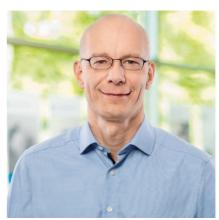
Dissipation and Berry Phase Induced Transitions in Kondo lattices

Simon Martin (UCSD)

Bimla Danu (Würzburg)

Fakher Assaad (Würzburg)



Matthias Vojta (TU Dresden)

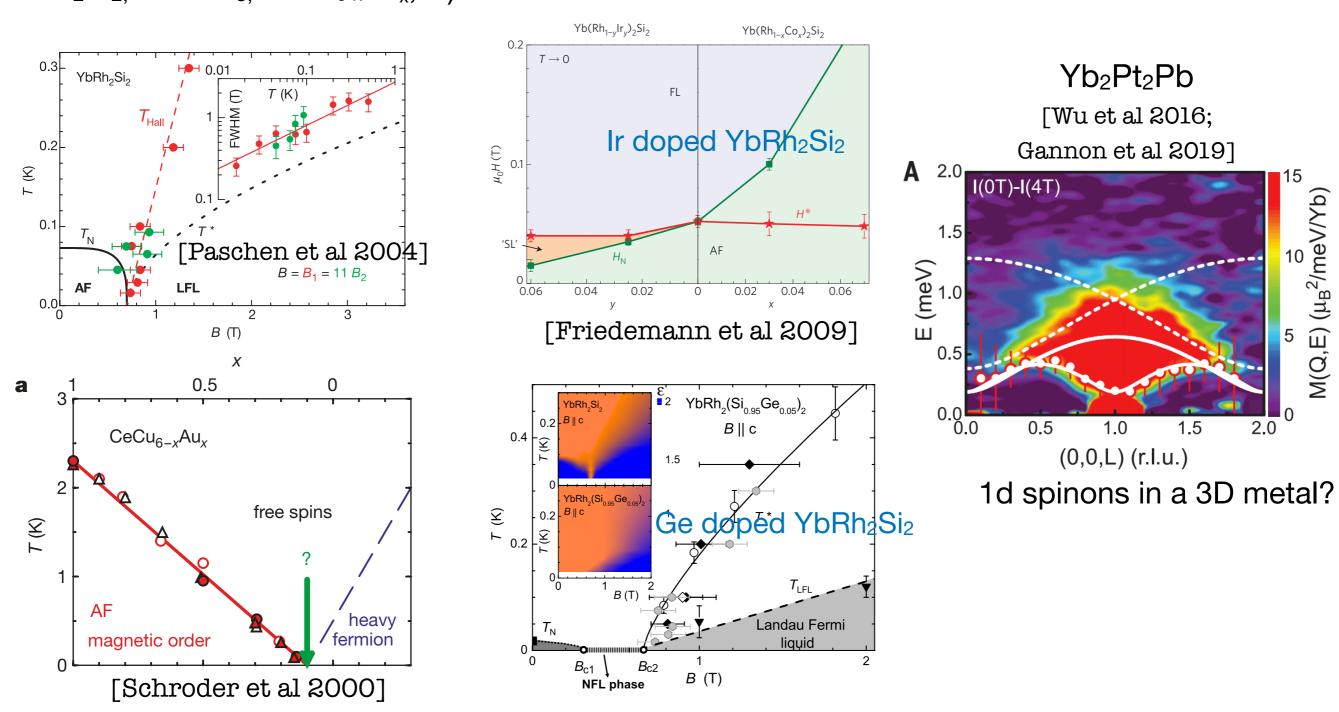
Main motivation for this talk: Questions related to local moments in a metallic bath

Kondo breakdown transitions (YbRh₂Si₂, CeRhIn₅, CeCu_{6-x}Au_x,...)

(Apparent) Non-Fermi liquid (stable) phases

 $M(Q,E)~(\mu_{\rm B}^2/{
m meV/Yb})$

2.0



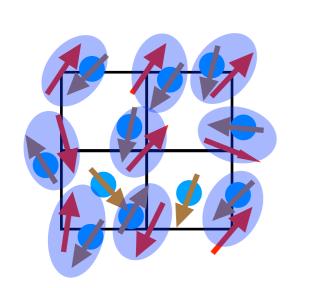
[Custers et al 2010]

"Large" Vs "Small" Fermi surfaces

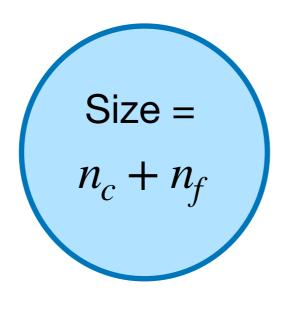
$$H = -t \sum_{\langle r, r' \rangle} \left(c_{r,\sigma}^{\dagger} c_{r,\sigma} + h.c. \right) + J_K \sum_{r} c_{r}^{\dagger} \sigma c_{r} \cdot \mathbf{S}_{r} + \sum_{r,r'} J_{r,r'} \mathbf{S}_{r} \cdot \mathbf{S}_{r'}$$

Heavy Fermi liquid

= Large Fermi surface

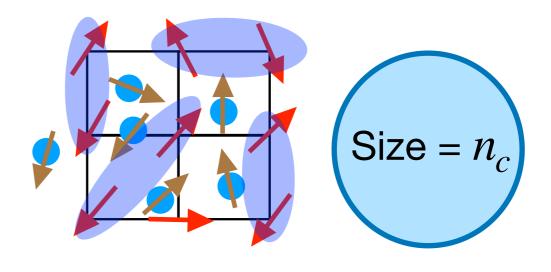


Real Space



Momentum Space

"Fractionalized Fermi liquid" = one route to small Fermi surface



Real Space Momentum Space

A paramagnet with a small Fermi surface is necessarily a non-Fermi liquid [Senthil, Vojta, Sachdev 2002, Oshikawa 2000]. Further, magnetically ordered phases can also show Kondo breakdown [Si 2001, 2006].

1. At a generic chemical potential, Kondo lattice model has a fermion sign problem. Can one design models where one can access a paramagnetic large Fermi surface phase, and proximate phases, e.g., a Kondo-breakdown phase?

2. In low-dimensions (e.g. d = 1), Berry phase effects associated with order-parameter fluctuations can become important. Can they alter the phase diagram qualitatively, e.g., generate non-Fermi liquids?

Quantum critical phenomena

John A. Hertz 1976

$$\Phi[\Psi] = \frac{1}{2} \sum_{q\omega} \left(r_0 + q^2 + \frac{|\omega|}{q} \right) |\Psi(q, \omega)|^2 + \text{interactions}$$

Sign Problem for Kondo Lattice models

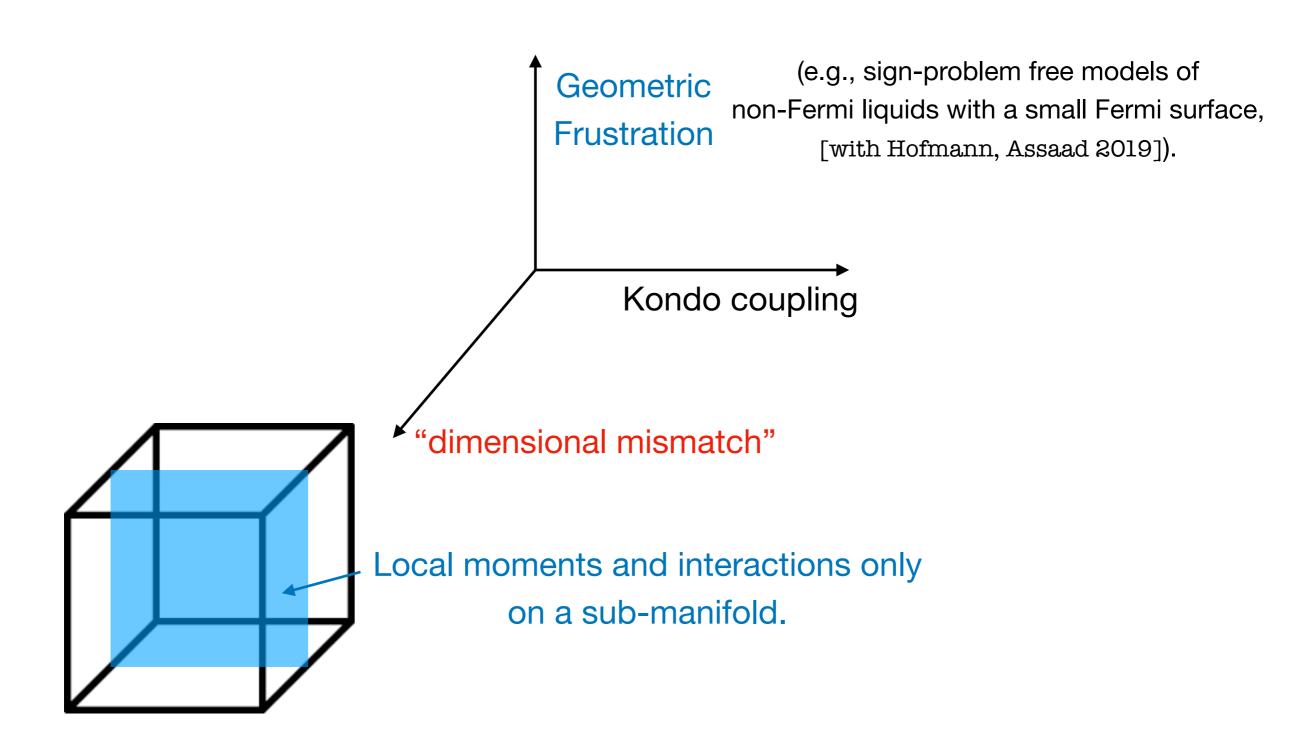
$$H = -t \sum_{\langle r, r' \rangle} \left(c_{r,\sigma}^{\dagger} c_{r,\sigma} + h.c. \right) + J_K \sum_{r} c_{r}^{\dagger} \sigma c_{r} \cdot \mathbf{S}_{r} + \sum_{r,r'} J_{r,r'} \mathbf{S}_{r} \cdot \mathbf{S}_{r'}$$

Absence of sign-problem requires half-filling and a bipartite lattice. However, at half-filling, the heavy Fermi liquid is replaced by a Kondo insulator ⇒ No fermions at low energy.

More generally, tension between repulsively interacting fermions with a stable Fermi surface, and sign-problem-free QMC

(see, e.g., [Ori Grossman, Erez Berg 2023]).

(At least) two ways to obtain a Kondo breakdown transition without fermion sign problem...



Experiments on "Hybrid-dimensionality" Kondo lattice systems

Atomic spin-chain realization of a model for quantum criticality

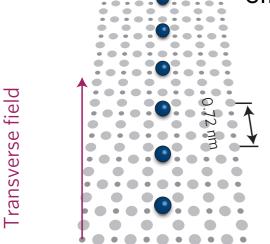
R. Toskovic^{1†}, R. van den Berg^{2†}, A. Spinelli¹, I. S. Eliens², B. van den Toorn¹, B. Bryant¹, J.-S. Caux² and A. F. Otte^{1*}
(2016)

 $y \rightarrow x$

Magnetic cobalt adatoms on metallic copper.

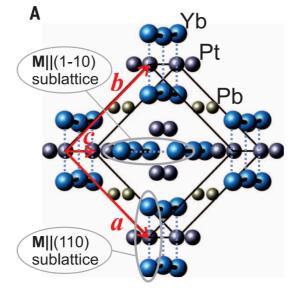
effective spin-1/2 Co due to easy-axis anisotropy, Kondo coupled to Cu.

[Danu, Assaad, Mila (2019)]

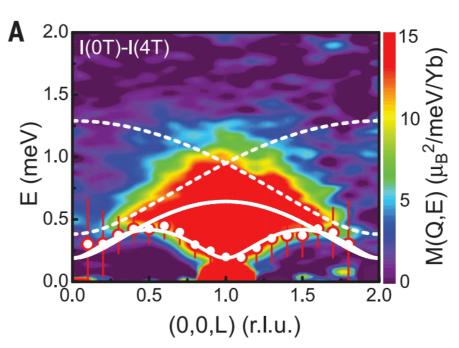


Orbital-exchange and fractional quantum number excitations in an f-electron metal, Yb₂Pt₂Pb

L. S. Wu, ^{1,2,3} W. J. Gannon, ^{1,2,4} I. A. Zaliznyak, ^{2*} A. M. Tsvelik, ² M. Brockmann, ^{5,6} J.-S. Caux, ⁶ M. S. Kim, ² Y. Qiu, ⁷ J. R. D. Copley, ⁷ G. Ehlers, ³ A. Podlesnyak, ³ M. C. Aronson^{1,2,4}



[Wu et al 2016; Gannon et al 2019]



Kondo breakdown in a hybrid-dimensionality model

1+1-D spin-chain Kondo coupled to a 2+1-D Dirac semi-metal.

Low energy theory
$$S = \int d^2x \, d\tau \, \, \bar{\Psi} \partial \!\!\!/ \Psi + J_K \int dx \, d\tau \, \, \vec{N} \cdot \bar{\Psi} \vec{\sigma} \Psi + S_{\rm 1d \; Heisenberg}$$
 [with Danu, Vojta, Assaad (2020)]

 J_K irrelevant at the decoupled fixed-point corresponding to 2+1-D Dirac Fermions \otimes 1+1-D Hesienberg Chain.

Therefore, expect a Kondo breakdown transition.

$$j_k = J_k \Lambda^{\epsilon}$$
 $\frac{dj_k}{d\ln \Lambda} = \epsilon j_k - \frac{j_k^2}{2}$ $(\epsilon = d - 3/2)$

"Fractionalized Fermi liquid"

0

5

with 1d spinons

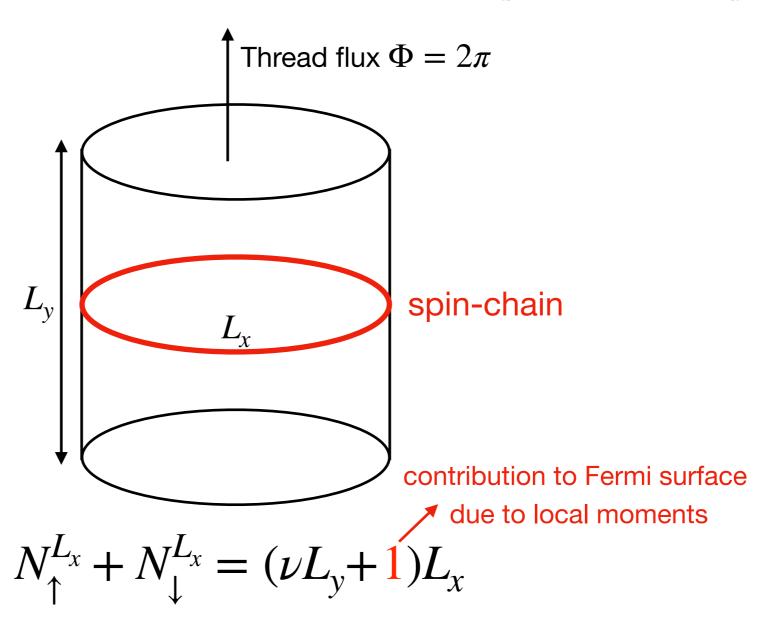
Kondo screened $J_k/t=0$ Kondo breakdown

critical point $J_k/t=\infty$

Spin-spin correlations decay as
$$(-1)^r \sqrt{\log(r)}/r$$
 for $J_K < J_{K,c}$ (~ Heisenberg chain) and as $(-1)^r/r^4$ for $J_K > J_{K,c}$ (~ "large Fermi surface" semimetal)

Defining Large Fermi Surface in a hybrid-dimensionality system using Oshikawa's argument

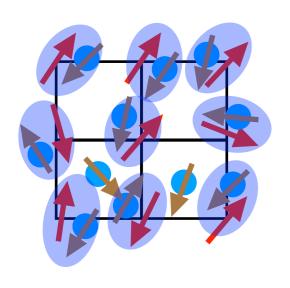
[Oshikawa 2000]



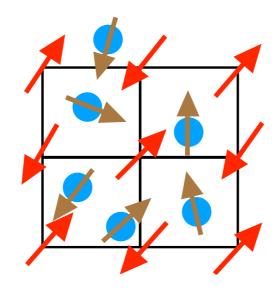
 $N_{\uparrow/\downarrow}^{L_\chi}$ = Number of occupied momentum modes in the Fermi sea for the up/down electrons. ν = Density of conduction electrons.

Transition between Magnetically Ordered Phase and Heavy Fermi liquid?

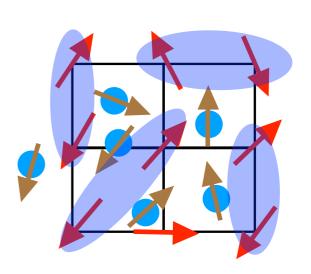
Heavy Fermi liquid



Magnetic metal



Fractionalized Fermi liquid

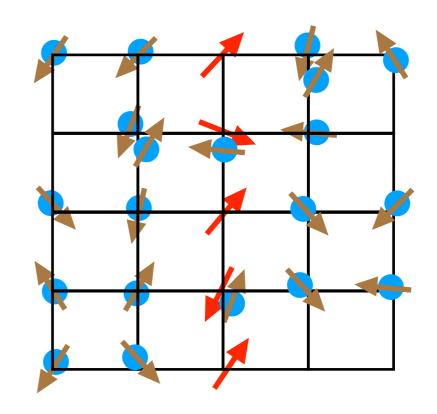


Again, fermion sign-problem a major obstacle.

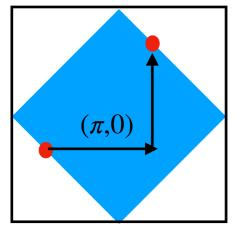
Square lattice nested

Fermi surface Kondo
$$\hat{H} = -t \sum_{\langle \pmb{i}, \pmb{j} \rangle} \left(\hat{\pmb{c}}_{\pmb{i}}^{\dagger} \hat{\pmb{c}}_{\pmb{j}} + \text{H.c.} \right) + \frac{J_k}{2} \sum_{\pmb{l}=1}^L \hat{\pmb{c}}_{\pmb{l}}^{\dagger} \sigma \hat{\pmb{c}}_{\pmb{l}} \cdot \hat{\pmb{S}}_{\pmb{l}}$$

$$+J_h\sum_{m{l}=1}^L \hat{m{S}}_{m{l}}\cdot\hat{m{S}}_{m{l}+\Deltam{l}}$$
. 1d Heisenberg



Problem "intermediate" between the standard 2d Kondo lattice model, and the standard single impurity Kondo problem



Scattering from spins couple Fermi surface points with $\Delta k_x \approx (\pi,0)$

Fermi surface stable due to dimensional mismatch!

[with Danu, Vojta, Assaad 2022; cf. Classen, Zaliznyak, Tsvelik 2018 → non-Fermi liquid for a finite density of XXZ chains

Dissipation due to fermions can lead to long-range AFM order even in a 1d chain!

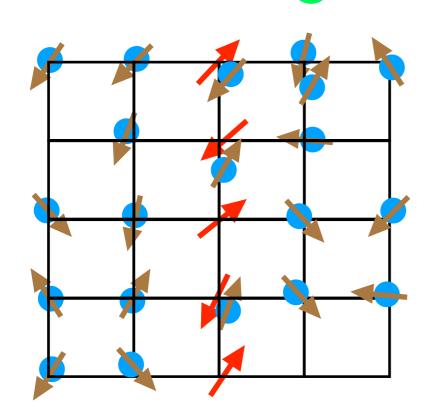
[e.g. P. Werner, M. Troyer, and S. Sachdev 2005; Lobos, Cazalilla, Chudzinski 2012; Weber, Luitz, Assaad 2021]

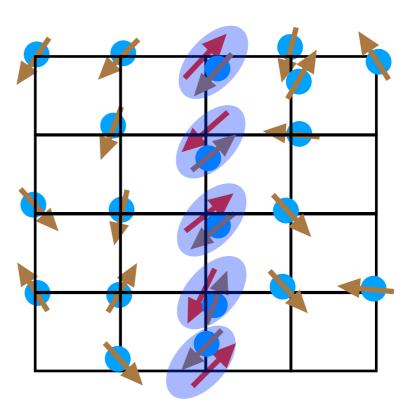
Damped Goldstone modes with dynamical exponent z = 2 AFM metal $\langle \boldsymbol{n} \rangle \neq 0, \langle b \rangle \neq 0$

Heavy fermion metal

$$\langle \boldsymbol{n} \rangle = 0, \langle b \rangle \neq 0$$

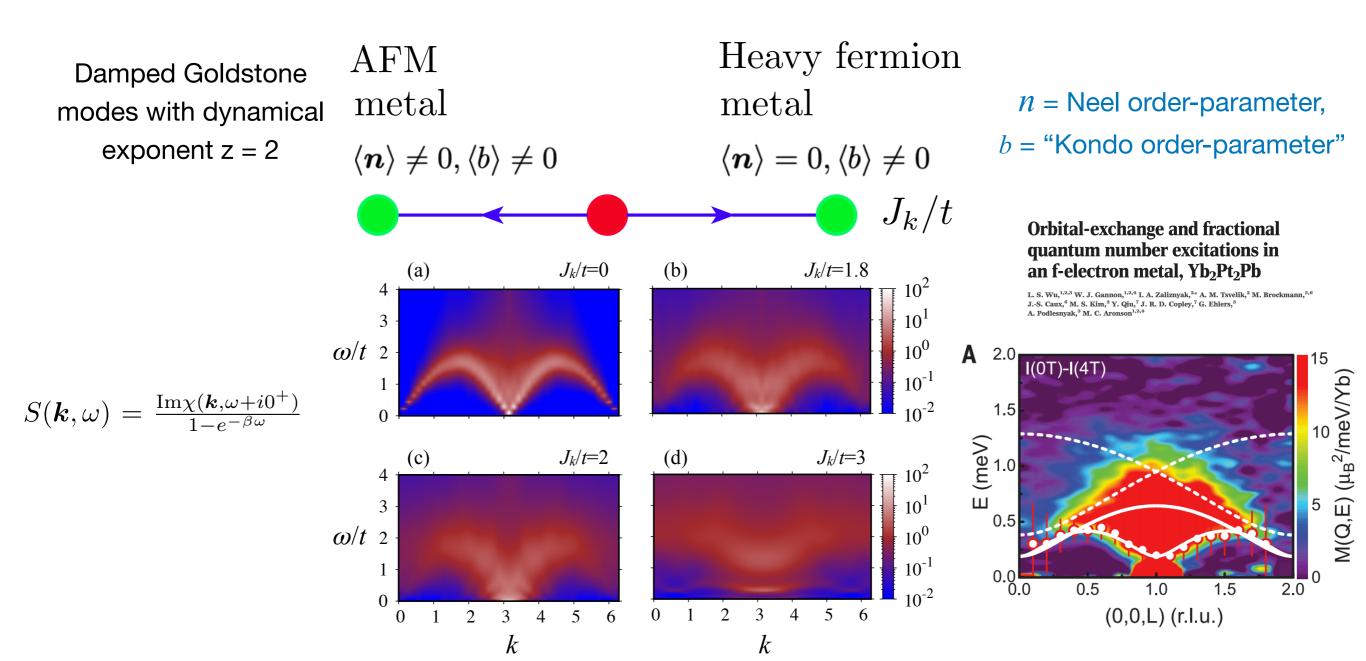
n = Neel order-parameter, b = "Kondo order-parameter"





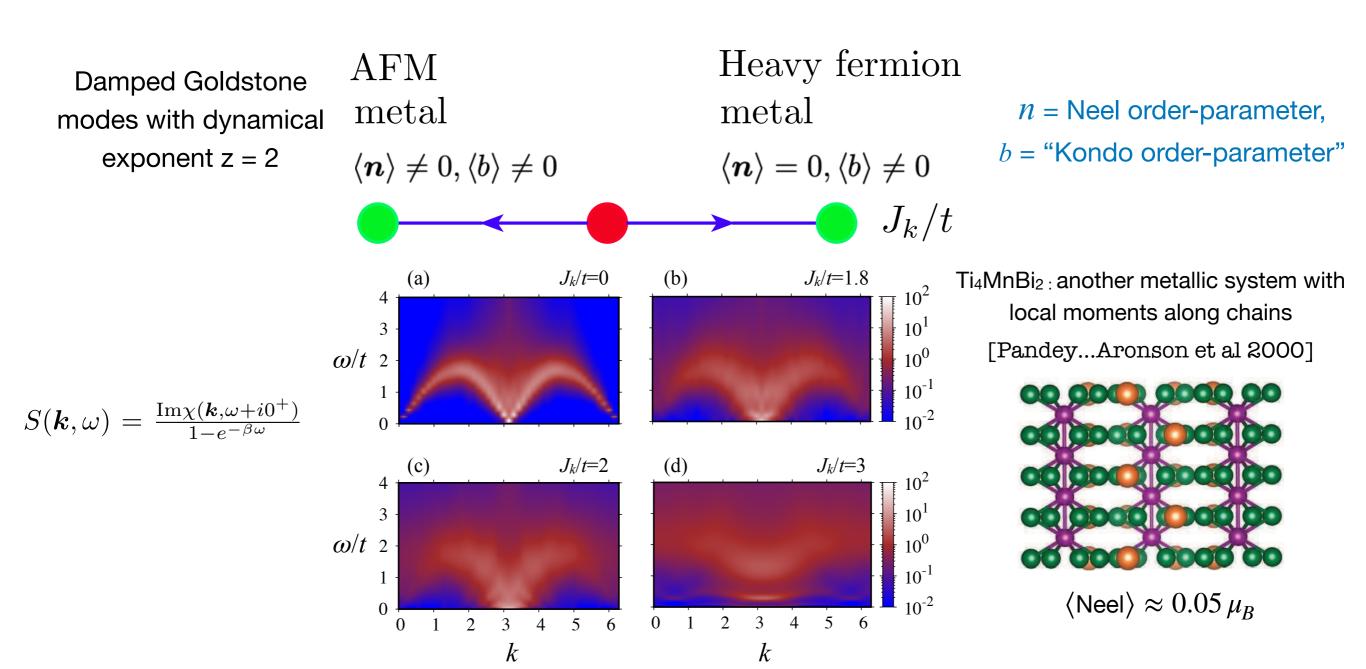
Dissipation due to fermions can lead to long-range AFM order even in a 1d chain!

[e.g. P. Werner, M. Troyer, and S. Sachdev 2005; Lobos, Cazalilla, Chudzinski 2012; Weber, Luitz, Assaad 2021]



Dissipation due to fermions can lead to long-range AFM order even in a 1d chain!

[e.g. P. Werner, M. Troyer, and S. Sachdev 2005; Lobos, Cazalilla, Chudzinski 2012; Weber, Luitz, Assaad 2021]



Stability of Dissipation induced O(3) symmetry breaking

$$S_{\text{diss}}(\boldsymbol{n}) = \frac{\Gamma}{2} \int d\tau d\tau' dr \; \frac{\boldsymbol{n}(r,\tau) \cdot \boldsymbol{n}(r,\tau')}{(\tau - \tau')^2} + \frac{\rho_s}{2} \int d\tau dr \; (\partial_\tau \boldsymbol{n}(r,\tau))^2 + (\partial_r \boldsymbol{n}(r,\tau))^2$$

$$n(r,\tau) = \left(\sigma(r,\tau), \sqrt{1 - \sigma(r,\tau)^2}\right)$$
 $S_{\text{diss}}(\sigma) = S_0(\sigma) + S_1(\sigma) + ...$

$$S_0(\boldsymbol{\sigma}) = \frac{\Gamma}{2} \int d\tau d\tau' dr \, \frac{\boldsymbol{\sigma}(r,\tau).\boldsymbol{\sigma}(r,\tau')}{(\tau-\tau')^2} + \frac{\rho_s}{2} \int d\tau dr \, (\partial_r \boldsymbol{\sigma}(r,\tau))^2,$$

Invariant under $r \to \lambda r, \tau \to \lambda^2 \tau, \sigma(r,\tau) \to \sigma(r,\tau)/\sqrt{\lambda}$.

Interaction between damped Goldstone modes $\mathcal{S}_1(\boldsymbol{\sigma}) = \frac{\Gamma}{8} \int d\tau d\tau' dr \ \frac{\boldsymbol{\sigma}^2(r,\tau).\boldsymbol{\sigma}^2(r,\tau')}{(\tau-\tau')^2} + \frac{\rho_s}{2} \int d\tau dr \ (\boldsymbol{\sigma}(r,\tau)\cdot\partial_r\boldsymbol{\sigma}(r,\tau))^2$

 $S_1(\sigma) \to S_1(\sigma)/\lambda \implies$ Interactions between Goldstones RG irrelevant

Field theory for d=1 Spin Chain coupled to d > 1 Free fermions?

Weak-coupling approach: $SU(N)_k$ WZW CFT perturbed by dissipation (= Hertz-Millis + Berry Phase)

(Kinetic energy)
$$S_{\mathrm{Grad}} = \frac{1}{\lambda} \int d\tau dx \ \mathrm{tr} \left(\frac{1}{c^2} \partial_\tau g \partial_\tau g^{-1} + \partial_x g \partial_x g^{-1} \right)$$
 (g = SU(N) matrix)

(Berry phase)
$$S_{\rm WZ} = -\frac{\mathrm{i}\,k}{12\pi} \int d^3y\, \epsilon^{ijk} \, \mathrm{Tr}[g^{-1}\partial_i g g^{-1}\partial_j g g^{-1}\partial_k g]$$

(Landau damping)
$$S_{\rm Dis} = \ k^2 \gamma \int d\tau d\tau' dx \, K(\tau-\tau') \, \operatorname{tr}[\mathbb{1} - g(\tau,x) g^{-1}(\tau',x)]$$

$$K(\tau - \tau') = \frac{A}{|\tau - \tau'|^{3-\delta}} \quad \delta = \tilde{\delta}/k , \, \tilde{\delta} = O(1)$$

[work with Simon Martin (to appear soon)]

Fixed point annihilation for a spin in a fluctuating field

Adam Nahum¹ (2022)

$$S = \frac{1}{2q} \int dt dt' K(t - t') (\vec{n}(t) - \vec{n}(t'))^2 - iS \Omega[\vec{n}].$$
 "Bose-Kondo model"

See also [Cuomo et al 2022; Hu, Si 2022; Weber, Vojta 2023; Cai, Si 2019]

Field theory for d=1 Spin Chain coupled to d > 1 Free fermions?

Weak-coupling approach: $SU(N)_k$ WZW CFT perturbed by dissipation (= Hertz-Millis + Berry Phase)

(Kinetic energy)
$$S_{\mathrm{Grad}} = \frac{1}{\lambda} \int d\tau dx \ \mathrm{tr} \left(\frac{1}{c^2} \partial_\tau g \partial_\tau g^{-1} + \partial_x g \partial_x g^{-1} \right)$$
 (g = SU(N) matrix)

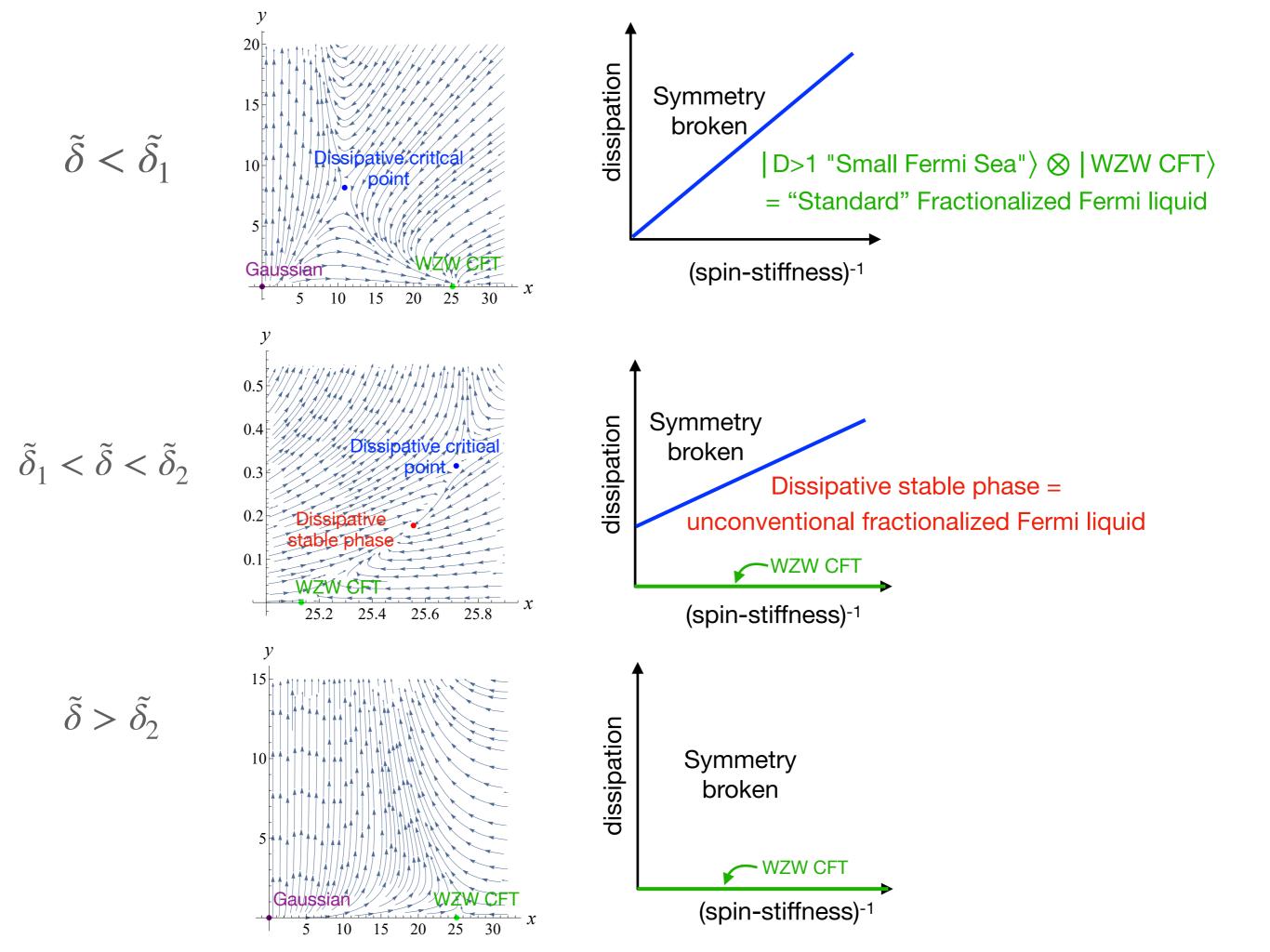
(Berry phase)
$$S_{\rm WZ} = -\frac{\mathrm{i}\,k}{12\pi} \int d^3y\, \epsilon^{ijk}\, {\rm Tr}[g^{-1}\partial_i gg^{-1}\partial_j gg^{-1}\partial_k g]$$

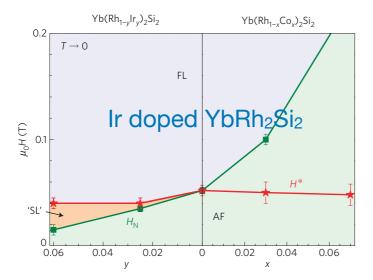
(Landau damping)
$$S_{\mathrm{Dis}} = k^2 \gamma \int d\tau d\tau' dx \, K(\tau - \tau') \, \mathrm{tr} [\mathbb{1} - g(\tau, x) g^{-1}(\tau', x)]$$

$$K(\tau - \tau') = \frac{A}{|\tau - \tau'|^{3-\delta}} \quad \delta = \tilde{\delta}/k , \, \tilde{\delta} = O(1)$$

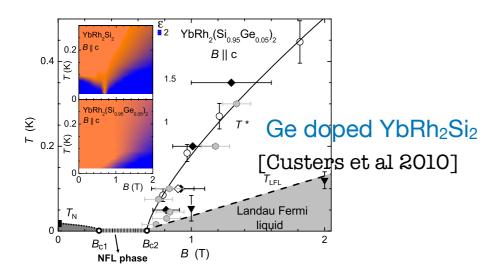
[work with Simon Martin (to appear soon)]

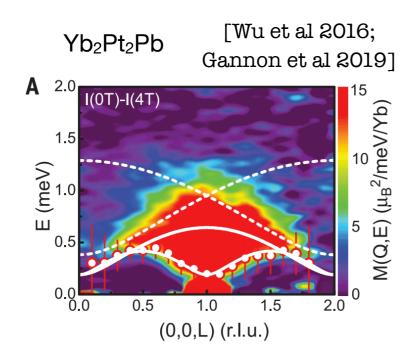
Spin-1/2 Heisenberg chain with ohmic dissipation corresponds to $N=2, k=1, \delta=1$. In this case, dissipation marginally relevant, and numerics indicates it induces ordering [Lafroncie, Affleck, Berciu 2005; Weber, Luitz, Assaad 2021].

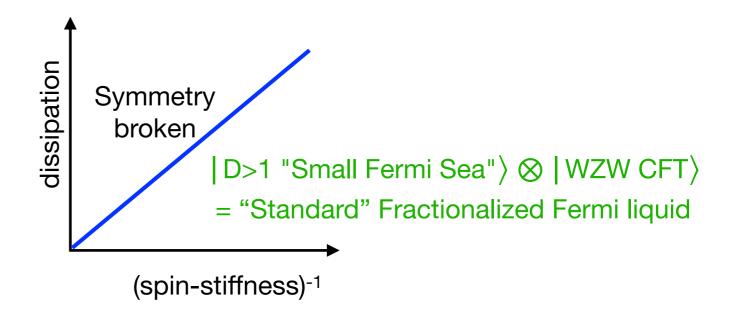


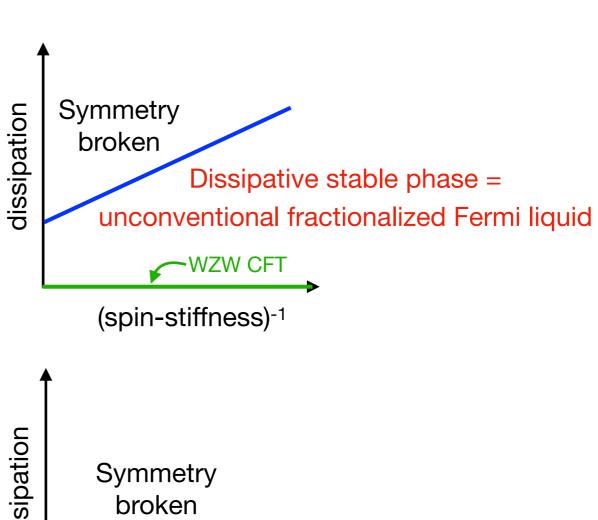


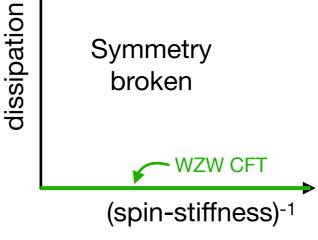
[Friedemann et al 2009]







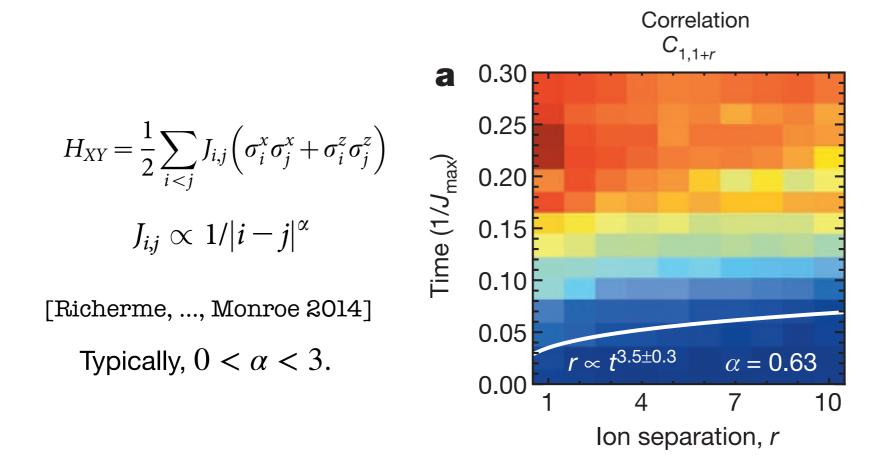




$\pi/2$ space-time rotation of dissipative spin-chain = Hamiltonians of spatially long-range interacting spin-chains

$$\frac{\vec{S}(x,\tau) \cdot \vec{S}(x,\tau')}{(\tau - \tau')^{\alpha}} \Rightarrow \frac{\vec{S}(x,\tau) \cdot \vec{S}(x',\tau)}{(x - x')^{\alpha}}$$

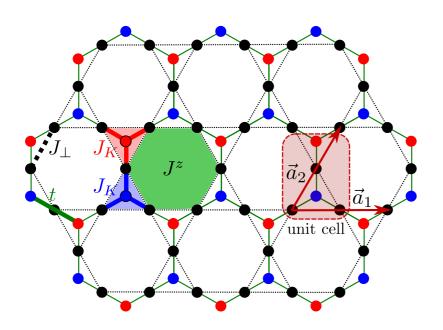
Several platforms: ion traps, cavity mediated interactions, dipolar systems, Rydberg atoms...



Summary and some questions

- Broad message: possible to construct sign-problem-free models that sometime allow unbiased simulation of physics potentially relevant to Heavy fermions, e.g., non-Fermi liquids, Heavy fermions, Landau damping induced order, ...
- New, stable critical phases in dissipative SU(N)_k spin-chains. Interesting RG flow with fixed-point annihilation reminiscent of Bose-Kondo single-impurity problem. Potentially new, infinite class of CFTs in a relativistic analog.
- Nature of quantum critical point in hybrid-dimensionality systems with Fermi surface using Polchinski/Shankar RG? Detailed understanding of Yb₂PT₂Pb? Relation to c-theorems for defect CFTs, and logarithmic BCFTs? ([Metlitski 2020; Cuomo, Zhang 2023]).

Kondo breakdown via geometric frustration



- c fermions (honeycomb lattice)
- localized spins (kagome lattice)

$$\hat{H} = \hat{H}_c + \hat{H}_S + \hat{H}_K$$

$$\hat{H}_c = -t \sum_{\langle \boldsymbol{x}, \boldsymbol{y} \rangle, \sigma} \hat{c}_{\boldsymbol{x}, \sigma}^{\dagger} \hat{c}_{\boldsymbol{y}, \sigma} + h.c.$$

$$\hat{H}_S = -J^{\perp} \sum_{\langle \boldsymbol{i}, \boldsymbol{i} \rangle} \left(\hat{S}_{\boldsymbol{i}}^{f,+} \hat{S}_{\boldsymbol{j}}^{f,-} + h.c. \right) + J^z \sum_{\square} \left(\hat{S}_{\square}^{f,z} \right)^2$$

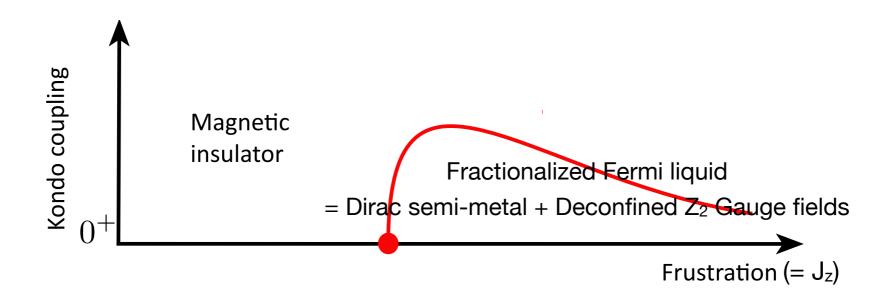
$$\hat{H}_K = J_K \sum_{\langle \boldsymbol{x}, \boldsymbol{i} \rangle} \left[\hat{S}_{\boldsymbol{x}}^{c,z} \hat{S}_{\boldsymbol{i}}^{f,z} - (-1)^{\boldsymbol{x}} \left(\hat{S}_{\boldsymbol{x}}^{c,+} \hat{S}_{\boldsymbol{i}}^{f,-} + h.c. \right) \right]$$

[Hofmann, Assaad, TG 2019]

 H_s is the "Balents-Fisher-Girvin" model that supports a topologically ordered Z_2 spin-liquid when $J^z >> J^\perp$

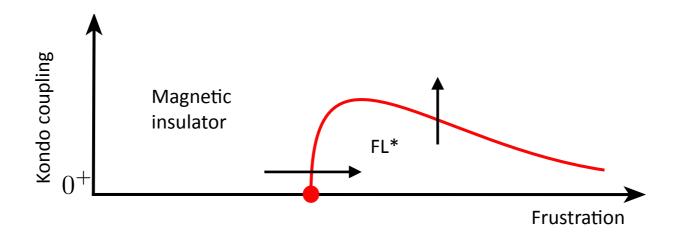
The above model does not have a sign-problem at half-filling, (via employing fermion representation of spins).

Schematic Phase Diagram obtained from QMC



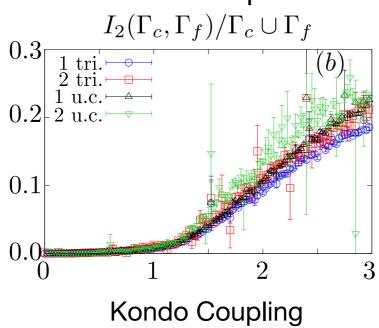
FL* phase has a small Fermi surface, i.e. violates Luttinger theorem.

The spins enter a Z₂ spin-liquid, and decouple from the conduction electrons which form a Dirac semi-metal (no Fermi surface).



Entanglement Diagnostic of Kondo breakdown

Renyi mutual information between conduction electrons and spins:



$$I_2(\Gamma_c,\Gamma_f)\equiv S_2(\Gamma_c\cup\Gamma_f)-S_2(\Gamma_c)-S_2(\Gamma_f)$$

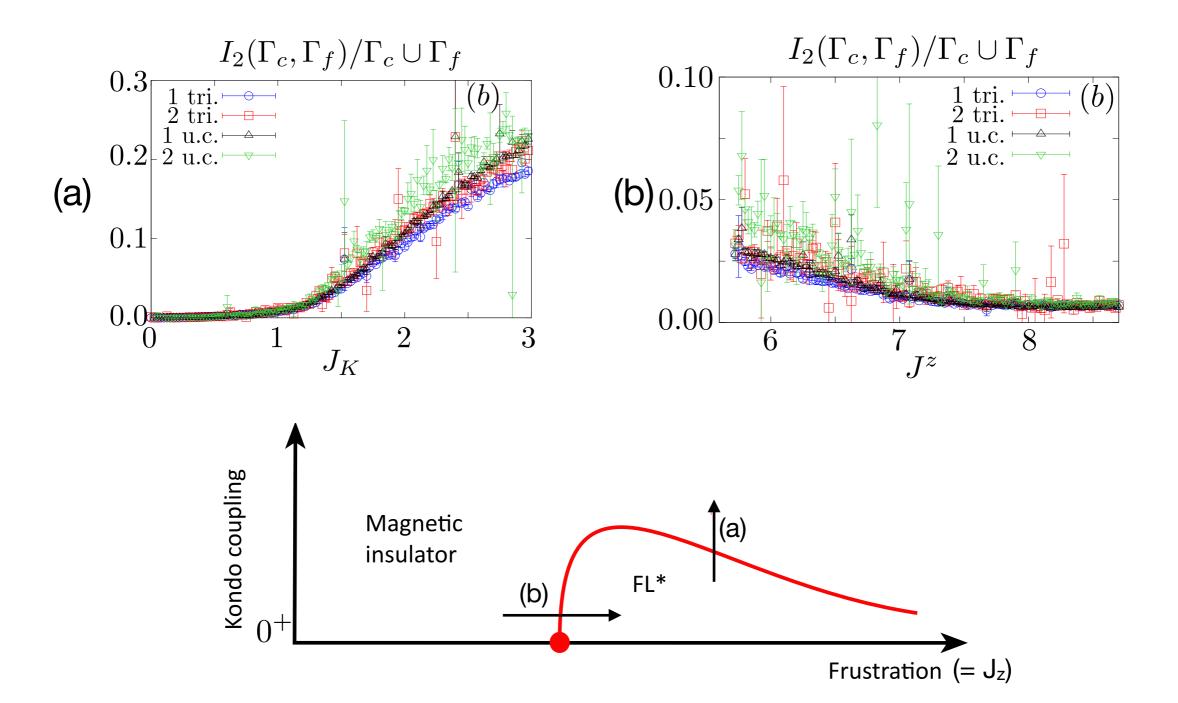
$$0.10 \frac{I_2(\Gamma_c,\Gamma_f)/\Gamma_c\cup\Gamma_f}{1\text{ tri.}} (b)$$

$$0.05 \frac{1\text{ u.c.}}{2\text{ u.c.}} (b)$$
Geometric Frustration

Characterizing Kondo Screening via Entanglement

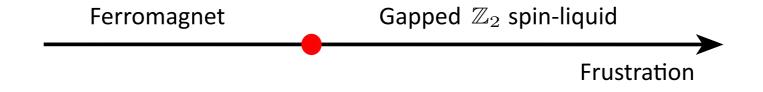
Renyi mutual information between conduction electrons and spins:

$$I_2(\Gamma_c, \Gamma_f) \equiv S_2(\Gamma_c \cup \Gamma_f) - S_2(\Gamma_c) - S_2(\Gamma_f)$$



Nature of Quantum Critical Point?

In the absence of conduction electrons, the critical point is rather unconventional, and has a rather large anomalous dimension.



$$\langle S^{+}(\vec{r},\tau)S^{-}(0,0)\rangle \sim \frac{1}{(r^{2}+\tau^{2})^{1+\eta}}$$

$$η$$
 ≈1.37 > 1

(for Wilson-Fisher fixed point, $\eta \approx 0.03$)

[Chubukov, Senthil, Sachdev, 1994; Isakov, Hastings, Melko, 2011]

Nature of Quantum Critical Point?

Kondo coupling irrelevant at the transition

⇒ Kondo breakdown even at the transition.



Kondo coupling irrelevant at the critical point due to critical exponent $\eta > 1$, a consequence of fractionalization.

Atomic spin-chain realization of a model for quantum criticality

R. Toskovic^{1†}, R. van den Berg^{2†}, A. Spinelli¹, I. S. Eliens², B. van den Toorn¹, B. Bryant¹, J.-S. Caux² and A. F. Otte^{1*} (2016)

Magnetic cobalt adatoms on metallic copper.

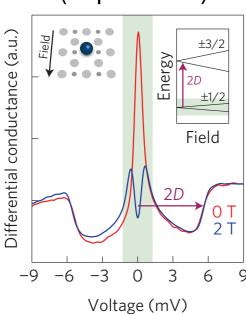
spin-3/2 Co atoms lead to effective spin-1/2 due to easy-axis anisotropy Coupling with Cu substrate leads to an effective Kondo lattice model.

[Danu, Assaad, Mila (2019)]

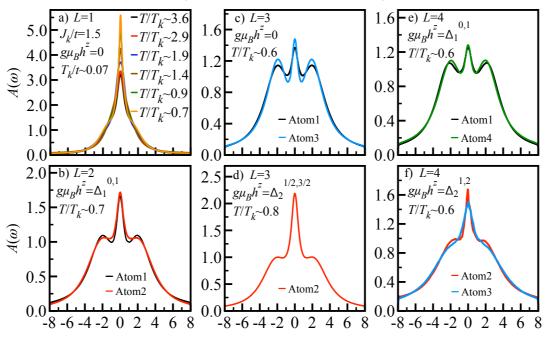
$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} (\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \text{H.c.}) + J_k \sum_{l=1}^{L} \hat{S}_l^c \cdot \hat{S}_l$$

$$+ J_h \sum_{l=1}^{L-1} \hat{S}_l \cdot \hat{S}_{l+\Delta l} - g\mu_B h^z \sum_{l=1}^{L} \hat{S}_l^z.$$

(Experiment)



(QMC Simulation)



 ω

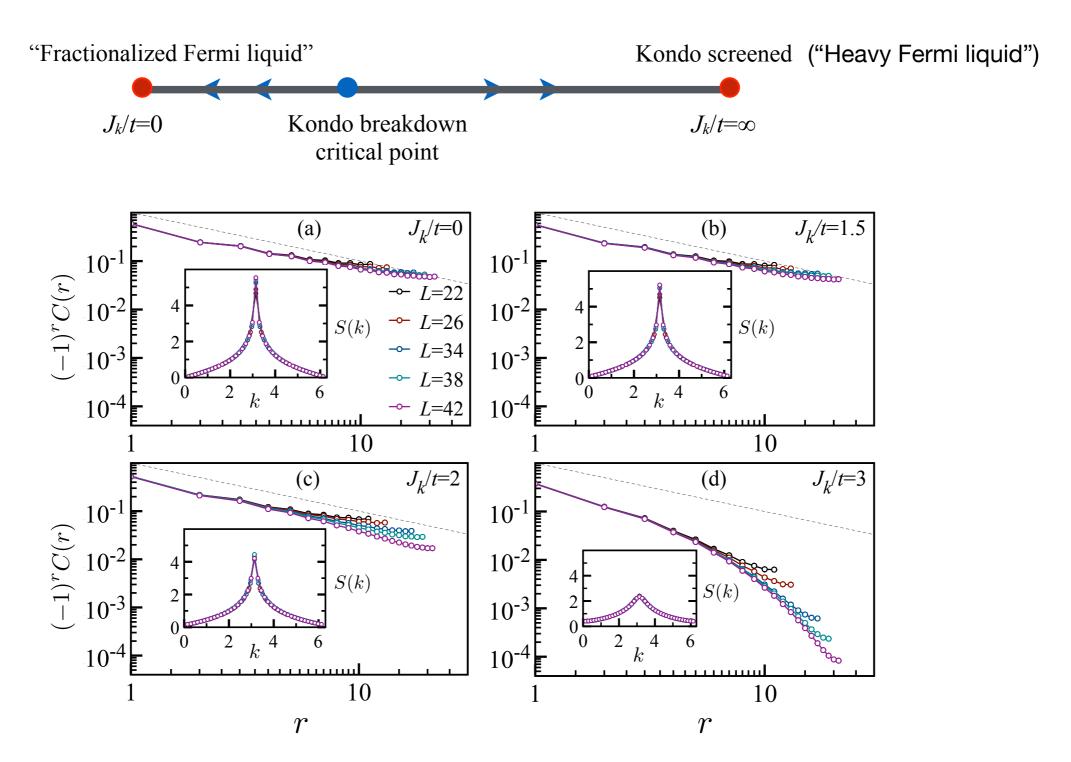
"Co-tunneling" spectral function

$$\tilde{d}_{\boldsymbol{l},\sigma}^{\dagger} = \hat{c}_{\boldsymbol{l},-\sigma}^{\dagger} \hat{S}_{\boldsymbol{l}}^{\sigma} + \sigma \hat{c}_{\boldsymbol{l},\sigma}^{\dagger} \hat{S}_{\boldsymbol{l}}^{z}$$

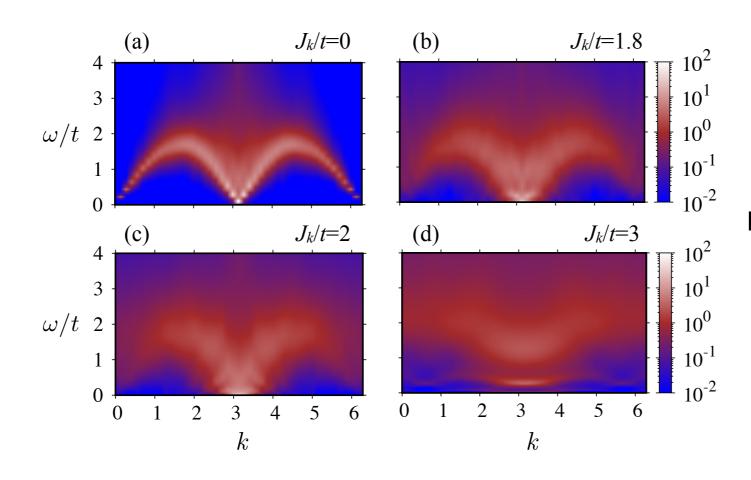
$$G_{\boldsymbol{l},\sigma}^{\text{ret}}(\omega) = -i \int_{0}^{\infty} dt e^{i\omega t} \sum_{\sigma} \left\langle \left\{ \tilde{c}_{\boldsymbol{l},\sigma}(t), \tilde{c}_{\boldsymbol{l},\sigma}^{\dagger}(0) \right\} \right\rangle$$

$$A_{\boldsymbol{l}}(\omega) = -\mathrm{Im}G_{\boldsymbol{l}}^{\mathrm{ret}}(\omega)$$

QMC simulations for Kondo breakdown

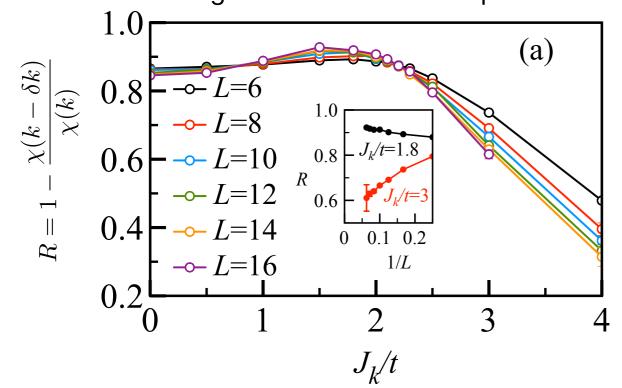


Spin-spin correlations decay as $(-1)^r\sqrt{\log(r)}/r$ for $J_K < J_{K,c}$ (~ Heisenberg chain) and as $(-1)^r/r^4$ for $J_K > J_{K,c}$ (~ Fermi liquid)



Evidence of z = 2 dynamical critical exponent.

Weak signal of long-range Neel ordering in QMC (L < 40), possibly due to marginal relevance of dissipation



Co-tunneling (Kondo screening everywhere)

