract

S(k, !) = �
00(k,!)

1�e��! , we use the ALF-implementation of the
stochastic analytical continuation algorithm [29]. The

Spin-spin correlations decay as  for 


and as  for 

(−1)r log(r) /r JK < JK,c

(−1)r /r4 JK > JK,c (~ Fermi liquid)

(~ Heisenberg chain)
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We consider a spin-1/2 Heisenberg chain coupled via a Kondo interaction to two-dimensional
Dirac fermions. The Kondo interaction is irrelevant at the decoupled fixed-point, leading to the
existence of a Kondo-breakdown phase and a Kondo-breakdown critical point separating such a
phase from a heavy Fermi liquid. We reach this conclusion on the basis of a renormalization group
analysis, large-N calculations as well as extensive auxiliary-field quantum Monte Carlo simulations.
We extract quantities such as the zero-bias tunneling conductance which will be relevant to future
experiments involving adatoms on semimetals such as graphene.

The antiferromagnetic Kondo coupling, Jk, between a
spin-1/2 degree of freedom and a Fermi sea with finite
density of states at the Fermi energy is (marginally) rel-
evant: Jk flows to strong coupling and the impurity is
screened. If, in contrast, the density of states shows
a power-law pseudogap behavior, the Kondo coupling
is irrelevant at the decoupled fixed point, and the spin
remains unscreened at weak coupling. Since for large
Kondo coupling screening is present, a novel Kondo-
breakdown quantum critical point emerges [1, 2, 3]. The
decoupled as well as Kondo-screened phase share the
same symmetry properties.

In the context of Kondo lattices, the numbers of both
conduction electrons and impurity spins scale with the
volume of the system. In the Kondo-screened para-
magnetic (i.e. heavy Fermi liquid) phase, the volume
enclosed by the Fermi surface (i.e. Luttinger volume)
counts both spins and electrons. A Kondo-breakdown
transition (equivalently, an orbital-selective Mott tran-
sition [4]), which, as above, does not involve symmetry
breaking, implies that the spins drop out from the Lut-
tinger count. For the case of an odd number of electrons
and spins per unit cell, this leads to a violation of the Lut-
tinger sum rule. Oshikawa’s flux-threading argument [5,
6] shows that a specific family of the resulting states of
matter can be achieved via topological degeneracy in the
spin sector [7]. Such states, coined fractionalized Fermi
liquid (FL⇤) phases, have been realized numerically [8].
Kondo breakdown has also been proposed to understand
the phenomenology of heavy-Fermion systems [7, 9, 10],
especially in the context of materials such as YbRh2Si2
and CeCu6�xAux [11, 12].

In this article, we consider a situation intermediate
between Kondo impurity and Kondo lattice: a one-
dimensional (1D) Heisenberg chain which is Kondo-
coupled to Dirac electrons. Dimensional analysis shows
that, at the decoupled fixed point, the Kondo coupling
is irrelevant, thus leading to an RG flow very similar to
that of the pseudogap Kondo e↵ect discussed above, see
Fig. 1. The motivation to study such systems equally
stems from scanning tunneling microscopy (STM) experi-

Jk/t=∞Jk/t=0

Decoupled spin chain Kondo screened

Kondo breakdown  
critical point

Jk/t=∞Jk/t=0

Decouple spin chain Kondo screened

Kondo breakdown  
critical point

FIG. 1. Renormalization group flow of the Kondo coupling,
Jk, for a spin-1/2 chain on a semimetallic substrate.

ments of Co adatoms on a Cu2N/Cu(100) surfaces. Here,
recent experiments show an impressive ability to tune the
exchange coupling between adatoms as well as the cou-
pling of adatoms to the surface [13–19]. As shown in
Ref. [20], simple models amenable to negative-sign-free
quantum Monte Carlo (QMC) simulations are able to
provide a detailed account of the experiments. Another
experimental system that has qualitative resemblance
with our setup is Yb2Pt2Pb, where neutron scattering
indicates the presence of 1D spinons, and apparent ab-
sence of Kondo screening, despite the presence of three-
dimensional conduction electrons [21, 22]. In our study,
we consider conduction electrons in two dimensions with
Dirac spectrum since this choice unambiguously leads to
a Kondo-breakdown phase and phase transition, while
also allowing RG and large-N calculations and explicit
comparison to QMC numerics.

Model Hamiltionian: We consider a spin-1/2 Heisen-
berg chain on a semimetallic substrate:

Ĥ = �t
X

hi,ji,�

⇣
e

2⇡i
�0

R j
i A.dl ĉ†i ĉj + h.c.

⌘

+
Jk

2

LX

l=1

ĉ†l�ĉl · Ŝl + Jh

LX

l=1

Ŝl · Ŝl+�l. (1)

Here, t is the hopping parameter of the conduction elec-
trons, the summation

P
hi,ji runs over a square lattice

and ĉ†i =
�
ĉ†i,", ĉ

†
i,#

�
is a spinor where ĉ†i,"(#) creates an

electron at site i with z-component of spin 1/2 (�1/2).
We use the Landau gauge, A = B(�y, 0, 0), and tune
B such that half a flux quantum (⇡-flux) pierces each
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of Eq. (2). Moreover, the dissipation-induced finite life-
time broadening changes the low lying linear spinon mode
! / k to the quadratic ! / k

2 spin wave mode. Hence,
reflect the change in the dynamical exponent from z = 1
to z = 2 in the dissipative phase. Finally, in the Kondo
screened phase at Jk/t = 3 see Fig. 6 (d) the low-lying
spectral weight of spinons depleted and dissolve. For a
comparison the S(k,!) spectrum for a dissipative spin
chain within the linear spin wave approximation can be
found in Fig. S3 of Ref [20].

(c)

Jk/t=1.8Jk/t=0(a) (b)

Jk/t=3(d)Jk/t=2
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FIG. 6. S(k,!) as a function of energy !/t and momentum
k along the spin chain at �t = L = 44 and Jh/t = 1.

The other important quantity of the experimen-
tal relevance is the composite fermion spectral
function; Al(!) = �ImG

ret
l (!) with G

ret
l (!) =

�i
R1
0 dte

i!t
P

�
h
�
 ̂l,�(t),  ̂†

l,�(0)
 
i. Here,  ̂

†
l,� =

2
P

�0 ĉ
†
l,�0��0,�.Ŝl is a composite fermion operator. This

operator provides the measure of hybridisation order pa-
rameter in between the local moments and the conduc-
tion electrons [36, 37]. The dynamics of this operator
equally captures the tunneling processes in between tip
and sample that goes through the localised d (or f) or-
bitals in STM experiments [11, 12, 25]. Here, we fo-
cus on the exact zero frequency signal Al(! = 0) '
(1/⇡)�Gl(⌧ = �/2) which is directly extracted from
imaginary time QMC data. Fig. 7 plots this quantity as
a function of temperature for various Jk/t. The detailed
temperature and Jk dependence of Al(! = 0) supports
the two phases. As in the dissipative phase the signal
goes downwards on lowering the temperature due to the
strong spin flip scattering of conduction electrons by lo-
cal moments. In another phase the local moments are
screened by conduction electrons and the signal goes up-
wards and tends to saturate. This distinct behaviour of
Al(! = 0) signal leads to the possibility to probe the two
phases in STM by systematically analysing the tempera-
ture dependency of zero bias signal dIl/dV (V = 0). The
other crucial observation is the non vanishing Al(! = 0)
signal in low temperature limit is a signature of a finite
hybridisation parameter V all the way up to the lowest
considered Jk/t = 0.5. In a sharp contrast to the Kondo
breakdown phase observed on a semi metallic substrate

in weak Kondo coupling limit [26]. The local density of
states Al(!) as a function of energy ! can be found in
Fig. S8 of Ref. [20].

0 0.1 1 10
0.0
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1
1.3
1.5
1.8
2
2.3
2.5    

T/t

Jh/t=1, Lx= Ly=L=44 Jk/t

FIG. 7. Zero bias signal Al(! = 0) as a function of temper-
ature T/t at L = 44 for given Jk/t.

We have explored the phases of a spin-1/2 chain cou-
pled to 2 D conduction electrons. At weak Jk our simu-
lations on finite system sizes reveal the crossover physics.
In this limit a dissipative phase occurs on the spin chain
with the 1/r real space decay and 1/

p
⌧ decay in imag-

inary time. The two spinon continuum of the chain in
this phase is damped by coupling to the 2D bath. At
large enough Jk we observe a quantum phase transition
into the heavy Fermi liquid phase where the spin degree
of freedom acquires the 2D Fermi liquid properties. Fi-
nally, based on zero bias contunneling conductance we
have discussed the possibility to probe the two phases
in STM. Our study provides a comprehensive theoreti-
cal understanding of magnetic adatoms on metallic sur-
faces [12–14] and further opens new pathways to explore
the dissipation and the Kondo e↵ect driven quantum crit-
icality in such a framework.

A spin-1/2 XXZ chain coupled via anisotropic Kondo
coupling on 2D metal has been studied in Ref [38] leads
to a similar conclusion. We have also performed our sim-
ulation for a spin-1/2 XXZ chain at an experimentally
relevant point J

?
/J

z = 4 [12] and with isotropic Jk. Al-
though Jk is truly relevant for XXZ chain on 2D metal
at Jk = 0 point in spite that on finite system sizes we ob-
serve no change in real space decay from the exact Jk = 0
form, however, akin to Heisenberg chain we observe the
slow decay in imaginary time set by the Luttinger pa-
rameter.

Evidence of z = 2 dynamical 
critical exponent.

Weak signal of long-range Neel ordering

in QMC (L < 40), possibly due to 

marginal relevance of dissipation

2

and time displaced correlations in this case are analyzed
in Sec. I of Supplemental material [20]. The key ob-
servation is for the considered square conducting sub-
strate the time displaced correlation decays 1/⌧

1.89 as
compared to the actual 1/⌧

2 power law. Therefore, the
slower time decay modifies the scaling dimension of Jk,
3 � 1.89 � 2�n = 0.11 > 0, and makes it relevant from
marginal in our framework.

In this letter, our aim is to investigate this system using
negative sign free auxiliary field quantum Monte Carlo
(QMC) approach [21–24]. Our method is appropriate to
treat the dissipation and the Kondo screening at equal
footing and also takes account of the sub dominating
RKKY interaction. In this line our previous QMC simu-
lation gives an explicit account of STM spectrum [25] and
nicely reveals the Kondo breakdown of spin-1/2 chain on
a Dirac substrate [26]. In the absence of Kondo coupling
the dissipative chains have been extensively studied in
past [27–31]. Based on extensive numerical and analyti-
cal methods such as QMC with Worm algorithm and RG
analysis these studies have concluded that the dissipa-
tion induced by an Ohmic bath drives the magnetic order
in 1D quantum systems. The violation of the Mermin-
Wagner theorem arises from the fact that any coupling
to Ohmic bath e↵ectively modifies the system.

A spin wave analysis presented in Sec. II of Ref. [20]
shows that in weak coupling limit the dissipative term
in action of Eq. (2) leads an integrable 1/

p
!2 + ↵! sin-

gularity where ↵ is the dissipative coupling to the bath.
Thereby stabilizes the low lying spin wave along the spin
chain in a large S limit and induces a true antiferromag-
netic (AFM) order for weak Jk. On the other hand, for
large Jk we expect spins to hybridize and form a Kondo
singlet with the conduction electrons. Assuming that the
two phases are separated by a quantum phase transition
(QPT) a conjectured RG flow diagram is given in Fig. 1
(a). Fig. 1 (b) shows the quantum phase diagram in
parameter space of Kondo and Heisenberg couplings ob-
tained within QMC. The two phases of Fig. 1 (b) are
supported by a simple mean-field approach presented in
Sec. III of Ref. [20].

0 1 2 3 4
0
1
2
3
4

    

Jk/t

Jh/t
AFM

Kondo Screened

(b)(a)

FIG. 1. (a) A conjectured renormalisation group flow diagram
in the plane of dissipation and Kondo screening for a spin-
1/2 chain on a two dimensional metal. (b) Phase diagram in
parameter space of Heisenberg and Kondo couplings extracted
within QMC at � / Lz with z = 2. The red line at Jk = 0
represents the decoupled Heisenberg chain.

QMC Results. We simulate the Hamiltonian given

in Eq. (1) using the Algorithms for Lattice Fermions
(ALF) [32, 33]. Our simulation is based on the finite
temperature auxiliary field QMC approach in the grand
canonical ensemble [24, 34].

To probe the nature of the quantum phase transition
we consider the correlation ratio R,

R = 1 � �(k � �k)

�(k)
(3)

with k = ⇡ and the smallest wave vector �k along the
spin chain. Generally, in the ordered (disordered) phase
this quantity scales to unity (zero) for �, L ! 1. At a
critical point it corresponds to the RG invariant quan-
tity. This quantity as a function of Jk/t at �t = L

2
/2 is

plotted in Fig. 2 (a). Here we observe a L independent
constant at J

c

k
/t ⇠ 2.1 and thus locate the quantum crit-

ical point. Below the critical point we observe the growth
in R with respect to L which is a sign of the magnetic or-
dering. In particular at Jk/t = 1.8 wee note a growth see
subfigure of Fig. 2 (a). Since the RG flow from Heisen-
berg point to ordered phase is slow the growth in R is
only noticeable for intermediate couplings. On the other
hand above the critical point it decreases with respect to
L which is a sign of Kondo screening. Furthermore, in
Fig. 2(b) the smooth change in the free energy derivative
1
L

@F

@Jk
= 2

3L

P
lhĉ

†
l�ĉl · Ŝli with Jk confirmed a continu-

ous transition. In subfigure Fig. 2(b) a dip in the second

derivative of free energy @
2
F

@J
2
k

around Jk/t = 2.1 coincide

with crossing in R and hence confirms a single transition.
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FIG. 2. (a) Correlation ratio R as a function of Jk/t at �t =
L2/2 and Jh/t = 1. The inset plots R as a function of 1/L at
Jk/t = 1.8 and Jk/t = 3. (b) First derivative of free energy
as a function of Jk/t at �t = L and Jh/t = 1. The inset plots
the second derivative of the free energy.

The two phases of Fig. 1 can be distinguished by the
space-time correlation decays along the spin chain. Con-
sider the isolated spin-1/2 chain, the Lorentz invariance
guarantee the interchangeability of space-time correla-
tions, hT⌧ Ŝ

z(0, 0)Ŝz(r, ⌧)i / 1p
r2+(vs⌧)2

, where vs is the

spin velocity. In this case the scaling � / L
z with dynam-

ical exponent z = 1 is su�ces to overcome the finite size
gap �s = vs2⇡

L
and to converge the physical observables.

To investigate the deviation from decouple Heisenberg
limit we consider the real space and imaginary time spin-
spin correlation functions C(r) = 4hŜz

0 Ŝ
z

r
i and C(⌧) =

4hT⌧ Ŝ
z

l
(⌧)Ŝz

l
(0)i, respectively. In the Kondo screened
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of Eq. (2). Moreover, the dissipation-induced finite life-
time broadening changes the low lying linear spinon mode
! / k to the quadratic ! / k

2 spin wave mode. Hence,
reflect the change in the dynamical exponent from z = 1
to z = 2 in the dissipative phase. Finally, in the Kondo
screened phase at Jk/t = 3 see Fig. 6 (d) the low-lying
spectral weight of spinons depleted and dissolve. For a
comparison the S(k,!) spectrum for a dissipative spin
chain within the linear spin wave approximation can be
found in Fig. S3 of Ref [20].
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FIG. 6. S(k,!) as a function of energy !/t and momentum
k along the spin chain at �t = L = 44 and Jh/t = 1.

The other important quantity of the experimen-
tal relevance is the composite fermion spectral
function; Al(!) = �ImG

ret
l (!) with G

ret
l (!) =

�i
R1
0 dte

i!t
P

�
h
�
 ̂l,�(t),  ̂†

l,�(0)
 
i. Here,  ̂

†
l,� =

2
P

�0 ĉ
†
l,�0��0,�.Ŝl is a composite fermion operator. This

operator provides the measure of hybridisation order pa-
rameter in between the local moments and the conduc-
tion electrons [36, 37]. The dynamics of this operator
equally captures the tunneling processes in between tip
and sample that goes through the localised d (or f) or-
bitals in STM experiments [11, 12, 25]. Here, we fo-
cus on the exact zero frequency signal Al(! = 0) '
(1/⇡)�Gl(⌧ = �/2) which is directly extracted from
imaginary time QMC data. Fig. 7 plots this quantity as
a function of temperature for various Jk/t. The detailed
temperature and Jk dependence of Al(! = 0) supports
the two phases. As in the dissipative phase the signal
goes downwards on lowering the temperature due to the
strong spin flip scattering of conduction electrons by lo-
cal moments. In another phase the local moments are
screened by conduction electrons and the signal goes up-
wards and tends to saturate. This distinct behaviour of
Al(! = 0) signal leads to the possibility to probe the two
phases in STM by systematically analysing the tempera-
ture dependency of zero bias signal dIl/dV (V = 0). The
other crucial observation is the non vanishing Al(! = 0)
signal in low temperature limit is a signature of a finite
hybridisation parameter V all the way up to the lowest
considered Jk/t = 0.5. In a sharp contrast to the Kondo
breakdown phase observed on a semi metallic substrate

in weak Kondo coupling limit [26]. The local density of
states Al(!) as a function of energy ! can be found in
Fig. S8 of Ref. [20].
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FIG. 7. Zero bias signal Al(! = 0) as a function of temper-
ature T/t at L = 44 for given Jk/t.

We have explored the phases of a spin-1/2 chain cou-
pled to 2 D conduction electrons. At weak Jk our simu-
lations on finite system sizes reveal the crossover physics.
In this limit a dissipative phase occurs on the spin chain
with the 1/r real space decay and 1/

p
⌧ decay in imag-

inary time. The two spinon continuum of the chain in
this phase is damped by coupling to the 2D bath. At
large enough Jk we observe a quantum phase transition
into the heavy Fermi liquid phase where the spin degree
of freedom acquires the 2D Fermi liquid properties. Fi-
nally, based on zero bias contunneling conductance we
have discussed the possibility to probe the two phases
in STM. Our study provides a comprehensive theoreti-
cal understanding of magnetic adatoms on metallic sur-
faces [12–14] and further opens new pathways to explore
the dissipation and the Kondo e↵ect driven quantum crit-
icality in such a framework.

A spin-1/2 XXZ chain coupled via anisotropic Kondo
coupling on 2D metal has been studied in Ref [38] leads
to a similar conclusion. We have also performed our sim-
ulation for a spin-1/2 XXZ chain at an experimentally
relevant point J

?
/J

z = 4 [12] and with isotropic Jk. Al-
though Jk is truly relevant for XXZ chain on 2D metal
at Jk = 0 point in spite that on finite system sizes we ob-
serve no change in real space decay from the exact Jk = 0
form, however, akin to Heisenberg chain we observe the
slow decay in imaginary time set by the Luttinger pa-
rameter.

Co-tunneling (Kondo screening everywhere)


