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convenient framework for characterizing the entanglement
structure of these wave functions, revealing an unusual
scaling form of the entanglement entropy, namely
SA = α ln |A| + s|A| for a contiguous subsystem A. The
subleading logarithm is exposed by analyzing the length
distributions of the “stabilizers”—mutually commuting Pauli
string (eigen)operators of the Clifford wave functions with
unit eigenvalue. The stabilizer distribution is “bimodal,”
consisting of a power-law distribution of “short” stabilizers
that contribute to the logarithm, and “long stabilizers” with
length " ≈ L/2 giving the volume-law piece (L being the
system size). This logarithmic correction is conjectured to be
a generic feature of volume-law steady states in the presence
of measurements.

(3) The “entanglement transition,” from volume-law to
area-law states [13,14], occurs when the weight under the
“long stabilizer” peak at " ≈ L/2 vanishes continuously upon
approaching pc from below. Remarkably, the power-law tail
of “short” stabilizers remains, implying a purely logarithmic
form for the entanglement entropy right at the critical point,
p = pc. The entanglement transition exhibits conformal sym-
metry of the mutual information at criticality, and we extract
several critical exponents. In particular, we find that in all the
models we study, the mutual information between two small
regions separated by a large distance, r, scales as 1/r4. Off
criticality the mutual information decays exponentially.

(4) We explore the fluctuations of certain spin-spin cor-
relation functions across the transition and find that they are
enhanced at the critical point, mimicking the mutual informa-
tion.

We establish the generality of these results by explor-
ing models with imposed spatial symmetry constraints—
specifically Clifford circuits with the unitaries periodic in
space and time (Floquet) and/or the measurement locations
periodic in space and time. All models are found to exhibit
a measurement-driven entanglement transition, with similar
exponents and similar behavior of the stabilizer length dis-
tribution as in the random Clifford circuit.

Apparently the randomness in the unitaries and measure-
ment locations are inessential, with the remaining stochastic-
ity in the measurement outcomes sufficient to account for the
presence and universality of the entanglement transition.

Going beyond Clifford, we implement a full quantum
simulation of more general circuit models for systems with
size up to L = 20 qubits. Both random Haar circuits and (non-
Clifford) Floquet circuits exhibit behavior consistent with
their Clifford counterparts. We also explore models with (non-
projective) “generalized measurements,” with each and every
qubit being measured at each time step, and find evidence for
an entanglement transition, with accessible exponents being
consistent with the Clifford circuits. Of particular interest is
a space-time translationally symmetric Floquet model with
generalized measurements, which exhibits an entanglement
transition where the only stochasticity is in the results of the
quantum measurements.

Motivated by the remarkable consistency between all of
our different models, we conjecture that generic hybrid cir-
cuits have a volume-law phase with logarithmic correction
for weak enough measurements, and exhibit an entanglement
transition in a single universality class.

FIG. 1. The random circuit model with random measurements.
In this circuit, the unitaries are arranged in a brick-layer fashion,
while the single-qubit Z-measurements are positioned randomly in
space and time. We depict the Poissonian arrangement in this figure,
for which the measurements take place at each available space-time
site independently with probability p. For a circuit with L qubits and
with depth D, there are LD such available sites.

Our paper is organized as follows. In Sec. II we define
the circuit models of interest. Extensive numerical results for
Clifford circuits are reported in Secs. III and IV. In particular,
Sec. III contains evidence for the phase transition in entan-
glement entropy, and allows characterization of the volume-
law phase in terms of stabilizers. Section IV is devoted to a
detailed analysis of the critical behavior of the entanglement
transition. In Sec. V we systematically explore Clifford circuit
models with space and time symmetries imposed, either in the
unitaries or the measurement locations—or both. In Sec. VI
we consider more generic non-Clifford circuits, establishing
complementary results via a full quantum simulation for
smaller systems. We close with discussion in Sec. VII.

Finally, in Appendix A we review Clifford circuits and de-
fine the stabilizer length distribution, and detail measurement
and unitary Clifford dynamics—beyond the steady state—in
Appendix B.

II. THE CIRCUIT MODEL

Consider first the prototypical quantum circuit model,
shown in Fig. 1, with L qubits arranged on a one-dimensional
chain. The circuit dynamics is composed of two parts, as
depicted in Fig. 1 and detailed below (in order), namely, (1)
the background unitary evolution and (2) measurements made
on selected qubits scattered throughout the system.

(i) The background unitary time evolution of the L-qubit
wave function is determined by applications of local unitary
gates which are arranged in a bricklayer pattern, such that the
geometry of the circuit is periodic in both space and time.
The local unitaries act on neighboring pairs of qubits. Each
discrete time cycle of the circuit consists of two layers, and
each layer has L/2 two-qubit unitary gates, acting on all the
odd links in the first layer, and all the even links in the second.
We primarily consider circuits with periodic spatial boundary
conditions, except in Appendix B where circuits with open
boundary condition are more convenient.

We define the depth of a circuit to be the number of unitary
layers, and denote it by D. Therefore, a circuit with depth
D has T = D/2 time cycles. The circuit as a whole can be
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If finite-T correlation length is finite,

Gibbs state can be prepared with a small depth channel.
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If finite-T correlation length diverges, but the correlations fully classical, perhaps 

one can still prepare the corresponding Gibbs state with polynomial resources?



If finite-T correlation length is finite,
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If finite-T correlation length diverges, but the correlations fully classical, perhaps 

one can still prepare the corresponding Gibbs state with polynomial resources?

Zeroth Order question:


When is a mixed state unentangled (“separable”)?
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Separability Criterion for Mixed States

If ρ = ∑
i

pi ρi,A ⊗ ρi,B with pi > 0

in some basis, then the expectation value of any operator can be 
reproduced by an ensemble of unentangled pure states. Therefore, 

such states are unentangled or “separable”.

[Werner 1989]
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If  where each  is short-ranged


entangled (⇒ no topological order or long-range 
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A more physical definition for local many-body systems
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Appendix A: Decomposition of a thermal state using minimally entangled typical thermal states (METTS)

One route to build intuition for topological order in a thermal state ⇢ is to decompose ⇢ using METTS. The central idea is to
introduce a complete product state basis 1 =

Õ
m |mi hm|, and break a thermal state with inverse temperature � into two copies

of thermal state with inverse temperature �/2:

⇢ =
1
Z

e��H =
1
Z

e��H/2
’
m

|mi hm| e��H/2 =
’
m

pm |�mi h�m | . (A1)

|�mi ⇠ e��H/2
|mi is the METTS, and the symbol ⇠ refers to the equal sign up to a normalization constant. pm =

hm |e
��H

|mi

Z
is

the probability corresponding to |�mi, and
Õ

m pm = 1. Choosing H as the toric code Hamiltonian, one finds

|�mi ⇠
÷
p

(1 + BP tanh(��B/2))
÷
s

(1 + As tanh(��A/2)) |mi (A2)

1. 2D toric code

Choosing |mi as a product state in X basis, the METTS becomes |�mi ⇠
Œ

p (1 + BP tanh(��B/2)) |mi. By expanding the
product over plaquette p, whenever Bp is chosen to create a closed loop on the boundary of p, the factor tanh(��B/2) follows.
However, notice that a loop created by Bp can also be obtained by

Œ
p0,p Bp0 due to

Œ
p Bp = 1 on a two-torus. Thus

|�mi ⇠
’
C

n
[tanh(��B/2)]Narea(C) + [tanh(��B/2)]N�Narea(C)

o
|Cmi

=
’
C

h
e�Narea(C) |log(tanh(��B/2)) | + e�(N�Narea(C)) |log(tanh(��B/2)) |

i
|Cmi ,

(A3)

where |Cmi is a classical loop state created from a reference state |mi, N is the total number of plaquettes, Narea(C) is the area
enclosed by the loop C. This expression implies the METTS cannot support arbitrary large closed loop configurations at any
finite temperature, implying the absence of topological order. Since all |�mi are short-range entangled, ⇢ is not topological
ordered at any fintie T.

Here we construct the exact parent Hamiltonian, for which |�mi is the ground state. For simplicity, let’s first consider |�mi by
choosing |mi as the product state with +1 eigenvalue of Xl for all links l . Define the operator

Ql = e���B

Õl2@p

p Bp � Xl, (A4)

where
Õl2@p

p denotes the summation over Bp containing the link l, we find

Ql |�mi ⇠
h
e���B

Õl2@p

p Bp � Xl

i
e

1
2 ��B

Õ
p Bp |mi = 0 (A5)

for all l. A quick way to see the above equality is to note that the two terms in Ql play exactly the same role: providing a
minus sign for the exponent of e

1
2 ��BBp when Bp contains the link l. Also, Ql is a positive semidefinite operator by observing

Q2
l
= 2Ql cosh

⇣
��B

Õl2@p
p Bp

⌘
. This implies |�mi is the ground state with zero eigenenergy of the local Hamiltonian

eH =’
l

Ql . (A6)

Suppose that we start with a di�erent |mi, where some of the local product states are eigenstates of Xl with �1 eigenvalue, the
above Ql will be modified accordingly: Ql = e���B

Õl2@p

p Bp � ⌘lXl , where ⌘l = �1 for those links with �1 eigenvalue of Xl .

2. 3D toric code

a. Choosing |mi as a product state in Z basis

In this case, the METTS is |�mi ⇠ e��H/2
|mi ⇠

Œ
s (1 + As tanh(��A/2)) |mi. Choosing |mi as a product state with

eigenvalue 1 for Zl , the parent local Hamiltonian is eH = Õ
l Ql with Ql = e���A

Õ
l2s
s

As � Zl .

Let’s rewrite  asρ

where  = set of all product states in the X-basis{ |m⟩}

1

L =  ̄0 /@ 0 +
1

2
(@µ ~N)2 + u( ~N2)2 + 2g ~N ·  ̄0~� 0

S =

Z
d
d
x d⌧  ̄/@ + JK

Z
dx d⌧ ~N · ̄~� +S1d Heisenberg

H = Ht +HU �W
P

hi,ji(c
†
i,�cj,� + h.c.)2

|�mi ⇠
P

loop configs.|Ci
e
�Area enclosed by loop⇥ log(tanh(��B/2))|Ci

 not topologically ordered at any non-zero T

since large loops suppressed.

⇒ |ϕm⟩

λA
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Detecting Topological Order at Finite Temperature Using Entanglement Negativity
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We propose a diagnostic for finite temperature topological order using ‘topological entanglement negativity’,
the long-range component of a mixed-state entanglement measure. As a demonstration, we study the toric code
model in d spatial dimension for d=2,3,4, and find that when topological order survives thermal fluctuations, it
possesses a non-zero topological entanglement negativity, whose value is equal to the topological entanglement
entropy at zero temperature. Furthermore, we show that the Gibbs state of 2D and 3D toric code at any non-
zero temperature, and that of 4D toric code above a certain critical temperature, can be expressed as a convex
combination of short-range entangled pure states, consistent with the absence of topological order.

A strongly interacting quantum many-body system at zero
temperature can exhibit exotic order beyond Laudau-Ginzburg
paradigm, dubbed topological order, whose defining property
is that the ground state degeneracy depends on the topology
of the space1–3. While the theory of topological order in
ground states (i.e., zero temperature) is well developed, our
understanding for topological order at finite temperature is
less clear. In particular, the pursuit of a model supporting a
stable topological order at finite temperature has been di�-
cult since typically topological order is fragile against ther-
mal fluctuations4–8. The most well-known model exhibiting
finite-T topological order is the toric code model in four spa-
tial dimensions9,10, and it remains unclear whether such a
model exists below four dimensions. Apart from being a
fundamental question in many-body physics, a stable finite-T
topological order also has profound implications for quantum
computing since it serves as a stable self-correcting quantum
memory (encoded information is protected against thermal
decoherence)9,11.

Even for models that support finite-T topological order, it
is not obvious how to define an appropriate non-local order
parameter. Hastings defined topological order at finite-T by
the requirement that the corresponding thermal density matrix
cannot be connected to a separable mixed state via a finite-
depth quantum channel12. While this provides a precise op-
erational definition, it is still desirable to have a computable
order parameter for finite-T topological order, analogous to
the characterization of ground state topological order using
topological entanglement entropy13–15.

Previous works have studied the subleading term Stopo of the
von Neumann entropy S = � tr ⇢ log ⇢ at finite temperature,
in models that support topological order at T = 016–22. Nev-
ertheless, Stopo cannot distinguish quantum correlations from
the classical ones: even a purely classical Z2 gauge theory in
three dimension has a non-zero Stopo consistent with the fact
that it exhibits a self-correcting classical memory11,23.

In this paper, we propose an entanglement-based diagnostic
for finite-T topological order that is sensitive only to quantum
correlations. Specifically, we employ entanglement negativity
EN , a mixed-state entanglement measure, to quantify non-
local quantum correlations resulting from finite-T topological
order. The intuition behind our approach is that if a mixed state
possesses long-range entanglement, then it is non-separable
over a length scale proportional to the system size, and there-

Max(TA, TB)Min(TA, TB)0
T

Topological
order

Topological
order

No

FIG. 1: Upper panel: phase diagram of toric code mod-
els, where the critical temperatures TA and TB correspond-
ing to the proliferation of two types of excitations depend on
the spatial dimension. Lower panel: comparision between
topological entanglement negativity EN,topo and topological
von Neumann entropy Stopo in toric code models of size L.
As L ! 1, EN,topo = 0 for T > Min(TA,TB), consistent
with the absence of topological order while Stopo remains
non-zero in the regime Min(TA,TB) < T < Max(TA,TB).
When Min(TA,TB) , 0 as L ! 1, the behavior of
EN,topo shown close to the critical point (= the shaded re-
gion) is just a schematic and we do not probe that region.

fore, such entanglement cannot be undone via any finite-depth
quantum channel.

Given a Gibbs state corresponding to a local model, for
a smooth entangling boundary, one can express EN as a
sum of local and non-local terms24, analogous to the case
of entanglement entropy for gapped ground states25: EN =
EN,local+EN,topo, where EN,local = ↵d�1Ld�1

A
+↵d�3Ld�3

A
+ · · ·

characterizes the short-range entanglement, while EN,topo de-
notes the non-local entanglement, which is not expressible as
a functional of local curvature along the entangling bound-
ary. We will denote the non-local term as ‘topological en-
tanglement negativity’ and use it as a diagnostic for finite-T
topological order.

We will primarily focus on toric code models at finite-T in d
spatial dimensions for d = 2, 3, 4. A d-dimensional toric code

whenever T > min(TA , TB) where TA, TB correspond to the critical 

temperatures of the classical Hamiltonians 

2

Hamiltonian can be written as H = ��A
Õ

s As � �B
Õ

p Bp

in which As are products of Pauli-X operators, and Bp are
products of Pauli-Z operators (their precise forms depend
on the dimensionality). This model can be thought of as a
sum of two classical gauge theories in two di�erent bases,
which has an interesting consequence: the partition func-
tion factorizes, Z = ZAZB/2N where ZA = tr

�
e��A

Õ
s As

�
,

ZB = tr
⇣
e��B

Õ
p Bp

⌘
, and N is the number of spins. Due to this

structure, the toric code model has two critical temperatures
TA and TB above which the excitations corresponding to As and
Bp operators proliferate. In the language of the gauge theory,
these temperatures correspond to confinement-deconfinement
transition for Wilson operators Wx and Wz respectively, where
Wx/Wz is a product of connected As/Bp operators and is a
gauge invariant under the local gauge transformation gener-
ated by Bp/As . Intuitively, at a finite temperature, a stable
topological order can protect the encoded qubits against the
thermal decoherence without the need of any active error cor-
rection, only when both types of excitations are suppressed,
that is, below Min(TA,TB). On the other hand, if only one type
of excitations is suppressed, i.e. in the temperature regime
Min(TA,TB) and Max(TA,TB), the other type of excitation de-
stroys the topological order, and the model can only realize a
self-correcting classical memory11,17,18,23.

Our main result is summarized in Fig.1. Through an ex-
plicit calculation, we find that topological entanglement nega-
tivity is nonzero only when the temperature is simultaneously
below both critical temperatures associated with the prolifera-
tion of two types of excitations, in line with the aforementioned
heuristics. In strong contrast, Stopo remains nonzero (drops to
half of its ground state value) when temperature is between the
lower and upper critical temperatures17,18.

Disentangling toric codes at finite-T— Before discussing
topological entanglement negativity for toric code models in
detail, here we provide intuition for finite-T topological order
by decomposing a mixed state of interest into a convex sum
of pure states: ⇢ =

Õ
i pi | iih i |. If each | ii is short-range

entangled, then preparing ⇢ requires only the ability to gen-
erate the probability distribution {pi}, and constructing short-
ranged entangled states | ii, tasks which can be done with
resources that do not scale with the system size. Alternatively,
one can purify ⇢ to obtain a state that can be constructed with
a finite depth unitary (12, see also26 for an explicit construc-
tion for toric code). One hint for such a decomposition comes
from ‘minimally entangled typical thermal state’ (METTS)
ansatz27: ⇢ = e��H/Z =

Õ
m pm |�mih�m | where each |�mi is

a METTS obtained from imaginary time evolution of a product
state |mi: |�mi ⇠ e��H/2

|mi. pm = hm| e��H |mi /Z is the
probability corresponding to |�mi. Using such decomposition,
we now show that the Gibbs state of the toric code model in
arbitrary spatial dimension is not topologically ordered above
Min(TA,TB).

First consider METTS obtained from a product state
|mi in the Z basis: |�m(T)i ⇠ e�/2

Õ
s As e�/2

Õ
p Bp |mi ⇠

e�/2
Õ

s As |mi. One finds all such METTS |�m(T)i at tem-
perature T > TA are short-range entangled since they can be
adiabatically connected to the infinite temperature METTS

FIG. 2: The boundary operators in toric code for various
spatial dimensions, where blue circles and red squares label
Ai and Bj operators respectively. (a) 1D bipartition boundary
in 2D toric code, where Ai live on sites, and Bj live on links.
(b) 2D bipartition boundary in 3D toric code, where Ai live
on sites, and Bj live on links. (c) 3D bipartition boundary in
4D toric code, where Ai live on links, and Bj live on faces.

FIG. 3: Scaling collapse of topological negativity in 2D toric
code as �B ! 1 (Eq.3). L is the size of the bipartition
boundary, � is the inverse temperature, and �A is the coef-
ficient of the star operators As . Inset: Scaling collapse of
topological negativity in 2D toric code at � = �A = �B using
classical Monte Carlo combined with transfer matrix method.

|�m(T ! 1)i, i.e. a product state, without encountering a
phase transition/critical point. Therefore ⇢ is not topologi-
cally ordered for T > TA. Similarly, one can also decom-
pose ⇢ using METTS obtained by imaginary time evolving the
product state in X basis to deduce that ⇢ is not topologically
ordered for T > TB. Combining these two observations proves
the absence of topological order in toric code for temperature
T > min(TA,TB). Note that this result applies to all CSS code
Hamiltonians H = ��A

Õ
i S(X)

i
� �B

Õ
i S(Z)

i

28,29, where each
local commuting term S(X/Z)

i
is a product of Pauli-X/Z oper-

ators. Using this result and the observation in Ref.30–33, one
immediately proves the absence of finite-T topological order
in the more exotic topological models such as X-cube model34,
a type-I fracton model, and Haah’s code35, a type-II fracton
model. As an aside, each METTS |�m(T)i is the ground state
of a local parent Hamiltonian26, which can be explicitly con-
structed using an approach analogous to Ref.36,37.

General scheme for calculating negativity— The above cal-
culation using METTS ansatz shows when a state is not topo-
logically ordered. To understand the fate of topological order
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Detecting Topological Order at Finite Temperature Using Entanglement Negativity
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We propose a diagnostic for finite temperature topological order using ‘topological entanglement negativity’,
the long-range component of a mixed-state entanglement measure. As a demonstration, we study the toric code
model in d spatial dimension for d=2,3,4, and find that when topological order survives thermal fluctuations, it
possesses a non-zero topological entanglement negativity, whose value is equal to the topological entanglement
entropy at zero temperature. Furthermore, we show that the Gibbs state of 2D and 3D toric code at any non-
zero temperature, and that of 4D toric code above a certain critical temperature, can be expressed as a convex
combination of short-range entangled pure states, consistent with the absence of topological order.

A strongly interacting quantum many-body system at zero
temperature can exhibit exotic order beyond Laudau-Ginzburg
paradigm, dubbed topological order, whose defining property
is that the ground state degeneracy depends on the topology
of the space1–3. While the theory of topological order in
ground states (i.e., zero temperature) is well developed, our
understanding for topological order at finite temperature is
less clear. In particular, the pursuit of a model supporting a
stable topological order at finite temperature has been di�-
cult since typically topological order is fragile against ther-
mal fluctuations4–8. The most well-known model exhibiting
finite-T topological order is the toric code model in four spa-
tial dimensions9,10, and it remains unclear whether such a
model exists below four dimensions. Apart from being a
fundamental question in many-body physics, a stable finite-T
topological order also has profound implications for quantum
computing since it serves as a stable self-correcting quantum
memory (encoded information is protected against thermal
decoherence)9,11.

Even for models that support finite-T topological order, it
is not obvious how to define an appropriate non-local order
parameter. Hastings defined topological order at finite-T by
the requirement that the corresponding thermal density matrix
cannot be connected to a separable mixed state via a finite-
depth quantum channel12. While this provides a precise op-
erational definition, it is still desirable to have a computable
order parameter for finite-T topological order, analogous to
the characterization of ground state topological order using
topological entanglement entropy13–15.

Previous works have studied the subleading term Stopo of the
von Neumann entropy S = � tr ⇢ log ⇢ at finite temperature,
in models that support topological order at T = 016–22. Nev-
ertheless, Stopo cannot distinguish quantum correlations from
the classical ones: even a purely classical Z2 gauge theory in
three dimension has a non-zero Stopo consistent with the fact
that it exhibits a self-correcting classical memory11,23.

In this paper, we propose an entanglement-based diagnostic
for finite-T topological order that is sensitive only to quantum
correlations. Specifically, we employ entanglement negativity
EN , a mixed-state entanglement measure, to quantify non-
local quantum correlations resulting from finite-T topological
order. The intuition behind our approach is that if a mixed state
possesses long-range entanglement, then it is non-separable
over a length scale proportional to the system size, and there-

Max(TA, TB)Min(TA, TB)0
T

Topological
order

Topological
order

No

FIG. 1: Upper panel: phase diagram of toric code mod-
els, where the critical temperatures TA and TB correspond-
ing to the proliferation of two types of excitations depend on
the spatial dimension. Lower panel: comparision between
topological entanglement negativity EN,topo and topological
von Neumann entropy Stopo in toric code models of size L.
As L ! 1, EN,topo = 0 for T > Min(TA,TB), consistent
with the absence of topological order while Stopo remains
non-zero in the regime Min(TA,TB) < T < Max(TA,TB).
When Min(TA,TB) , 0 as L ! 1, the behavior of
EN,topo shown close to the critical point (= the shaded re-
gion) is just a schematic and we do not probe that region.

fore, such entanglement cannot be undone via any finite-depth
quantum channel.

Given a Gibbs state corresponding to a local model, for
a smooth entangling boundary, one can express EN as a
sum of local and non-local terms24, analogous to the case
of entanglement entropy for gapped ground states25: EN =
EN,local+EN,topo, where EN,local = ↵d�1Ld�1

A
+↵d�3Ld�3

A
+ · · ·

characterizes the short-range entanglement, while EN,topo de-
notes the non-local entanglement, which is not expressible as
a functional of local curvature along the entangling bound-
ary. We will denote the non-local term as ‘topological en-
tanglement negativity’ and use it as a diagnostic for finite-T
topological order.

We will primarily focus on toric code models at finite-T in d
spatial dimensions for d = 2, 3, 4. A d-dimensional toric code

whenever T > min(TA , TB) where TA, TB correspond to the critical 

temperatures of the classical Hamiltonians 
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Hamiltonian can be written as H = ��A
Õ

s As � �B
Õ

p Bp

in which As are products of Pauli-X operators, and Bp are
products of Pauli-Z operators (their precise forms depend
on the dimensionality). This model can be thought of as a
sum of two classical gauge theories in two di�erent bases,
which has an interesting consequence: the partition func-
tion factorizes, Z = ZAZB/2N where ZA = tr

�
e��A

Õ
s As

�
,

ZB = tr
⇣
e��B

Õ
p Bp

⌘
, and N is the number of spins. Due to this

structure, the toric code model has two critical temperatures
TA and TB above which the excitations corresponding to As and
Bp operators proliferate. In the language of the gauge theory,
these temperatures correspond to confinement-deconfinement
transition for Wilson operators Wx and Wz respectively, where
Wx/Wz is a product of connected As/Bp operators and is a
gauge invariant under the local gauge transformation gener-
ated by Bp/As . Intuitively, at a finite temperature, a stable
topological order can protect the encoded qubits against the
thermal decoherence without the need of any active error cor-
rection, only when both types of excitations are suppressed,
that is, below Min(TA,TB). On the other hand, if only one type
of excitations is suppressed, i.e. in the temperature regime
Min(TA,TB) and Max(TA,TB), the other type of excitation de-
stroys the topological order, and the model can only realize a
self-correcting classical memory11,17,18,23.

Our main result is summarized in Fig.1. Through an ex-
plicit calculation, we find that topological entanglement nega-
tivity is nonzero only when the temperature is simultaneously
below both critical temperatures associated with the prolifera-
tion of two types of excitations, in line with the aforementioned
heuristics. In strong contrast, Stopo remains nonzero (drops to
half of its ground state value) when temperature is between the
lower and upper critical temperatures17,18.

Disentangling toric codes at finite-T— Before discussing
topological entanglement negativity for toric code models in
detail, here we provide intuition for finite-T topological order
by decomposing a mixed state of interest into a convex sum
of pure states: ⇢ =

Õ
i pi | iih i |. If each | ii is short-range

entangled, then preparing ⇢ requires only the ability to gen-
erate the probability distribution {pi}, and constructing short-
ranged entangled states | ii, tasks which can be done with
resources that do not scale with the system size. Alternatively,
one can purify ⇢ to obtain a state that can be constructed with
a finite depth unitary (12, see also26 for an explicit construc-
tion for toric code). One hint for such a decomposition comes
from ‘minimally entangled typical thermal state’ (METTS)
ansatz27: ⇢ = e��H/Z =

Õ
m pm |�mih�m | where each |�mi is

a METTS obtained from imaginary time evolution of a product
state |mi: |�mi ⇠ e��H/2

|mi. pm = hm| e��H |mi /Z is the
probability corresponding to |�mi. Using such decomposition,
we now show that the Gibbs state of the toric code model in
arbitrary spatial dimension is not topologically ordered above
Min(TA,TB).

First consider METTS obtained from a product state
|mi in the Z basis: |�m(T)i ⇠ e�/2

Õ
s As e�/2

Õ
p Bp |mi ⇠

e�/2
Õ

s As |mi. One finds all such METTS |�m(T)i at tem-
perature T > TA are short-range entangled since they can be
adiabatically connected to the infinite temperature METTS

FIG. 2: The boundary operators in toric code for various
spatial dimensions, where blue circles and red squares label
Ai and Bj operators respectively. (a) 1D bipartition boundary
in 2D toric code, where Ai live on sites, and Bj live on links.
(b) 2D bipartition boundary in 3D toric code, where Ai live
on sites, and Bj live on links. (c) 3D bipartition boundary in
4D toric code, where Ai live on links, and Bj live on faces.

FIG. 3: Scaling collapse of topological negativity in 2D toric
code as �B ! 1 (Eq.3). L is the size of the bipartition
boundary, � is the inverse temperature, and �A is the coef-
ficient of the star operators As . Inset: Scaling collapse of
topological negativity in 2D toric code at � = �A = �B using
classical Monte Carlo combined with transfer matrix method.

|�m(T ! 1)i, i.e. a product state, without encountering a
phase transition/critical point. Therefore ⇢ is not topologi-
cally ordered for T > TA. Similarly, one can also decom-
pose ⇢ using METTS obtained by imaginary time evolving the
product state in X basis to deduce that ⇢ is not topologically
ordered for T > TB. Combining these two observations proves
the absence of topological order in toric code for temperature
T > min(TA,TB). Note that this result applies to all CSS code
Hamiltonians H = ��A

Õ
i S(X)

i
� �B

Õ
i S(Z)

i

28,29, where each
local commuting term S(X/Z)

i
is a product of Pauli-X/Z oper-

ators. Using this result and the observation in Ref.30–33, one
immediately proves the absence of finite-T topological order
in the more exotic topological models such as X-cube model34,
a type-I fracton model, and Haah’s code35, a type-II fracton
model. As an aside, each METTS |�m(T)i is the ground state
of a local parent Hamiltonian26, which can be explicitly con-
structed using an approach analogous to Ref.36,37.

General scheme for calculating negativity— The above cal-
culation using METTS ansatz shows when a state is not topo-
logically ordered. To understand the fate of topological order
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Quantifying Mixed-State Entanglement

“Entanglement Negativity”: [Eisert, Plenio 1999;

Vidal, Werner 2001]

• Entanglement monotone [Plenio 2005], zero for separable states (but can be 

zero also for non-separable states).

• Upper bounds the rate of conversion of the mixed state to Bell pairs (“distillation rate”).


• Satisfies an area law for thermal states of local Hamiltonians [Sherman, 

Devakul, Hastings, Singh 2015].

• Calculable! (unlike most other mixed-state measures).


• Recent progress on measurement using randomized unitaries [Elben et al 

2019] (tomorrow’s talk).

EN = log ( |ρTB |1 )

Several condensed matter applications: Negativity of CFTs (Calabrese, Cardy, Tonni 2012), 
Ground state of toric code and TQFTs (Lee, Vidal 2013; Castelnovo 2013; Wen, Matsuura, 

Ryu 2016), Characterizing SPTs (Shapourian, Shiozaki, Ryu 2017), Probe of chaos and 
scrambling (Kudler-Flam et al 2019),…



Let’s study non-local part of negativity as a candidate

order parameter for finite-T topological order. 

Focus on toric code in d = 2, 3, 4.

EN = αLd−1 − EN,topo

(Area-law coefficient 𝛼 for 2D toric code studied in Hart, Castelnovo 2018.)



Example: 2D toric code in the limit 𝜆B →∞.
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Topological negativity EN,topo behaves very different than the
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FIG. 3: (a) The topological entanglement entropy (EE) measured on an L = 8 system as a function of inverse temperature
β = t/T . The plateaus are a measure of the total quantum dimension [9], and should be ln(2) and 2 ln(2) for a Z2 spin liquid.
(b) The approach of the topological EE to the first plateau, for different system sizes. The value of the crossover temperature
(βx), measured at 2γ = ln(2)/2, shows a logarithmic dependence on system size (inset).

HP2C initiative. Simulations were performed on the Bru-
tus cluster at ETH Zurich and the computing facilities
of SHARCNET.
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system. Based on the idea that the spin liquid state is
a type of collective paramagnet, the topological EE is
designed to pick up non-local correlations in the ground-
state wavefunction that are not manifest as conventional
long-range order. However, these correlations contribute
to the total entanglement between different subregions
of the system A and its complement B (where A ∪ B is
the entire system). The EE between A and B can be
quantified by the Renyi entropies,

Sn(A) =
1

1− n
ln [Tr(ρnA)] , (1)

where ρA is the reduced density matrix of region A.
In a topologically ordered state, the non-local entangle-
ment gives a topology-dependent subleading correction
to “area-law” scaling of the EE of subregion A. In 2D,
Sn(A) = a"−γj+· · · where a is a non-universal constant,
" is the boundary length between A and B, and j is the
number of disconnected boundary curves. In Levin and
Wen’s [9] construction (used in the calculations in this
paper), the topological contribution can be isolated from
the area-law scaling (plus any corner contributions) by
considering separately the Renyi [11] entropies on four
differently shaped subregions (Figure 1),

2γ = lim
r,R→∞

[−Sn(A1) + Sn(A2) + Sn(A3)− Sn(A4)] .

(2)
Naively, since calculating γ requires complete knowl-

edge of the groundstate wavefunction (through ρA), pre-
vious efforts to calculate it have been restricted to models
which can be solved exactly either analytically (e.g. the
toric code) or through numerical exact diagonalization
on small size systems (e.g. the triangular lattice dimer
model [12]). The ability to use γ as a general tool to
search for and characterize non-trivial topologically or-
dered phases has been hindered by the inability to ac-
cess the wavefunction in large-scale numerical methods,
namely QMC, currently the only scalable quantum sim-
ulation method in 2D and higher. However, with the
recent introduction of measurement methods based on
the replica trick, QMC is now able to access Sn(A) for
n ≥ 2 [13], therefore giving one a method to calculate γ
in large-scale simulations of quantum spin liquids.
Using Stochastic Series Expansion QMC [14, 15], we

simulate a hard-core Bose-Hubbard model on the kagome
lattice, with nearest-neighbor hopping and a six-site po-
tential around each lattice hexagon,

H = −t
∑

〈ij〉

[b†ibj + bib
†
j] + V

∑

!

(n!)2, (3)

where b†i (bi) is the boson creation (annihilation) opera-

tor, and n! =
∑

i∈! ni, where ni = b†i bi is the num-
ber operator. As mentioned above, variations of this
model with more complicated spin interactions are known
to harbour a robust spin liquid groundstate [6–8]. In

this paper, we consider the simplified Hamiltonian (3),
with only nearest-neighbor hopping, which may be more
amenable to construction for example in real cold atomic
systems. We observe a transition at low temperature
between a superfluid phase and an insulating phase for
(V/t)c ≈ 7.0665(15) (Figure 2). For V/t > (V/T )c
the superfluid density scales to zero, and density and
bond correlators are featureless (similar to Ref. 7). This
strongly suggests that the insulating phase is a spin liq-
uid. To characterize it, we calculate the topological EE,
Equation (2) with n = 2, which for a Z2 topological
phase should approach 2 ln(2) in the limit T → 0 [9].
The regions Ai are shown in Figure 1 for an L = 8 sys-
tem; these are scaled proportionally for the other systems
sizes studied in this paper, where L is always a multiple
of 8. Results for γ as a function of inverse temperature
β = t/T are shown in Figure 3 for several V/t.
In the topological phase (V/t = 8) we see two dis-

tinct plateaus, at differing temperatures, with a non-zero
topological EE as T → 0. The phenomenon is known to
occur in other models such as the toric code [16], where
the topological EE at zero temperature of 2 ln(2) can be
viewed as a sum of electric and magnetic contributions,
each contributing ln(2). If the electric and magnetic de-
fects have different energies, theory predicts two distinct
plateaus corresponding to these individual crossover tem-
peratures [16], as seen in our data. However, at any fixed
non-zero temperature, in the limit of large L, the topolog-
ical EE vanishes, as the probability of having thermally
excited defects in the annulus A1 (Figure 1) tends to
unity. Indeed, under the assumption that the probabil-
ity of having a defect is proportional to L2 exp(−E/kBT ),
where E is the defect energy, the temperature required
to see accurate plateaus in the topological EE scales log-
arithmically with L. In Figure 3, we show finite-size scal-
ing data consistent with this logarithmic scaling. Note
that our value for the topological EE at the higher-T
plateau is indeed very close to ln(2), and becomes more
accurately quantized at larger system sizes. The value of
2 ln(2) at the lower-T plateau for L = 8 is not as accu-
rately quantized, but is still approached.
In the superfluid phase, the topological EE tends

to zero as T → 0 (Figure 3). However, surprisingly,
for V/t = 6 we observe a plateau in the topological
EE at intermediate temperatures, T ∼ t. One possi-
ble explanation for this plateau can be understood by
thinking of a simpler phase transition present in the
toric code, induced by adding a parallel magnetic field.
Consider a square-lattice toric code Hamiltonian H =
−U

∑
+

∏
i∈+ Sz

i − g
∑

!

∏
i∈!

Sx
i − h

∑
i S

z
i , where the

first vertex term term penalizes vertices that do not have
an even number of up spins on the legs of the neighboring
bonds, and the second sum is over plaquettes. Suppose
U ' g. By increasing h/g, we induce a phase transition
from a topological phase to a trivial phase. In a non-zero
temperature regime where U ' T ' g, the problem be-

[Isakov, Hastings, Melko 2011]
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Relation to SPT order at the entanglement boundary]

Negativity a candidate order parameter.
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Consider the transverse field Ising model on square lattice…

H = ∑<i,j> − ZiZj − h∑i Xi

Although we can’t calculate negativity EN = log ( |ρTB |1 )
one can calculate a closely related quantity in Quantum 
Monte Carlo:

R̃3 = log
trace (ρTB)3

trace (ρ3)
Not an entanglement measure, but in


 1+1-D CFTs, has same scaling as negativity.
[Calabrese, Cardy, Tonni 2012]
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i
are the Pauli-Z, Pauli-X operator at site i,

and hiji denotes all the nearest neighbor pairs on a square
lattice. We impose the periodic boundary condition, and set
hx = 2.75. We first locate the corresponding critical inverse
temperature �c = 1.0874(1) from a finite size scaling of the
Binder ratio B2 =

⌦
M4

z

↵
/
⌦
M2

z

↵2 calculated by the standard
SSE simulation [33]. This result is consistent with previous
QMC study[36].

Since the Renyi negativity Rn vanishes for n = 1, 2, the
smallest nontrivial integer is n = 3, which will be the focus
of our QMC simulations. R3 can be expressed as:

R3(A) = � log

0
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Z[3�]
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,

(2)
where Z[A,�, 3] = tr

n⇥
[exp(��H)]TA

⇤3o and Z[3�] =

tr [exp(�3�H)] are the partition functions subjected to the
boundary conditions shown in Figs. 1(a) and (b) respectively.
Therefore, the Renyi negativity can be calculated using the
SSE by numerical integrating the difference between the en-
ergy estimators for different boundary conditions:

R3[�] =

Z
�

0
d�0

hE(�0)i
A,�,3 � hE(�0)i3� , (3)

where h.i
A,�,3 and h.i3� denote the expectation values eval-

uated with corresponding boundary conditions. Here, we fo-
cus on dR3/d� as the derivative enhances the singularity in a
finite-size simulation. From Eq. (3), it is clear that dR3/d�
corresponds simply to the difference between the energy esti-
mators, therefore requiring no thermodynamic integration.

Fig. 2(a) shows the temperature derivative of the area-law
coefficient R3/|@A| as a function of the temperature for dif-
ferent system sizes. Here |@A| denotes the length of the
boundary of region A over which partial transpose is taken.
The singularity occurs at T = 3Tc consistent with our ex-
pectations. To understand the precise nature of this singular-
ity, we note that on general symmetry grounds, the leading
singular contribution to the area-law coefficient of negativ-
ity EN/|@A| as well as its Renyi counterparts such as R3

will be proportional to the energy density [18]. Therefore,
d(EN/|@A|)/dT as well as d(R3/|@A|)/dT will receive a
contribution proportional to the specific heat. For instance,
in the exactly solvable model discussed above, both dEN/dT
and dR3/dT are discontinuous across the transition, which is
indeed the singular behavior of the specific heat within mean-
field [33]. Returning to the 2D Ising model, we recall that
the specific heat exponent ↵ = 0 and the correlation length
exponent ⌫ = 1. Denoting linear size of the system by L
and t = (T � Tc)/Tc, the singular part of the specific heat
in the vicinity of critical point takes the form cv,sing(L, t) ⇠

cv,sing(L, 0) + f(Lt) where cv,sing(L, 0) / log(L) and f is a
universal function with the form f(|x| ⌧ 1) ⇠ constant, and
f(|x| � 1) ⇠ � log(|x|) [37]. Note that were ↵ 6= 0 (e.g. in
the 3D Ising model), cv,sing(L, t) would take a different form,
namely, cv,sing(L, t) ⇠ cv,sing(L, 0)g(Lt).

FIG. 2: (a) Temperature derivative of the area law coefficient
of the Renyi negativity across the finite-T transition.
Geometry of the bipartition is shown in the inset and the
vertical line indicates the location of the transition. (b) Data
collapse for figure 2(a). The inset shows the linear scaling of
temperature derivative at the critical point with log(L).

Fig.2(b) shows the scaling collapse of d(R3/|@A|)/dT �

d(R3/|@A|)/dT
��
3Tc

with respect to Lt, where t =

(T � 3Tc)/3Tc, consistent with our expectation that
d(R3/|@A|)/dT is proportional to the specific heat of the 2D
Ising model. The inset shows the scaling right at the critical
point, where we find that d(R3/|@A|)/dT / log(L), again
consistent with 2D Ising universality.

Universal long-range Renyi negativity: So far we have
demonstrated the Renyi negativity is singular across the fi-
nite temperature transition in 2D TFIM. Now we turn to the
question whether there is a universal subleading term in the
Renyi negativity that reflects long-range quantum entangle-
ment. Writing R3 = aL � � + b/L + . . ., where L is the
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Universal long-range Renyi negativity: So far we have
demonstrated the Renyi negativity is singular across the fi-
nite temperature transition in 2D TFIM. Now we turn to the
question whether there is a universal subleading term in the
Renyi negativity that reflects long-range quantum entangle-
ment. Writing R3 = aL � � + b/L + . . ., where L is the

Temperature derivative of Renyi negativity Scaling collapse

[Wu, Lu, Chung, TG, Kao 2019]

Singularity in the area-law coefficient
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Long-range part of Renyi negativity4

size of the entangling boundary, we are interested in whether
� is non-zero. To extract � we use a subtraction scheme intro-
duced by Levin and Wen in Ref. [35] in the context of ground
state topological order, to cancel out the short-distance (lo-
cal) contributions to negativity. In particular, we construct
four sub-regions S1, S2, S3 and S4 using combinations of
four sub-parts marked as ⌅1, ⌅2, ⌅3 and ⌅4 (see inset of
Fig. 3). The sub-regions Si are defined as S1 ⌘ ⌅1[⌅4, S2 ⌘

⌅1[⌅2[⌅4, S3 ⌘ ⌅1[⌅2[⌅3[⌅4, and S4 ⌘ ⌅1[⌅3[⌅4.
The non-local component � of R3 is given by

� = � [R3(S2)�R3(S1)�R3(S3) +R3(S4))] /2

= � [2R3(S2)�R3(S1)�R3(S3)] /2, (4)

where we have used the relation R3 (S2) = R3 (S4) arising
from the symmetry of the model Hamiltonian.

The most straightforward way to compute � is to calculate
R3(Si) separately and perform the subtraction as in Eq. (4).
However, this requires three independent simulations and, the
errors from each R3(Si) will cumulate in the final subtraction.
Here we develop an expanded ensemble method that allows us
to calculate � in a single simulation. We first write � as the
logarithm of the ratio of partition functions

� =
1

2
log

Z2
S2

ZS1ZS3

, (5)

where ZSi is a shorthand notation for Z[Si,�, 3].
To implement our method, in addition to the conventional

SSE update, we also perform sampling in an expanded en-
semble of the partition functions. In particular, we allow
the system to switch between different partition functions
ZSi by changing the imaginary-time boundary conditions (see
Fig. 1(a)). This can be achieved by sampling the total partition
function Ztot defined as,

Ztot =
3X

i=1

ZSi , (6)

by proposing a move from ZSi to either ZSi+1 or ZSi�1 with
equal probability. The update is accepted if the spin config-
uration is consistent with the new boundary conditions. It is
clear that these moves correspond to adding or removing only
region ⌅2 or ⌅3, which is much smaller than Si, so a bet-

ter acceptance rate can be achieved. The ratio
Z

2
S2

ZS1ZS3
then

is simply estimated by
N

2
S2

NS1NS3
, where NSi is the number of

samples in ZSi .
Since � is computed in a single simulation with an enlarged

ensemble, we avoid the accumulation of error in the naive
post-subtraction. The new method is crucial in obtaining ac-
curate �, especially for the large system size L = 60.

As the system size increases, the acceptance rates for ex-
changing regions ⌅2 and ⌅3 becomes smaller as more sites
need to be updated. In such a case, we can further divide ⌅

FIG. 3: The subleading contribution � to the third Renyi
negativity R3 obtained via Levin-Wen’s subtraction scheme
across the critical temperature. The inset shows the four
sub-parts ⌅1, ⌅2, ⌅3 and ⌅4 employed in the subtraction
scheme (see the main text for details). The dashed vertical
line shows the location of the critical point.

into several smaller subregions to add more intermediate en-
sembles and optimize the performance with the re-weighting
method [33]. The simulation typically runs with 108 Monte
Carlo steps for smaller system sizes, and runs with around
109 Monte Carlo steps for larger system sizes.

Figure 3 shows the results for �. It is essentially zero at
temperature across the transition for all the system sizes we
consider, despite the fact that each individual term R3(Si) that
enters the Levin-Wen subtraction is singular at the transition
(Fig. 2). This indicates that this finite-temperature transition
is driven purely by classical correlations and there exists no
long-range entanglement at the transition, in line with our ex-
pectations based on the results from Ref. [18] and of the ex-
actly solvable models discussed above.

Conclusion: We presented a first QMC study of the Renyi
negativity, a variant of negativity, across a finite-temperature
phase transition in a non-integrable model, namely the two
dimensional transverse field Ising model. We found a clear
signature of singularity in the area-law coefficient of bipartite
Renyi negativity, and perhaps more interestingly, vanishing of
the subleading, non-local part of Renyi negativity. This indi-
cates that the long-range correlations inherent to the critical
point are completely classical, and the singularity associated
with quantum correlations is localized close to the boundary.
To extract this subleading term, we implemented the Levin-
Wen subtraction scheme using a novel Monte Carlo algorithm
that automatically cancels out the leading area-law contribu-
tion in a single simulation.

We note that Ref.[38] used a linked-cluster expansion to ar-
gue that the area-law coefficient of negativity is not singular
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convenient framework for characterizing the entanglement
structure of these wave functions, revealing an unusual
scaling form of the entanglement entropy, namely
SA = α ln |A| + s|A| for a contiguous subsystem A. The
subleading logarithm is exposed by analyzing the length
distributions of the “stabilizers”—mutually commuting Pauli
string (eigen)operators of the Clifford wave functions with
unit eigenvalue. The stabilizer distribution is “bimodal,”
consisting of a power-law distribution of “short” stabilizers
that contribute to the logarithm, and “long stabilizers” with
length " ≈ L/2 giving the volume-law piece (L being the
system size). This logarithmic correction is conjectured to be
a generic feature of volume-law steady states in the presence
of measurements.

(3) The “entanglement transition,” from volume-law to
area-law states [13,14], occurs when the weight under the
“long stabilizer” peak at " ≈ L/2 vanishes continuously upon
approaching pc from below. Remarkably, the power-law tail
of “short” stabilizers remains, implying a purely logarithmic
form for the entanglement entropy right at the critical point,
p = pc. The entanglement transition exhibits conformal sym-
metry of the mutual information at criticality, and we extract
several critical exponents. In particular, we find that in all the
models we study, the mutual information between two small
regions separated by a large distance, r, scales as 1/r4. Off
criticality the mutual information decays exponentially.

(4) We explore the fluctuations of certain spin-spin cor-
relation functions across the transition and find that they are
enhanced at the critical point, mimicking the mutual informa-
tion.

We establish the generality of these results by explor-
ing models with imposed spatial symmetry constraints—
specifically Clifford circuits with the unitaries periodic in
space and time (Floquet) and/or the measurement locations
periodic in space and time. All models are found to exhibit
a measurement-driven entanglement transition, with similar
exponents and similar behavior of the stabilizer length dis-
tribution as in the random Clifford circuit.

Apparently the randomness in the unitaries and measure-
ment locations are inessential, with the remaining stochastic-
ity in the measurement outcomes sufficient to account for the
presence and universality of the entanglement transition.

Going beyond Clifford, we implement a full quantum
simulation of more general circuit models for systems with
size up to L = 20 qubits. Both random Haar circuits and (non-
Clifford) Floquet circuits exhibit behavior consistent with
their Clifford counterparts. We also explore models with (non-
projective) “generalized measurements,” with each and every
qubit being measured at each time step, and find evidence for
an entanglement transition, with accessible exponents being
consistent with the Clifford circuits. Of particular interest is
a space-time translationally symmetric Floquet model with
generalized measurements, which exhibits an entanglement
transition where the only stochasticity is in the results of the
quantum measurements.

Motivated by the remarkable consistency between all of
our different models, we conjecture that generic hybrid cir-
cuits have a volume-law phase with logarithmic correction
for weak enough measurements, and exhibit an entanglement
transition in a single universality class.

FIG. 1. The random circuit model with random measurements.
In this circuit, the unitaries are arranged in a brick-layer fashion,
while the single-qubit Z-measurements are positioned randomly in
space and time. We depict the Poissonian arrangement in this figure,
for which the measurements take place at each available space-time
site independently with probability p. For a circuit with L qubits and
with depth D, there are LD such available sites.

Our paper is organized as follows. In Sec. II we define
the circuit models of interest. Extensive numerical results for
Clifford circuits are reported in Secs. III and IV. In particular,
Sec. III contains evidence for the phase transition in entan-
glement entropy, and allows characterization of the volume-
law phase in terms of stabilizers. Section IV is devoted to a
detailed analysis of the critical behavior of the entanglement
transition. In Sec. V we systematically explore Clifford circuit
models with space and time symmetries imposed, either in the
unitaries or the measurement locations—or both. In Sec. VI
we consider more generic non-Clifford circuits, establishing
complementary results via a full quantum simulation for
smaller systems. We close with discussion in Sec. VII.

Finally, in Appendix A we review Clifford circuits and de-
fine the stabilizer length distribution, and detail measurement
and unitary Clifford dynamics—beyond the steady state—in
Appendix B.

II. THE CIRCUIT MODEL

Consider first the prototypical quantum circuit model,
shown in Fig. 1, with L qubits arranged on a one-dimensional
chain. The circuit dynamics is composed of two parts, as
depicted in Fig. 1 and detailed below (in order), namely, (1)
the background unitary evolution and (2) measurements made
on selected qubits scattered throughout the system.

(i) The background unitary time evolution of the L-qubit
wave function is determined by applications of local unitary
gates which are arranged in a bricklayer pattern, such that the
geometry of the circuit is periodic in both space and time.
The local unitaries act on neighboring pairs of qubits. Each
discrete time cycle of the circuit consists of two layers, and
each layer has L/2 two-qubit unitary gates, acting on all the
odd links in the first layer, and all the even links in the second.
We primarily consider circuits with periodic spatial boundary
conditions, except in Appendix B where circuits with open
boundary condition are more convenient.

We define the depth of a circuit to be the number of unitary
layers, and denote it by D. Therefore, a circuit with depth
D has T = D/2 time cycles. The circuit as a whole can be
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convenient framework for characterizing the entanglement
structure of these wave functions, revealing an unusual
scaling form of the entanglement entropy, namely
SA = α ln |A| + s|A| for a contiguous subsystem A. The
subleading logarithm is exposed by analyzing the length
distributions of the “stabilizers”—mutually commuting Pauli
string (eigen)operators of the Clifford wave functions with
unit eigenvalue. The stabilizer distribution is “bimodal,”
consisting of a power-law distribution of “short” stabilizers
that contribute to the logarithm, and “long stabilizers” with
length " ≈ L/2 giving the volume-law piece (L being the
system size). This logarithmic correction is conjectured to be
a generic feature of volume-law steady states in the presence
of measurements.

(3) The “entanglement transition,” from volume-law to
area-law states [13,14], occurs when the weight under the
“long stabilizer” peak at " ≈ L/2 vanishes continuously upon
approaching pc from below. Remarkably, the power-law tail
of “short” stabilizers remains, implying a purely logarithmic
form for the entanglement entropy right at the critical point,
p = pc. The entanglement transition exhibits conformal sym-
metry of the mutual information at criticality, and we extract
several critical exponents. In particular, we find that in all the
models we study, the mutual information between two small
regions separated by a large distance, r, scales as 1/r4. Off
criticality the mutual information decays exponentially.

(4) We explore the fluctuations of certain spin-spin cor-
relation functions across the transition and find that they are
enhanced at the critical point, mimicking the mutual informa-
tion.

We establish the generality of these results by explor-
ing models with imposed spatial symmetry constraints—
specifically Clifford circuits with the unitaries periodic in
space and time (Floquet) and/or the measurement locations
periodic in space and time. All models are found to exhibit
a measurement-driven entanglement transition, with similar
exponents and similar behavior of the stabilizer length dis-
tribution as in the random Clifford circuit.

Apparently the randomness in the unitaries and measure-
ment locations are inessential, with the remaining stochastic-
ity in the measurement outcomes sufficient to account for the
presence and universality of the entanglement transition.

Going beyond Clifford, we implement a full quantum
simulation of more general circuit models for systems with
size up to L = 20 qubits. Both random Haar circuits and (non-
Clifford) Floquet circuits exhibit behavior consistent with
their Clifford counterparts. We also explore models with (non-
projective) “generalized measurements,” with each and every
qubit being measured at each time step, and find evidence for
an entanglement transition, with accessible exponents being
consistent with the Clifford circuits. Of particular interest is
a space-time translationally symmetric Floquet model with
generalized measurements, which exhibits an entanglement
transition where the only stochasticity is in the results of the
quantum measurements.

Motivated by the remarkable consistency between all of
our different models, we conjecture that generic hybrid cir-
cuits have a volume-law phase with logarithmic correction
for weak enough measurements, and exhibit an entanglement
transition in a single universality class.

FIG. 1. The random circuit model with random measurements.
In this circuit, the unitaries are arranged in a brick-layer fashion,
while the single-qubit Z-measurements are positioned randomly in
space and time. We depict the Poissonian arrangement in this figure,
for which the measurements take place at each available space-time
site independently with probability p. For a circuit with L qubits and
with depth D, there are LD such available sites.

Our paper is organized as follows. In Sec. II we define
the circuit models of interest. Extensive numerical results for
Clifford circuits are reported in Secs. III and IV. In particular,
Sec. III contains evidence for the phase transition in entan-
glement entropy, and allows characterization of the volume-
law phase in terms of stabilizers. Section IV is devoted to a
detailed analysis of the critical behavior of the entanglement
transition. In Sec. V we systematically explore Clifford circuit
models with space and time symmetries imposed, either in the
unitaries or the measurement locations—or both. In Sec. VI
we consider more generic non-Clifford circuits, establishing
complementary results via a full quantum simulation for
smaller systems. We close with discussion in Sec. VII.

Finally, in Appendix A we review Clifford circuits and de-
fine the stabilizer length distribution, and detail measurement
and unitary Clifford dynamics—beyond the steady state—in
Appendix B.

II. THE CIRCUIT MODEL

Consider first the prototypical quantum circuit model,
shown in Fig. 1, with L qubits arranged on a one-dimensional
chain. The circuit dynamics is composed of two parts, as
depicted in Fig. 1 and detailed below (in order), namely, (1)
the background unitary evolution and (2) measurements made
on selected qubits scattered throughout the system.

(i) The background unitary time evolution of the L-qubit
wave function is determined by applications of local unitary
gates which are arranged in a bricklayer pattern, such that the
geometry of the circuit is periodic in both space and time.
The local unitaries act on neighboring pairs of qubits. Each
discrete time cycle of the circuit consists of two layers, and
each layer has L/2 two-qubit unitary gates, acting on all the
odd links in the first layer, and all the even links in the second.
We primarily consider circuits with periodic spatial boundary
conditions, except in Appendix B where circuits with open
boundary condition are more convenient.

We define the depth of a circuit to be the number of unitary
layers, and denote it by D. Therefore, a circuit with depth
D has T = D/2 time cycles. The circuit as a whole can be
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FIG. 3. The averaged entanglement entropy for models B1 and
B2 are shown in panels (a) and (b), respectively, as a function of
system size, for different values of p, on a log-log scale. All the data
is taken with subsystem size LA = L/4. In each figure one curve
is highlighted with a thick line, corresponding to a critical value of
p = pc, that separates curves with p < pc that appear to asymptote
to a straight line with slope ≈1 at large L (volume law), from the
curves with p > pc which saturate to lines with slope 0 at large L

(area law).

To further probe this phase transition we first replot the
entanglement entropy data versus p (on a semilog scale) for
the different systems sizes in Fig. 4(a) for model B1 and
Fig. 5(a) for model B2, respectively. Then we attempt a data
collapse, fitting to the following standard finite-size scaling
form near the critical point for the steady state entanglement
SA(p,LA),

SA(p, cL) = Lγ F ((p − pc )L1/ν ), (22)

S
A
(L

/4
)

p

(p - pc) L1/ν
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) 
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FIG. 4. Results for model B1, plotted on a semilog scale. In both
panels, we take the subsystem size LA = L/4. (a) The entanglement
entropy as a function of p, for different system sizes. (b) SA/Lγ

versus (p − pc )L1/ν , for 0.05 < p < 0.3. We find pc = 0.15, ν =
1.85, γ = 0.30 for a best collapse.

where the values of pc are taken from Fig. 3, and c = LA/L !
1/2 is a finite constant, fixed to be c = 1/4 in our numerics
[36]. Restricting the values of p to be close to criticality,
0.05 < p < 0.3 and 0.3 < p < 1.0 for the two cases, we
replot the data as SA/Lγ versus (p − pc )L1/ν and choose the
critical exponents γ and ν to get the best collapse. For model
B1 we find that ν = 1.85 and γ = 0.30 give the best fit as
shown in Fig. 4(b), while the data collapse for model B2 with
ν = 1.75 and γ = 0.33 is shown in Fig. 5(b).

The quality of the data collapse, and the closeness of
the critical exponents between the two models, lend strong
support for the existence of a continuous quantum phase tran-
sition. Below pc, there is a stable “weak measurement” phase
in which the system saturates to volume law entanglement
entropy. Above pc, the system is in the “strong measurement”
or Zeno phase, where the entanglement entropy saturates to
an area law. Right at the transition the entanglement entropy
is growing with L but subextensive, SA(pc, cL) ∼ Lγ with
γ ≈ 1/3. Upon approaching the critical point there is a di-
verging correlation length, ξ ∼ |p − pc|−ν , as deduced from
the finite-size scaling collapse.

Once the critical exponents are known, the behavior of
the scaling function, F (x), at large argument |x| $ 1 can be
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UF = ei∑x
̂Π2(x)ei∑x ( ̂ϕ(x + 1) − ̂ϕ(x))

2

ei∑x V( ̂ϕ(x), x)

A puzzle: Consider time evolution with:

[ ̂ϕ(x), Π̂(x′￼)] = i δx,x′￼

 arbitrary function of x, e.g.,V( ̂ϕ(x), x)

V( ̂ϕ(x), x) = m2(x) ̂ϕ2(x) + u(x) ̂ϕ4(x) + . . .

Can either of these systems show many-body 

localization? What about Bose-Hubbard model


which looks somewhat similar?

H = ∫ dx [(∇ϕ(x))2 + Π2(x) + m2(x) ϕ2(x) + u(x) ϕ4(x)]

Or, alternatively the following Floquet operator

[ ̂ϕ(x), Π̂(x′￼)] = i δ(x − x′￼)
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convenient framework for characterizing the entanglement
structure of these wave functions, revealing an unusual
scaling form of the entanglement entropy, namely
SA = α ln |A| + s|A| for a contiguous subsystem A. The
subleading logarithm is exposed by analyzing the length
distributions of the “stabilizers”—mutually commuting Pauli
string (eigen)operators of the Clifford wave functions with
unit eigenvalue. The stabilizer distribution is “bimodal,”
consisting of a power-law distribution of “short” stabilizers
that contribute to the logarithm, and “long stabilizers” with
length " ≈ L/2 giving the volume-law piece (L being the
system size). This logarithmic correction is conjectured to be
a generic feature of volume-law steady states in the presence
of measurements.

(3) The “entanglement transition,” from volume-law to
area-law states [13,14], occurs when the weight under the
“long stabilizer” peak at " ≈ L/2 vanishes continuously upon
approaching pc from below. Remarkably, the power-law tail
of “short” stabilizers remains, implying a purely logarithmic
form for the entanglement entropy right at the critical point,
p = pc. The entanglement transition exhibits conformal sym-
metry of the mutual information at criticality, and we extract
several critical exponents. In particular, we find that in all the
models we study, the mutual information between two small
regions separated by a large distance, r, scales as 1/r4. Off
criticality the mutual information decays exponentially.

(4) We explore the fluctuations of certain spin-spin cor-
relation functions across the transition and find that they are
enhanced at the critical point, mimicking the mutual informa-
tion.

We establish the generality of these results by explor-
ing models with imposed spatial symmetry constraints—
specifically Clifford circuits with the unitaries periodic in
space and time (Floquet) and/or the measurement locations
periodic in space and time. All models are found to exhibit
a measurement-driven entanglement transition, with similar
exponents and similar behavior of the stabilizer length dis-
tribution as in the random Clifford circuit.

Apparently the randomness in the unitaries and measure-
ment locations are inessential, with the remaining stochastic-
ity in the measurement outcomes sufficient to account for the
presence and universality of the entanglement transition.

Going beyond Clifford, we implement a full quantum
simulation of more general circuit models for systems with
size up to L = 20 qubits. Both random Haar circuits and (non-
Clifford) Floquet circuits exhibit behavior consistent with
their Clifford counterparts. We also explore models with (non-
projective) “generalized measurements,” with each and every
qubit being measured at each time step, and find evidence for
an entanglement transition, with accessible exponents being
consistent with the Clifford circuits. Of particular interest is
a space-time translationally symmetric Floquet model with
generalized measurements, which exhibits an entanglement
transition where the only stochasticity is in the results of the
quantum measurements.

Motivated by the remarkable consistency between all of
our different models, we conjecture that generic hybrid cir-
cuits have a volume-law phase with logarithmic correction
for weak enough measurements, and exhibit an entanglement
transition in a single universality class.

FIG. 1. The random circuit model with random measurements.
In this circuit, the unitaries are arranged in a brick-layer fashion,
while the single-qubit Z-measurements are positioned randomly in
space and time. We depict the Poissonian arrangement in this figure,
for which the measurements take place at each available space-time
site independently with probability p. For a circuit with L qubits and
with depth D, there are LD such available sites.

Our paper is organized as follows. In Sec. II we define
the circuit models of interest. Extensive numerical results for
Clifford circuits are reported in Secs. III and IV. In particular,
Sec. III contains evidence for the phase transition in entan-
glement entropy, and allows characterization of the volume-
law phase in terms of stabilizers. Section IV is devoted to a
detailed analysis of the critical behavior of the entanglement
transition. In Sec. V we systematically explore Clifford circuit
models with space and time symmetries imposed, either in the
unitaries or the measurement locations—or both. In Sec. VI
we consider more generic non-Clifford circuits, establishing
complementary results via a full quantum simulation for
smaller systems. We close with discussion in Sec. VII.

Finally, in Appendix A we review Clifford circuits and de-
fine the stabilizer length distribution, and detail measurement
and unitary Clifford dynamics—beyond the steady state—in
Appendix B.

II. THE CIRCUIT MODEL

Consider first the prototypical quantum circuit model,
shown in Fig. 1, with L qubits arranged on a one-dimensional
chain. The circuit dynamics is composed of two parts, as
depicted in Fig. 1 and detailed below (in order), namely, (1)
the background unitary evolution and (2) measurements made
on selected qubits scattered throughout the system.

(i) The background unitary time evolution of the L-qubit
wave function is determined by applications of local unitary
gates which are arranged in a bricklayer pattern, such that the
geometry of the circuit is periodic in both space and time.
The local unitaries act on neighboring pairs of qubits. Each
discrete time cycle of the circuit consists of two layers, and
each layer has L/2 two-qubit unitary gates, acting on all the
odd links in the first layer, and all the even links in the second.
We primarily consider circuits with periodic spatial boundary
conditions, except in Appendix B where circuits with open
boundary condition are more convenient.

We define the depth of a circuit to be the number of unitary
layers, and denote it by D. Therefore, a circuit with depth
D has T = D/2 time cycles. The circuit as a whole can be
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convenient framework for characterizing the entanglement
structure of these wave functions, revealing an unusual
scaling form of the entanglement entropy, namely
SA = α ln |A| + s|A| for a contiguous subsystem A. The
subleading logarithm is exposed by analyzing the length
distributions of the “stabilizers”—mutually commuting Pauli
string (eigen)operators of the Clifford wave functions with
unit eigenvalue. The stabilizer distribution is “bimodal,”
consisting of a power-law distribution of “short” stabilizers
that contribute to the logarithm, and “long stabilizers” with
length " ≈ L/2 giving the volume-law piece (L being the
system size). This logarithmic correction is conjectured to be
a generic feature of volume-law steady states in the presence
of measurements.

(3) The “entanglement transition,” from volume-law to
area-law states [13,14], occurs when the weight under the
“long stabilizer” peak at " ≈ L/2 vanishes continuously upon
approaching pc from below. Remarkably, the power-law tail
of “short” stabilizers remains, implying a purely logarithmic
form for the entanglement entropy right at the critical point,
p = pc. The entanglement transition exhibits conformal sym-
metry of the mutual information at criticality, and we extract
several critical exponents. In particular, we find that in all the
models we study, the mutual information between two small
regions separated by a large distance, r, scales as 1/r4. Off
criticality the mutual information decays exponentially.

(4) We explore the fluctuations of certain spin-spin cor-
relation functions across the transition and find that they are
enhanced at the critical point, mimicking the mutual informa-
tion.

We establish the generality of these results by explor-
ing models with imposed spatial symmetry constraints—
specifically Clifford circuits with the unitaries periodic in
space and time (Floquet) and/or the measurement locations
periodic in space and time. All models are found to exhibit
a measurement-driven entanglement transition, with similar
exponents and similar behavior of the stabilizer length dis-
tribution as in the random Clifford circuit.

Apparently the randomness in the unitaries and measure-
ment locations are inessential, with the remaining stochastic-
ity in the measurement outcomes sufficient to account for the
presence and universality of the entanglement transition.

Going beyond Clifford, we implement a full quantum
simulation of more general circuit models for systems with
size up to L = 20 qubits. Both random Haar circuits and (non-
Clifford) Floquet circuits exhibit behavior consistent with
their Clifford counterparts. We also explore models with (non-
projective) “generalized measurements,” with each and every
qubit being measured at each time step, and find evidence for
an entanglement transition, with accessible exponents being
consistent with the Clifford circuits. Of particular interest is
a space-time translationally symmetric Floquet model with
generalized measurements, which exhibits an entanglement
transition where the only stochasticity is in the results of the
quantum measurements.

Motivated by the remarkable consistency between all of
our different models, we conjecture that generic hybrid cir-
cuits have a volume-law phase with logarithmic correction
for weak enough measurements, and exhibit an entanglement
transition in a single universality class.

FIG. 1. The random circuit model with random measurements.
In this circuit, the unitaries are arranged in a brick-layer fashion,
while the single-qubit Z-measurements are positioned randomly in
space and time. We depict the Poissonian arrangement in this figure,
for which the measurements take place at each available space-time
site independently with probability p. For a circuit with L qubits and
with depth D, there are LD such available sites.

Our paper is organized as follows. In Sec. II we define
the circuit models of interest. Extensive numerical results for
Clifford circuits are reported in Secs. III and IV. In particular,
Sec. III contains evidence for the phase transition in entan-
glement entropy, and allows characterization of the volume-
law phase in terms of stabilizers. Section IV is devoted to a
detailed analysis of the critical behavior of the entanglement
transition. In Sec. V we systematically explore Clifford circuit
models with space and time symmetries imposed, either in the
unitaries or the measurement locations—or both. In Sec. VI
we consider more generic non-Clifford circuits, establishing
complementary results via a full quantum simulation for
smaller systems. We close with discussion in Sec. VII.

Finally, in Appendix A we review Clifford circuits and de-
fine the stabilizer length distribution, and detail measurement
and unitary Clifford dynamics—beyond the steady state—in
Appendix B.

II. THE CIRCUIT MODEL

Consider first the prototypical quantum circuit model,
shown in Fig. 1, with L qubits arranged on a one-dimensional
chain. The circuit dynamics is composed of two parts, as
depicted in Fig. 1 and detailed below (in order), namely, (1)
the background unitary evolution and (2) measurements made
on selected qubits scattered throughout the system.

(i) The background unitary time evolution of the L-qubit
wave function is determined by applications of local unitary
gates which are arranged in a bricklayer pattern, such that the
geometry of the circuit is periodic in both space and time.
The local unitaries act on neighboring pairs of qubits. Each
discrete time cycle of the circuit consists of two layers, and
each layer has L/2 two-qubit unitary gates, acting on all the
odd links in the first layer, and all the even links in the second.
We primarily consider circuits with periodic spatial boundary
conditions, except in Appendix B where circuits with open
boundary condition are more convenient.

We define the depth of a circuit to be the number of unitary
layers, and denote it by D. Therefore, a circuit with depth
D has T = D/2 time cycles. The circuit as a whole can be
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convenient framework for characterizing the entanglement
structure of these wave functions, revealing an unusual
scaling form of the entanglement entropy, namely
SA = α ln |A| + s|A| for a contiguous subsystem A. The
subleading logarithm is exposed by analyzing the length
distributions of the “stabilizers”—mutually commuting Pauli
string (eigen)operators of the Clifford wave functions with
unit eigenvalue. The stabilizer distribution is “bimodal,”
consisting of a power-law distribution of “short” stabilizers
that contribute to the logarithm, and “long stabilizers” with
length " ≈ L/2 giving the volume-law piece (L being the
system size). This logarithmic correction is conjectured to be
a generic feature of volume-law steady states in the presence
of measurements.

(3) The “entanglement transition,” from volume-law to
area-law states [13,14], occurs when the weight under the
“long stabilizer” peak at " ≈ L/2 vanishes continuously upon
approaching pc from below. Remarkably, the power-law tail
of “short” stabilizers remains, implying a purely logarithmic
form for the entanglement entropy right at the critical point,
p = pc. The entanglement transition exhibits conformal sym-
metry of the mutual information at criticality, and we extract
several critical exponents. In particular, we find that in all the
models we study, the mutual information between two small
regions separated by a large distance, r, scales as 1/r4. Off
criticality the mutual information decays exponentially.

(4) We explore the fluctuations of certain spin-spin cor-
relation functions across the transition and find that they are
enhanced at the critical point, mimicking the mutual informa-
tion.

We establish the generality of these results by explor-
ing models with imposed spatial symmetry constraints—
specifically Clifford circuits with the unitaries periodic in
space and time (Floquet) and/or the measurement locations
periodic in space and time. All models are found to exhibit
a measurement-driven entanglement transition, with similar
exponents and similar behavior of the stabilizer length dis-
tribution as in the random Clifford circuit.

Apparently the randomness in the unitaries and measure-
ment locations are inessential, with the remaining stochastic-
ity in the measurement outcomes sufficient to account for the
presence and universality of the entanglement transition.

Going beyond Clifford, we implement a full quantum
simulation of more general circuit models for systems with
size up to L = 20 qubits. Both random Haar circuits and (non-
Clifford) Floquet circuits exhibit behavior consistent with
their Clifford counterparts. We also explore models with (non-
projective) “generalized measurements,” with each and every
qubit being measured at each time step, and find evidence for
an entanglement transition, with accessible exponents being
consistent with the Clifford circuits. Of particular interest is
a space-time translationally symmetric Floquet model with
generalized measurements, which exhibits an entanglement
transition where the only stochasticity is in the results of the
quantum measurements.

Motivated by the remarkable consistency between all of
our different models, we conjecture that generic hybrid cir-
cuits have a volume-law phase with logarithmic correction
for weak enough measurements, and exhibit an entanglement
transition in a single universality class.

FIG. 1. The random circuit model with random measurements.
In this circuit, the unitaries are arranged in a brick-layer fashion,
while the single-qubit Z-measurements are positioned randomly in
space and time. We depict the Poissonian arrangement in this figure,
for which the measurements take place at each available space-time
site independently with probability p. For a circuit with L qubits and
with depth D, there are LD such available sites.

Our paper is organized as follows. In Sec. II we define
the circuit models of interest. Extensive numerical results for
Clifford circuits are reported in Secs. III and IV. In particular,
Sec. III contains evidence for the phase transition in entan-
glement entropy, and allows characterization of the volume-
law phase in terms of stabilizers. Section IV is devoted to a
detailed analysis of the critical behavior of the entanglement
transition. In Sec. V we systematically explore Clifford circuit
models with space and time symmetries imposed, either in the
unitaries or the measurement locations—or both. In Sec. VI
we consider more generic non-Clifford circuits, establishing
complementary results via a full quantum simulation for
smaller systems. We close with discussion in Sec. VII.

Finally, in Appendix A we review Clifford circuits and de-
fine the stabilizer length distribution, and detail measurement
and unitary Clifford dynamics—beyond the steady state—in
Appendix B.

II. THE CIRCUIT MODEL

Consider first the prototypical quantum circuit model,
shown in Fig. 1, with L qubits arranged on a one-dimensional
chain. The circuit dynamics is composed of two parts, as
depicted in Fig. 1 and detailed below (in order), namely, (1)
the background unitary evolution and (2) measurements made
on selected qubits scattered throughout the system.

(i) The background unitary time evolution of the L-qubit
wave function is determined by applications of local unitary
gates which are arranged in a bricklayer pattern, such that the
geometry of the circuit is periodic in both space and time.
The local unitaries act on neighboring pairs of qubits. Each
discrete time cycle of the circuit consists of two layers, and
each layer has L/2 two-qubit unitary gates, acting on all the
odd links in the first layer, and all the even links in the second.
We primarily consider circuits with periodic spatial boundary
conditions, except in Appendix B where circuits with open
boundary condition are more convenient.

We define the depth of a circuit to be the number of unitary
layers, and denote it by D. Therefore, a circuit with depth
D has T = D/2 time cycles. The circuit as a whole can be
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Example # 1: Space-time dual of a 

single-particle localization transition

UF = eiJ
P

r XrXr+1ei
P

r hrZr

 quasi-periodic,

“Floquet Aubry-Andre-Harper” model

hr

Unitary circuit = (UF)time

Space-time dual also free-fermion circuit, albeit non-hermitian.


Previous works on free fermion systems shows that one doesn’t expect volume law 
entanglement for generic non-Hermitian Hamiltonians [Jian et al 2020; Chen et al 2020; Tang, 

Chen, Zhu 2001;…].   For non-unitary circuits consisting of unitary evolution+ only projective 

measurements, this can be argued fairly rigorously [Cao, Tilloy, De Luca 2019; Fidkowski, Haah, 

Hastings 2020]. 



Example # 1: Space-time dual of a 

single-particle localization transition

[TG, Tsung-Cheng Lu 2021]

Volume-law Log-law

space-time

rotation

UF = eiJ
P

r XrXr+1ei
P

r hrZr

Unitary circuit = (UF)time

Area-law 
S ~ const.

Volume-law 
S ~ L

λc ≈ 0.64

3

4
8 �̃/ ,A/C/C+1 in +A , and 4

8�/ ,A/A/A+1 in *� is mapped to 4
8 �̃- ,A-C

in +A .
Finally, by exchanging the labels of space-time coordinates

A $ C, one can construct the space-time rotated circuit + ())
that evolves the system for a time ) and acts on a Hilbert space
of size !, + ()) = Œ

)

C=1 +C where

+C = 4
8 �̃- (C) Õ!

A=1 -A

4
8 �̃/ (C) Õ!

A=1 /A/A+1+8⌘ (C)
Õ

!

A=1 /A

. (3)

A few remarks are in order. First, + ()) has the space
translational invariance resulting from the time translation
invariance in the unrotated Floquet circuit *� . Second,
+ ()) is generically non-unitary except for the self-dual points��
�- ,A

�� = ��
�/ ,A

�� = c/456. Third, in the special case when �- ,A ,
�/ ,A , and ⌘A are restricted to {0,±c/4}, + ()) corresponds to
a hybrid quantum circuit with only unitary gates and forced
projective measurements. While a c/4 coupling gives unitary
operation as just mentioned, �- ,A = 0 implies that the spin at
site A is frozen in the unrotated circuit, and hence, in the rotated
circuit, this corresponds to a forced projective measurement of
(1 + /8/8+1)/2 on two neighboring spins. Similarly, �I,A = 0
corresponds to a forced projective measurement of (1 + -)/2
on a single site. The fact that a forced projective measurement
can arise from the space-time rotation of a unitary gate has
also been previously noted in Ref.63. Finally, once we have
obtained the form of + , we let the corresponding system size
! and the evolution time ) (Eq.3) be free parameters that are
independent of the system size and evolution time of the Flo-
quet unitary *� from which it was obtained. That is, we do
not impose the conditions ) = !G , ! = !C , when we compare
various properties of + with *� .

Having reviewed the mapping between a unitary and its
‘space-time dual’, in the rest of the paper we will consider
several Floquet unitary circuits that exhibit entanglement tran-
sitions due to the physics of localization, and explore the phase
diagrams of their space-time duals.

III. SPACE-TIME ROTATION & ENTANGLEMENT
TRANSITION IN A QUASIPERIODIC CIRCUIT

As a first example, we consider a Floquet circuit in one
space dimension hosting a localization-delocalization transi-
tion. We recall that models with quasiperiodic randomness,
such as the Aubry-André-Harper (AAH) model81–83, can evade
Anderson localization84 in 1d. The AAH model is given

by � = �CÕ
A

⇣
2
†
A
2A+1 + ⌘.2.

⌘
� 2_

Õ
A

cos(2c&A + X)2†
A
2A ,

where 2A and 2
†
A

are the fermion creation and annihilation op-
erators. When the on-site potential is incommensurate, i.e.,
the wavenumber & is irrational, all single-particle eigenstates
are delocalized (localized) for |C | > |_ | (|C | < |_ |) and arbi-
trary o�set X. Motivated by this, we consider a Floquet circuit
model with the following unitary

*� = 4
8�

Õ
A
-A-A+1

4
8

Õ
A
⌘A/A (4)

for a spin-1/2 chain of size ! with periodic boundary con-
ditions. We choose � = 1, and ⌘A to be quasiperiodic:

⌘A = ⌘ + _ cos(2c&A + X) where & is set to 2
1+

p
5

(the inverse

Golden ratio), and ⌘ = 2.5. We note that Ref.85 studied the
incommensurate AAH modulation in the transverse field Ising
model, and found that due to the interplay between symme-
try and incommensurate modulation, it exhibits a rich phase
diagram, including phases with delocalized, localized, and
critical states that sometimes also break the Ising symmetry
spontaneously.

Using the above Floquet unitary *� , we construct the cor-
responding space-time-rotated circuit + as discussed above in
Sec.II:

+ ()) =
)÷
C=1

4
8⌘̃

Õ
A
/A

4
8

Õ
A
�̃ (C)-A-A+1

. (5)

where �̃ (0) = �c/4 + 8

2 log (tan ⌘0) and ⌘̃ = tan�1 ��84�28� � .
Notice that the circuit + is translationally invariant in space at
each fixed time slice, but quasiperiodic in time.

Now we discuss the entanglement structure of long-time-
evolved states () � !) from a product state |k0i:

|k())i = * |k0ip
hk0 |*†

* |k0i
, (6)

where * is chosen as (*� )) and + ()) for the Floquet circuit
and its space-time dual respectively. Using the Jordan-Wigner
transformation, we map these circuits into a problem involv-
ing free-fermions, and numerically compute the entanglement
entropy using the correlation matrix technique86–88(see Ap-
pendix.A 1 for the details).

For the unrotated circuit *� , we find that the entanglement
entropy exhibits a volume-law scaling for _ . 0.64 and an
area-law scaling for _ & 0.81 (Fig.2(a)). In the intermediate
regime, 0.64 . _ . 0.81 (Fig.2(b)) we find that (� ⇠ $ (!W)
with 0 < W < 1. Notably, deep in the volume-law phase,
the entanglement entropy density (�/!� ⇡ 0.386 regardless
of _, which is very close to the average value predicted for
random quadratic Hamiltonians of free fermions derived in
Ref.80: BA = log 2 �

⇥
1 + 5

�1 (1 � 5 ) log(1 � 5 )
⇤
⇡ 0.386 at

5 = 1/2. We also explore delocalization properties of the
single-particle eigenfuntions of the circuit *� in terms of free
fermions and find three distinct phases (see Appendix.A 2), in
line with the late-time entanglement entropy studied here.

We now discuss the space-time-rotated circuit + . We find
that it also exhibits a transition in the entanglement entropy
of long-time evolved states. Fig.2(c) indicates that there is
a transition in the entanglement entropy density (�/!� at
_ ⇡ 0.64: (� follows a volume law for _ . 0.64, and obeys
a sub-volume scaling for _ & 0.64. We also note that in the
volume-law regime, the coe�cient of the volume law varies
continuously, in strong contrast to the volume-law phase of
the unrotated unitary circuit. To elucidate the nature of the
sub-volume-law regime, we study (� Vs !, and find that it
scales logarithmically with the system size !: ( ⇠ U log(!)
(see Fig.2(d)) where U is a number that depends on _. We also
attempted a scaling collapse for the entanglement close to the
critical point in the non-unitary circuit, see Appendix A 3. The
collapse is reasonably good in the volume-law regime while it

Non-unitary circuit

|Re(h̃) | = |Re(J̃ ) | = π /4



V (T ) =
TY

t=1

eih̃
P

r Zrei
P

r J̃(t)XrXr+1 .

J̃(t) = �⇡/4 +
i

2
log(tanht)

h̃ = tan�1(�ie�2iJ)

UF = eiJ
P

r XrXr+1ei
P

r hrZr

When  for some  becomes , the non-unitary circuit

at that time-slice corresponds to a pure projector. In the original


unitary circuit, this condition corresponds to vanishing of

Jordan-Wigner Majorana hopping on some bond.


ht t π

⇒ λc = π − 2.5 ≈ 0.64
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time
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Example # 2: Space-time dual of a unitary 2+1D circuit

independent random variables Jij , hi = 0, 1

Probability p, 1-p   

t

x

y
x

t

y

The space-time rotated non-unitary circuit

consists of only unitaries and forced measurements.


Both rotated and unrotated circuits can be simulated

efficiently since they consist of Clifford gates.

[TG, Tsung-Cheng Lu 2021]



Example # 2: Space-time dual of a unitary 2+1D circuit
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[Chandran,

Laumann 2015]



Example # 3: Rotation of Floquet-MBL circuit 
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[Ponte et al 2015; Abanin, De Roeck, Huveneers 2016; 

Zhang, Khemani, Huse 2016]



Probing Zeno transition using purification dynamics

of a reference-qubit

Gullans, Huse (2019) proposed coupling a reference-qubit to 
the system of interest, and studying its long-time entanglement.

2

use this property to extract a “surface” order parameter
exponent �s. To measure the “bulk” order parameter ex-
ponent � [28], finite size e↵ects are reduced by measuring
the two-point function, which we identify with the mu-
tual information between two initially locally entangled
reference qubits.

Order parameter measurement.—Combined unitary-
measurement dynamics in one of its simplest form refers
to the open system dynamics described by the family of
quantum channels

Nt(⇢) =
X

~m

K~m⇢K
†
~m ⌦ |~mih~m|, (1)

K~m = UtP
mt
t · · · U1P

m1
1 , (2)

where ⇢ is the density matrix of the system, Un are uni-
tary operators, Pmn

n is a sequences of projectors that
satisfy P 0

n +P 1
n = I, and ~m indexes the measurement out-

comes (mn = 0 or 1). Such channels describe a system
that is coupled to the environment only through ancilla
qubits, which also act as a register to record the quantum
trajectories of the system [29]. We note that more gen-
eral definitions of measurement-induced transitions and
phases have been put forward in our recent work [19]. We
consider an equivalent formulation of the model shown in
Fig. 1(a), where the initial density matrix of the system
S ⇢S =

P
k �k|kihk| is purified by adding a reference sys-

tem R: | RSi =
P

k

p
�k|kRi|ki. In each layer of the

circuit, we apply spatially local unitaries, followed by a
round of single-site measurements of each site with prob-
ability p. For rather generic choices of unitaries, MIC
arises in such models by tuning the measurement rate p
to a critical value pc.

Previously we showed that one could identify the phase
transition by studying the purification dynamics of the
maximally mixed state [19]; however, the entropy of this
mixed state has a similar interpretation to entanglement
as a domain wall free-energy cost [21] and does not serve
as a local or scalable probe. Here, we instead consider
the case where the reference system consists of a finite
number of qubits. For simplicity and ease of experimen-
tal implementation, we first focus on a single-reference
qubit. We extend the channel to a unitary operation by
including an environment Nt(⇢S) = TrE [USE⇢SEU †

SE ].
The total state of the reference, system, and environment
| RSEi evolves as

| RSEi =
X

k~m

p
pk~m |kRi| k~mi|~mi, (3)

where
p

pk~m| k~mi =
p
�k(K~m|ki)|~mi and pk~m is the

joint probability of starting in |ki and observing measure-
ments ~m. The reduced density matrix for the reference
and environment is ⇢RE =

P
~m p~m ⇢R~m ⌦ |~mih~m| with

⇢R~m =

✓
p0|~m

p
p0|~mp1|~mO~mp

p0|~mp1|~mO⇤
~m p1|~m

◆
, (4)
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FIG. 1. (a) Unitary-measurement dynamics in 1 + 1 dimen-
sions with additional reference probes. The reference qubits
are used to measure few-point order parameter correlations.
(b) Finite-size scaling of the entanglement transition in a
stabilizer circuit model using the circuit-averaged SQ as an
order parameter (see text). Each two-site unitary is drawn
uniformly from the Cli↵ord group and Z-measurements are
made at each site with probability p. The crossing point for
L = 64 � 256 lets us locate pc = 0.1598(5) and (inset) a col-
lapse of the data at this value of pc occurs for ⌫ = 1.30(5),
consistent with previous estimates [16, 19].

where p~m =
P

k pk~m, pk|~m = pk~m/p~m is the conditional
probability of the reference being in state |kRi, and O~m =
h 0~m| 1~mi is an overlap factor. We introduce “quantum”
and “classical” order parameters based on this reduced
density matrix. We define the quantum order parameter
as the coherent quantum information of this input state
[5], which, for the channels in Eq. (1), reduces to the
average entropy of the reference qubit [18, 19]

SQ = S(⇢R) � I(R : E) =
X

~m

p~mS(⇢R~m), (5)

where S(⇢) = � Tr[⇢ log ⇢] is the von Neumann entropy
and I(R : E) = S(⇢R)+S(⇢E)�S(⇢RE) is the mutual in-
formation. SQ measures the ability of the system to store
one bit of quantum information [5, 30]. In the ordered
phase, the environment gains little information about the
state of the reference and SQ can stay nonzero. In con-
trast, in the disordered phase, the environment quickly
learns about the state of the reference and SQ decays to
zero.

To define the classical order parameter SC , we set the
o↵-diagonal elements of ⇢R~m to zero

SC = H(pk~m) � H(p~m) =
X

k~m

pk~m log(p~m/pk~m), (6)

where H(qi) = �
P

i qi log qi is the classical entropy. SC

measures the ability of the environment to distinguish
the two initial states |0i and |1i. Analogous to SQ, it
measures the ability of the system to store one classical
bit of information [30]. We remark that a related metric
to SC is the Kullback-Leibler divergence of the measure-

From 

Gullans, Huse (2019)

non-Zeno

phase

Zeno

phase

In the Zeno phase, the qubit purifies itself in O(1) time.

In the non-Zeno phase, the purification time is exponential in system size.
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Appendix C: Additional data for the 2d Cli�ord circuit

Here we present additional data (Fig.12) on the scaling of entanglement entropy for the late-time states evolved by the unitary
circuit (Eq.7) and the non-unitary circuit (Eq.8). At the critical point ?2 ⇡ 0.29, the data is indicative of the scaling ( ⇠ ! log !.

FIG. 12: Left: Long-time entanglement entropy (� of a square subregion � of size !� = !/2 averaged over $ (103) random
realizations of the unitary circuit defined in Eq.7. Right: Long-time entanglement entropy of a subregion of size !⇥!/2 averaged
over $ (104) random realizations of the rotated non-unitary circuit (Eq.8). The critical point is at ?2 ⇡ 0.29 for both circuits.

Appendix D: Purification dynamics for the rotated MBL circuit defined in Eq.10

Here we present additional data for the entanglement dynamics of an ancilla qubit that is initially maximally entangled with
the system, and then evolved with the non-unitary circuit (Eq.10). For �G . 0.4 (Fig.13 left), the entanglement ( of the ancilla
qubit decays exponentially with time from its initial value, while for �G & 0.4 (Fig.13 right), ( remains at its initial value for time
that is superlinear in ! (see inset of Fig.5(d) for scaling with !), followed by an exponential decay.
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FIG. 13: The entanglement entropy of an ancilla qubit that is initially prepared in the maximally entangled state with the system
of size ! = 14, and then evolved with the non-unitary circuit in Eq.10. Averaging is done over 2000 realizations of the disorder.



Implications for shallow circuits?
E�cient classical simulation of random shallow 2D quantum

circuits

John Napp* Rolando L. La Placa† Alexander M. Dalzell‡

Fernando G. S. L. Brandão§ Aram W. Harrow¶

March 10, 2020

Abstract
Random quantum circuits are commonly viewed as hard to simulate classically. In some

regimes this has been formally conjectured — in the context of deep 2D circuits, this is the
basis for Google’s recent announcement of “quantum computational supremacy” — and there
had been no evidence against the more general possibility that for circuits with uniformly ran-
dom gates, approximate simulation of typical instances is almost as hard as exact simulation.
We prove that this is not the case by exhibiting a shallow random circuit family that cannot
be e�ciently classically simulated exactly under standard hardness assumptions, but can be
simulated approximately for all but a superpolynomially small fraction of circuit instances
in time linear in the number of qubits and gates; this example limits the robustness of re-
cent worst-case-to-average-case reductions for random circuit simulation. While our proof is
based on a contrived random circuit family, we furthermore conjecture that su�ciently shal-
low constant-depth random circuits are e�ciently simulable more generally. To this end, we
propose and analyze two simulation algorithms. Implementing one of our algorithms for the
depth-3 “brickwork” architecture, for which exact simulation is hard, we found that a laptop
could simulate typical instances on a 409 ⇥ 409 grid with variational distance error less than
0.01 in approximately one minute per sample, a task intractable for previously known cir-
cuit simulation algorithms. Numerical evidence indicates that the algorithm remains e�cient
asymptotically.

Key to both our rigorous complexity separation and our conjecture is an observation that
2D shallow random circuit simulation can be reduced to a simulation of a form of 1D dynamics
consisting of alternating rounds of random local unitaries and weak measurements. Similar
processes have recently been the subject of an intensive research focus, which has found nu-
merically that the dynamics generally undergo a phase transition from an e�cient-to-simulate
regime to an ine�cient-to-simulate regime as measurement strength is varied. Via a mapping
from random quantum circuits to classical statistical mechanical models, we give analytical
evidence that a similar computational phase transition occurs for our algorithms as param-
eters of the circuit architecture like the local Hilbert space dimension and circuit depth are
varied, and additionally that the 1D dynamics corresponding to su�ciently shallow random
quantum circuits falls within the e�cient-to-simulate regime.

*Center for Theoretical Physics, MIT, Cambridge, USA. email:napp@mit.edu
†Center for Theoretical Physics, MIT, Cambridge, USA. email:rlaplaca@mit.edu
‡Institute for Quantum Information and Matter, Caltech, Pasadena, USA. email:adalzell@caltech.edu
§Institute for Quantum Information and Matter, Caltech, Pasadena, USA;
Amazon Web Services, Pasadena, USA. email:fbrandao@caltech.edu
¶Center for Theoretical Physics, MIT, Cambridge, USA. email:aram@mit.edu
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It was shown that a class of shallow circuits with gates chosen from a 

certain random distribution can be efficiently simulated classically via space-time rotation.

In the regime of classical simulatability, the rotated circuit was argued to have area-law EE.


One may wonder if this result generalizes to other circuits/Hamiltonians…

A couple conjectures:


1. Time evolution of translationally invariant, shallow, chaotic circuits typically cannot 
be simulated using polynomial resources (the rotated circuit will likely have volume 
law entanglement). Consistent with [Bermejo-Vega et al 2017].


2.   Tuning randomness in a 2d shallow circuit/Hamiltonian can sometimes drive a 
transition between area to volume law in the rotated non-unitary circuit. How generic is 
this? (is Clifford circuit too special for this feature?)



Implications for shallow circuits?
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Disorder tuned transition in rotated non-unitary circuit Entanglement barrier in rotated non-unitary circuit

U = e−i∑⟨r,r′￼⟩ Z(r) Z(r′￼)e−ih∑r X(r)

(translationally invariant)

[Lu, TG, unpublished]

A couple conjectures:


1. Time evolution of translationally invariant, shallow, chaotic circuits likely cannot be 
simulated using polynomial resources (the rotated circuit will likely have volume law 
entanglement). Consistent with [Bermejo-Vega et al 2017].


2.   Tuning randomness in a 2d shallow circuit/Hamiltonian can sometimes drive a 
transition between area to volume law in the rotated non-unitary circuit. How generic is 
this? (is Clifford circuit too special for this feature?)

(space-time randomness)



Summary and a few questions…

• Topological negativity seemingly a candidate order parameter for finite-T 
topological order.


• Mixed-state entanglement provides a sharper distinction between classical 
and quantum phase transitions.


•  Space-time rotation provides a connection between two distinct mechanisms 
of entanglement obstruction in a class of circuits (localization ↔ Zeno).


• “Industrial” applications of negativity? e.g., optimize parameters in a noisy 
quantum computer by maximizing negativity between qubits.


• Are there models where singularity exists only in quantum correlations at finite 
temperature? “Truly quantum finite-T phase transitions”.


• Calculation of mixed-state entanglement measures other than negativity?



UF = ei∑x
̂P2(x)ei∑x ( ̂ϕ(x + 1) − ̂ϕ(x))

2

ei∑x V( ̂ϕ(x), x)

A puzzle: Consider coupled oscillators…

[ ̂ϕ(x), ̂P(x′￼)] = iδx,x′￼  arbitrary function of x, e.g.,V( ̂ϕ(x), x)

V( ̂ϕ(x), x) = m2(x) ̂ϕ2(x) + u(x) ̂ϕ4(x) + . . .

Can this circuit show many-body localization?

Most likely not, because the space-time rotated circuit is unitary, 

and random along the time direction.

Similar to

(2018)

Is it exactly solvable for arbitrary potentials  ?V( ̂ϕ(x), x)



Detecting absence of thermalization

using mixed-state entanglement

When a system does not thermalize, expectation that the 
entanglement between two subsystems A, B must be “large”. 

Entanglement transitions as a probe of qausiparticles and quantum thermalization

Tsung-Cheng Lu1 and Tarun Grover1

1Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA

We provide evidence that a mixed-state entanglement protocol can be used to detect absence of thermalization,
be it due to well-defined quasiparticles or many-body localization. For representative states of self-thermalizing
systems, either eigenstates or states obtained by long-time evolution of a product state, the protocol shows a
sharp transition from an area-law scaling to a volume-law scaling as the subsystem fraction is tuned from less
than one-half to more than one-half of the total system. In contrast, for eigenstates or long-time evolved states
of a system with quasiparticles, the same protocol yields a volume-law scaling irrespective of the subsystem
fraction. For many-body localized systems, it shows an area-law scaling for eigenstates, and volume-law scaling
for long-time evolved product states, irrespective of the subsystem fraction. The protocol is defined as follows:
we consider a tripartite system �⌫⇠, and study the scaling of entanglement negativity between � and ⌫. We
provide a combination of numerical observations and analytical arguments in support of our conjecture.

I. INTRODUCTION

Consider a system where eigenstate thermalization hypoth-
esis (ETH)1–5 holds true. For a finite-energy density pure state
of such a system, the reduced density matrix of a subsystem is
thermal when the ratio 5 of a subsystem to the total system ap-
proaches zero. However, this is no longer true when 5 is$ (1),
e.g., Renyi entropies do not match their thermal counterpart6–8.
This e�ect is most dramatic when 5 > 1/2, a regime where en-
tanglement entropy decreases with increasing subsystem size,
indicating that the rest of the system is acting as a poor ‘thermal
bath’ for the subsystem. Monogamy of entanglement suggests
that if one were to divide the subsystem further into two parts,
these parts would be highly entangled with each other in this
regime. Equivalently, one expects that when 5 > 1/2, the
reduced density matrix of the subsystem would have a large
bipartite mixed-state entanglement. Does there exist a sharp
transition as function of 5 in the mixed-state entanglement of
the subsystem? How does this behavior changes when one
considers product states that have been evolved for a long time
with an integrable or a many-body localized Hamiltonian?

Motivated by above questions, in this work we discuss a new
kind of entanglement transition which occurs within a single
quantum state without tuning any parameters in the Hamilto-
nian. Our setup is as follows: we divide a system described by
a pure state into three regions labelled by �, ⌫, ⇠, and study
the entanglement between � and ⌫, see Fig.1. Since �

–
⌫

(⌘ �⌫) is not a closed system, one requires a mixed state en-
tanglement measure to characterize the entanglement between
� and ⌫, which we chose as the entanglement negativity9–11

(below just negativity for brevity). We find that for systems that
satisfy ETH, there is sharp transition in the bipartite negativity
between the subsystems � and ⌫ as a function of 5 = +�⌫/+ :
when 5 < 1/2, negativity is area-law, while when 5 > 1/2,
it is volume-law. In strong contrast, in the finite-energy den-
sity eigenstates of integrable systems, as well as time-evolved
states with a many-body localized Hamiltonian, we provide
evidence that the bipartite negativity is always volume-law,
irrespective of the ratio 5 . One outcome of these observations
is that, for a disordered interacting system, at a fixed 5 < 1/2,
there exists a transition from area-law negativity in the ETH
regime to volume-law negativity in the many-body localized
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FIG. 1: Given a pure state in a tripartite system, we study
the entanglement negativity ⇢# between two subsystems �

and ⌫. In non-integrable systems, given finite-energy density
eigenstates or time-evolved states at long time from simple
product states, subsystem negativity ⇢# exhibits a a tran-
sition from area-law phase to volume-law phase by tuning
the subsystem volume fraction +�⌫/+ . In integrable sys-
tems studied here, which can be interacting (solvable by Bethe
ansatz) or non-interacting (such as free fermions), given finite-
energy density eigenstates or time-evolved states at long time
from simple product states, ⇢# exhibits a volume law for any
+�⌫/+ . In many-body localized (MBL) systems, ⇢# exhibits
an area law in eigenstates and a volume law in time-evolved
states at long time from simple product states for any +�⌫/+ .

regime.
In fact, this kind of entanglement transition has been noticed

in the study of random pure states12–14. When +�⌫/+ < 1/2,
negativity ⇢# between �, ⌫ is zero in thermodynamic limit,
while for +�⌫/+ , ⇢# scales with the number of spins in �⌫,
i.e. exhibiting a volume entanglement. Below, we provide an
intuitive understanding for this entanglement transition, and
also extend this result to a new class of states called ‘random
stabilizer states’. We will also show analytically that Renyi

S

VAB /VC

How to quantify this without polluting with classical correlations?

Implications for localized, integrable and scar states?

Trivial example:

random Haar state volume lawI(A : B) ∼0I(A : B) ∼
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FIG. 1: Given a pure state in a tripartite system, we study the
entanglement negativity EN between two subsystems A and B.
In non-integrable systems, given finite-energy density eigen-
states or time-evolved states at long time from simple product
states, subsystem negativity EN exhibits a a transition from
area-law phase to volume-law phase by tuning the subsystem
volume fraction VAB/V . The transition for the former is at 1/2
while the later is at f ⇤ = O(1) 2 (0, 1/2], where the exact value
of f ⇤ may depend on initial states. In integrable systems stud-
ied here, which can be interacting (such as the Heisenberg spin
chain) or non-interacting (such as free fermions), given finite-
energy density eigenstates or time-evolved states at long time
from simple product states, EN exhibits a volume law for any
VAB/V . In many-body localized (MBL) systems, EN exhibits
an area law in eigenstates and a volume law in time-evolved
states at long time from simple product states for any VAB/V .

state. We find that the aforementioned scaling behaviors for
eigenstates apply to the steady-state behavior of negativity as
well, i.e. for non-integrable Hamiltonians, subsystem nega-
tivity has area-law to volume-law transition at a finite crit-
ical VAB/V while for integrable models, negativity satisfies
volume-law scaling for arbitrary VAB/V . Our argument for
the integrable models relies only on the assumption that the
quasiparticle picture for entanglement32 holds true.

Finally we discuss the long-time negativity under quantum
quench for a disordered Hamiltonian that hosts transition from
a many-body localized phase to a chaotic phase. We find that
the long-time negativity in the MBL phase exhibits a volume-
law scaling in negativity for arbitrary VAB/V , similar to the
aforementioned integrable models. This is consistent with the
emergent integrability in the MBL phase, and it is a conse-
quence that a product state evolved with an MBL Hamiltonian
does not look thermal locally despite possessing a volume-law
bipartite entanglement. Therefore, as disorder increases, the
negativity for VAB/V < 1

2 undergoes a transition from an area

law (chaotic phase) to a volume law (MBL phase).
The paper is organized as follows: In Sec.II we demonstrate

the phase transition in subsystem negativity as a function of
VAB/V for random Haar states. In Sec.III we first numerically
study subsystem negativity in local spin-chain models, and find
that chaotic systems show an area to volume-law transition in
subsystem negativity, while integrable models always have a
volume-law scaling. We provide analytical understanding of
these results using eigenstate thermalization hypothesis, and
an analysis of free fermions using correlation matrix technique.
In Sec.IV we discuss negativity of time evolved product states,
and show that the distinction between integrable and non-
integrable systems is similar to that for their corresponding
eigenstates. We derive and utilize a continuity bound of nega-
tivity to understand the results for non-integrable models, and
a quasiparticle-based argument to understand integrable mod-
els. In Sec.V we study states time evolved with a disordered
Hamiltonian. We find that in the ergodic phase, the subsys-
tem negativity is area-law as expected from previous sections,
while in the MBL regime, it is volume-law. Finally, in Sec.
VI, we compare our protocol with the one based on mutual
information, and discuss examples where mutual information
and negativity qualitatively behave di�erently. We conclude
with a summary and dicussion of our results in Sec.VII.

II. NEGATIVITY TRANSITION IN A RANDOM STATE

Let us briefly introduce entanglement negativity18–20. Un-
like most of the entanglement measures for mixed states, neg-
ativity can be computed without requiring an optimization of a
function over an infinitely large set of states. Therefore, it has
been widely applied to various many-body systems, includ-
ing free bosonic and fermionic systems33–39, one dimensional
conformal field theory40–44, spin chains45–50, and topologically
ordered phases51–56. To define negativity, consider a density
matrix ⇢AB on the bipartite Hilbert space H = HA ⌦ HB:
⇢AB =

Õ
a,b;a0,b0 ⇢a,b;a0,b0 |a, bi ha0, b0 |, taking its partial trans-

pose on B gives ⇢TB
AB
=
Õ

a,b;a0,b0 ⇢a,b;a0,b0 |a, b0i ha0, b|. En-
tanglement negativity is defined as EN = log

⇣���⇢TB
AB

���
1

⌘
.

In this section we consider a random pure state over a tripar-
tite system ABC, and study the negativity between A and B.
We first review a result in Ref.23, which shows that this quan-
tity undergoes a transition from zero to a volume-law scaling
as the ratio of the subsystem AB to C is tuned. We will provide
an intuitive understanding for the transition, and then show that
Renyi negativity, a proxy of entanglement negativity, exhibits
such a transition as well.

To be concrete, consider V spin-1/2 degrees of freedom in
a random pure state | i. We select VA spins for the subsystem
A, VB spins for the subsystem B, and the rest VC = V �VA�VB

spins for the subsystem C. For simplicity, we set VA = VB =

VAB/2. It was proved that the spectrum of ⇢TB
AB

, the reduced
density matrix on AB acted by partial transpose on B, follows
a semi-circle law21,22. Based on this result, Ref.23 calculated
the negativity EN between A and B. In the limit V ! 1, one

Summary of Results

[Lu, Grover 2020]
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FIG. 4: Subsystem negativity EN as a function LAB/L
in 1D free fermion model (defined in Eq.13) with nearest
neighboring hopping . Left: averaged EN over randomly
chosen 105 eigenstates for L = 200 with error bar speci-
fied. Right: Long time EN of a state | (t)i for large t
evolved from a product state at t = 0 (| 0i =

ŒL�1
i=1,3, · · · c†i |0i

where |0i is a vacuum state). The data shown are the av-
eraged EN in the time interval [1000, 1200]. Leading or-
der refers to EN =

1
4
LAB

L LAB (Eq.16), and the next lead-

ing order refers to EN =


1
4
LAB

L �
5
24

⇣
LAB

L

⌘2
�

LAB (Eq.17).

LAB/L ! VAB/V , i.e. the volume and the subsystem volume
fraction of A

–
B. Second, the results are irrespective of the

hopping amplitude and the geometry of the partition.

IV. SUBSYSTEM NEGATIVITY FOR A QUANTUM
QUENCH

We now show that similar to its behavior in eigenstates, sub-
system negativity of long-time evolved states also distinguishes
an integrable system from a non-integrable system: the former
exhibits volume-law scaling for any VAB/V while the later ex-
hibits an entanglement transition from area-law to volume-law
at VAB/V = 1/2. The numerical result can be seen from Fig.5,
where we consider the spin chain Hamiltonian (Eq.7) with
the initial state | 0i as a Néel state, and study the subsystem
negativity for its time-evolved state | (t)i = e�iHt

| 0i. We
also study the long-time negativity for a initial product state
evolved by a free fermion Hamiltonian, and find it exhibits a
volume-law as well (see Fig.4 right). In the following, we will
provide analytical understanding for these numerical results.

A. Non-integrable systems

For the quantum quench in non-integrable systems, we ana-
lytically prove an area-law bound of subsystem negativity for
VAB/V < 1/2. To start, given a time-evolved state | (t)i, its
reduced density matrix on A

–
B is
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J2 = 0.8, L = 12
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FIG. 5: Comparison of a non-integrable Hamiltonian (J2 =
0.8) and an interacting integrable Hamiltonian (J2 = 0.0)
defined in Eq.7 for negativity EN between two subsys-
tems A and B in a time-evolved state | (t)i at large
t. While the former exhibits an area-law to volume-
law transition at LAB/L = 1/2, the latter exhibits a
volume-law scaling for any LAB/L. The data shown are
the average of negativity over t = 1000, 1001, · · · , 1009.

⇢AB(t) =
’
mn

cmc⇤ne�i(Em�En)t trC (|mi hn|) , (18)

where cm is the overlap between eigenstates |miand the initial
state :cm = hm| 0i, and Em denotes the energy by |mi. For
VAB/V < 1/2, ⇢AB(t) generically equilibrates as t ! 1

53, and
thus the infinite-time reduced density matrix can be replaced
by its infinite-time average:

⇢AB(t ! 1) = lim
T!1

1
T

π T

0
dt ⇢AB(t) =

’
m

|cm |2⇢AB,m,

(19)
where ⇢AB,m is the reduced density matrix from the eigenstate
|mi: ⇢AB,m = trC (|mi hm|). Next we bound the one norm of
the partially transposed density matrix

���⇢TBAB(t ! 1)

���
1
=

�����
’
m

|cm |2⇢TBAB,m

�����
1



’
m

|cm |2
���⇢TBAB,m

���
1

 Max |mi

���⇢TBAB,m
���

1
(20)

Since all eigenstates satisfy area-law subsystem negativity for
VAB/V < 1/2 as proved in Eq.11, negativity EN between A
and B follows an area law as well by taking a logarithm in the
above inequality.

B. Integrable systems

For quench in integrable systems, the quasiparticle picture,
first introduced in Ref.16, has successfully described entangle-

chaotic
integrable

4

we propose an ‘ergodic tripartite states’ ansatz to characterize
the volume-law coe�cient of chaotic eigenstates, and show
that the third Renyi negativity R3 computed from such ansatz
exhibits an area-law to volume-law transition at VAB/V = 1/2,
analogous to negativity. As for the integrable systems, we
analytically calculate the subsystem negativity averaged over
all eigenstates in free fermions for any spatial dimensions, and
find a volume-law scaling for arbitrary VAB/V .

A. Numerical Observations

We consider a spin-1/2 chain of size L with periodic bound-
ary condition. The model Hamiltonian reads

H =
L’
i=1

⇣
J1Si · Si+1 + J2Sz

i
Sz

i+2

⌘
. (6)

We set J1 = 1 and impose periodic boundary conditions. At
J2 = 0, this Hamiltonian is integrable64 while the term pro-
portional to J2 breaks integrability. In the former case, the
energy spectrum exhibits Poissonian statistics, while in the lat-
ter case, it exhibits the Gaussian-orthogonal ensemble (GOE)
level statistics. In any finite-size system, instead of an abrupt
transition at J2 = 0, one would observe a crossover between
these two regimes as a function of J2, and we chose J2 = 0.8 as
a representative of the non-integrable regime, a point at which
the level statistics is clearly GOE.

First consider the non-integrable case, i.e., J2 = 0.8 and
perform an exact diagonalization using translation symmetry
and Sz =

Õ
L

i=1 Sz

i
conservation. We divide the spin chain

into three subregions A, B, and C of size LAB/2, LAB/2,
and L � LAB similar to the setup in Sec.II and calculate the
negativity EN between A and B in each of the mixed states
⇢AB corresponding to individual eigenstates. We then take an
average of negativity over all eigenstates in the energy win-
dow E/L 2 (�0.05, 0). In the upper left panel of Fig.2, we
find EN/L ⇠ 0 for LAB/L < 1/2 while EN/L deviates from
zero and grows with LAB/L for LAB/L > 1/2, suggesting
negativity between A and B exhibits an area (volume) law for
LAB/L < 1/2 (LAB/L > 1/2), similar to the behavior of a ran-
dom pure state. Right at the critical point, i.e., LAB/L = 1/2,
one observes that EN/L decreases when increasing the system
size L, suggesting it might vanish as L ! 1 although it is hard
to conclude this unequivocally due to limited system sizes in
ED. The data shown here focus only on the eigenstates close
to infinite temperature, but we find that eigenstates at finite
temperatures exhibit the area-law to volume-law transition as
well (see Appendix.B 1).

Next, consider the integrable point J2 = 0. We numerically
find that negativity of finite-energy density eigenstates between
A and B of equal size exhibits a volume law for any LAB/L,
indicating the absence of entanglement transition (see Fig.2
upper right panel). We also introduce an anisotropy in the spin
chain to break the SU(2) symmetry down to U(1), and check
that the the subsystem negativity is volume-law for any LAB/L
as well (see Appendix.B 2).

It’s also instructive to plot subsystem negativity for all eigen-
states with respect to their energy densities E/L (lower panel
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FIG. 2: The subsystem negativity EN , negativity between
two subsystems A and B, of eigenstates in Sz =

Õ
L

i=1 Sz

i
= 0

and momentum k = 0 sector for the model defined in Eq.6.
Upper left/right panel: in the non-integrable (J2 = 0.8) /
integrable (J2 = 0.0) system, EN divided by the total sys-
tem size L as a function of LAB/L averaged over all eigen-
states in the energy window E/L 2 (�0.05, 0) with error
bars shown. Lower panel: EN/L plotted with E/L for in-
tegrable (J2 = 0.0, marked with circles) and non-integrable
(J2 = 0.8, marked with crosses) of all eigenstates at L = 18.

in Fig.2). We find a distinct contrast between integrable sys-
tems (J2 = 0) and non-integrable systems (J2 = 0.8). At a
given fixed energy density, EN/L has a much broader distri-
bution at J2 = 0.0 compared to J2 = 0.8. This suggests that in
non-integrable systems, subsystem negativity of finite-energy
density eigenstates is possibly a universal (smooth) function
of energy density, in a way similar to expectation values of
local operators3, or even entanglement measures such as bi-
partite Renyi entropies6,65. Note that in both integrable and
non-integrable models, although their low-energy eigenstates
(i.e. those eigenstates with zero energy density above ground
states) show a non-vanishing EN/L in the figure, we expect
such result is due to a finite-size e�ect. Since these states do
not possess an extensive bipartite entanglement, their subsys-
tem negativity EN will naturally have a vanishing volume-law
coe�cient in the thermodynamic limit L ! 1.

Eigenstates Time-evolved states
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We provide evidence that a mixed-state entanglement protocol can be used to detect absence of thermalization,
be it due to well-defined quasiparticles or many-body localization. For representative states of self-thermalizing
systems, either eigenstates or states obtained by long-time evolution of a product state, the protocol shows a
sharp transition from an area-law scaling to a volume-law scaling as the subsystem fraction is tuned from less
than one-half to more than one-half of the total system. In contrast, for eigenstates or long-time evolved states
of a system with quasiparticles, the same protocol yields a volume-law scaling irrespective of the subsystem
fraction. For many-body localized systems, it shows an area-law scaling for eigenstates, and volume-law scaling
for long-time evolved product states, irrespective of the subsystem fraction. The protocol is defined as follows:
we consider a tripartite system �⌫⇠, and study the scaling of entanglement negativity between � and ⌫. We
provide a combination of numerical observations and analytical arguments in support of our conjecture.

I. INTRODUCTION

Consider a system where eigenstate thermalization hypoth-
esis (ETH)1–5 holds true. For a finite-energy density pure state
of such a system, the reduced density matrix of a subsystem is
thermal when the ratio 5 of a subsystem to the total system ap-
proaches zero. However, this is no longer true when 5 is$ (1),
e.g., Renyi entropies do not match their thermal counterpart6–8.
This e�ect is most dramatic when 5 > 1/2, a regime where en-
tanglement entropy decreases with increasing subsystem size,
indicating that the rest of the system is acting as a poor ‘thermal
bath’ for the subsystem. Monogamy of entanglement suggests
that if one were to divide the subsystem further into two parts,
these parts would be highly entangled with each other in this
regime. Equivalently, one expects that when 5 > 1/2, the
reduced density matrix of the subsystem would have a large
bipartite mixed-state entanglement. Does there exist a sharp
transition as function of 5 in the mixed-state entanglement of
the subsystem? How does this behavior changes when one
considers product states that have been evolved for a long time
with an integrable or a many-body localized Hamiltonian?

Motivated by above questions, in this work we discuss a new
kind of entanglement transition which occurs within a single
quantum state without tuning any parameters in the Hamilto-
nian. Our setup is as follows: we divide a system described by
a pure state into three regions labelled by �, ⌫, ⇠, and study
the entanglement between � and ⌫, see Fig.1. Since �

–
⌫

(⌘ �⌫) is not a closed system, one requires a mixed state en-
tanglement measure to characterize the entanglement between
� and ⌫, which we chose as the entanglement negativity9–11

(below just negativity for brevity). We find that for systems that
satisfy ETH, there is sharp transition in the bipartite negativity
between the subsystems � and ⌫ as a function of 5 = +�⌫/+ :
when 5 < 1/2, negativity is area-law, while when 5 > 1/2,
it is volume-law. In strong contrast, in the finite-energy den-
sity eigenstates of integrable systems, as well as time-evolved
states with a many-body localized Hamiltonian, we provide
evidence that the bipartite negativity is always volume-law,
irrespective of the ratio 5 . One outcome of these observations
is that, for a disordered interacting system, at a fixed 5 < 1/2,
there exists a transition from area-law negativity in the ETH
regime to volume-law negativity in the many-body localized

A B

C

eigenstates/long-time states

0 1/2 1

VAB

V

Non-integrable

Area law Volume law Area law

eigenstates/long-time states

0 1

VAB

V

Volume law

Integrable

Volume law

0 1

VAB

V

MBL
eigenstates

0 1

VAB

V

MBL
long-time states

FIG. 1: Given a pure state in a tripartite system, we study
the entanglement negativity ⇢# between two subsystems �

and ⌫. In non-integrable systems, given finite-energy density
eigenstates or time-evolved states at long time from simple
product states, subsystem negativity ⇢# exhibits a a tran-
sition from area-law phase to volume-law phase by tuning
the subsystem volume fraction +�⌫/+ . In integrable sys-
tems studied here, which can be interacting (solvable by Bethe
ansatz) or non-interacting (such as free fermions), given finite-
energy density eigenstates or time-evolved states at long time
from simple product states, ⇢# exhibits a volume law for any
+�⌫/+ . In many-body localized (MBL) systems, ⇢# exhibits
an area law in eigenstates and a volume law in time-evolved
states at long time from simple product states for any +�⌫/+ .

regime.
In fact, this kind of entanglement transition has been noticed

in the study of random pure states12–14. When +�⌫/+ < 1/2,
negativity ⇢# between �, ⌫ is zero in thermodynamic limit,
while for +�⌫/+ , ⇢# scales with the number of spins in �⌫,
i.e. exhibiting a volume entanglement. Below, we provide an
intuitive understanding for this entanglement transition, and
also extend this result to a new class of states called ‘random
stabilizer states’. We will also show analytically that Renyi
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FIG. 5: Comparison of a non-integrable Hamiltonian (J2 =
0.8) and an interacting integrable Hamiltonian (J2 = 0.0)
defined in Eq.6 for negativity EN between two subsys-
tems A and B in a time-evolved state | (t)i at large t.
While the former exhibits an area-law to volume-law tran-
sition at a finite LAB/L ⇡ 1/2, the latter exhibits a
volume-law scaling for any LAB/L. The data shown are
the average of negativity over the time interval [20, 30].

where dAB = eVAB log 2 is the Hilbert space dimension of
AB. To further bound the time average of the 2-norm, we
now employ a result derived in Ref.76, which is valid for
any Hamiltonian without degenerate energy spectrum (hence
valid for the non-integrable Hamiltonians): k⇢AB � !AB k2 
p

dABe�
1
2 S2(!), where S2(!) is the second Renyi entropy of the

diagonal ensemble !. Combining this result with Eq.19, we
thus obtain the bound

|EN (⇢AB(t)) � EN (!AB)|  log
⇣
1 + dABe�

1
2 S2(!)

⌘
, (20)

Since S2(!) in nonintegrable systems is extensive77: i.e.
S2(!) = ↵V with 0 < ↵  log 2, Eq.20 implies that in the
regime VAB/V < f ⇤ = ↵/(2 log 2) for almost all times, the
di�erence between EN (⇢AB(t)) and EN (!AB), are exponen-
tially small in the total system volume. Therefore for almost
all times t,

lim
V!1

[EN (⇢AB(t)) � EN (!AB)] = 0 for
VAB

V
< f ⇤ =

↵

2 log 2
.

(21)
Since all eigenstates satisfy area-law subsystem negativity

for VAB/V  1/2 as argued in Eq.10, the subsystem negativity
of reduced density matrix from the diagonal ensemble, i.e.
EN (!AB) = log

⇣���!TB

AB

���
1

⌘
, also follows an area law78, which

hence indicates the area-law scaling of EN (t) for VAB/V <
f ⇤  1/2 due to Eq.21.
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FIG. 6: We divide a one dimensional ring into subre-
gion A (red), B (blue), and C (green), and study negativ-
ity between A and B. Only those quasiparticle pairs gen-
erated in the dashed regions can be shared between A and
B to contribute entanglement between these two regions.

B. Integrable systems: Volume-law scaling from quasiparticles

For quantum quenches in integrable systems, the quasipar-
ticle picture, as first introduced in Ref.32, has successfully
described the growth of many-body entanglement79–85. In
particular, Ref.82 showed that such picture allows for an exact
prediction of time-evolved negativity under a quantum quench
in a space-time scaling limit, whose validity is further sup-
ported by numerically studying negativity between two sub-
systems embedded in an infinite system of one-dimensional
free bosons and free fermions. Here we instead consider finite
subsystem size fraction LAB/L, and adopt the quasiparticle
picture to provide a heuristic argument for volume-law sub-
system negativity for any LAB/L at long time. Although we
specialize to one space dimension below, our argument applies
to higher dimensions as well.

In the description of the quasiparticle picture, since an ini-
tial state typically has a finite-energy density with respect to
the post-quench Hamiltonian, each point in space is a source
of quasiparticle pairs, and the two particles in each pair are en-
tangled while propagating with opposite momentum. Because
a quasiparticle pair contributes to the entanglement between
two spatial regions A and B only when one particle is in A
and its partner is in B, the total amount of entanglement be-
tween A and B can be obtained by counting the number of such
quasiparticle pairs.

Now we apply the quasiparticle picture to study the sub-
system negativity. Given a 1D chain with periodic bound-
ary condition (x + L ⌘ x), let A be the spatial interval
(�LAB/2, 0), B = (0, LAB/2), and C be the rest of the chain
(see Fig.6), at t = 0, quasiparticle pairs with di�erent mo-
menta k are generated uniformly in space. It is not hard to
see that only when a pair is generated within the spatial in-
terval I = (�LAB/4, LAB/4)

–
(L/2 � LAB/4, L/2 + LAB/4)

(marked by dashed lines), the two particles can reside in A
and B simultaneously at some later times to entangle A and
B. Now we consider a pair of quasiparticles with veloci-

A = red,

B = blue,


C = green.

# of quasiparticles that A and B can share  ∝ LAB

Fraction of time these quasiparticles can entangle ∝ LAB/L

 Time averaged entanglement  = volume law⇒ ∼ (LAB/L) LAB

For quasiparticles to generate 

entanglement between A,B, 

one of them belongs to A,


and the other to B.

Quasiparticle picture for integrable systems 

[Cardy, Calabrese 2005]
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we propose an ‘ergodic tripartite states’ ansatz to characterize
the volume-law coe�cient of chaotic eigenstates, and show
that the third Renyi negativity R3 computed from such ansatz
exhibits an area-law to volume-law transition at VAB/V = 1/2,
analogous to negativity. As for the integrable systems, we
analytically calculate the subsystem negativity averaged over
all eigenstates in free fermions for any spatial dimensions, and
find a volume-law scaling for arbitrary VAB/V .

A. Numerical Observations

We consider a spin-1/2 chain of size L with periodic bound-
ary condition. The model Hamiltonian reads

H =
L’
i=1

⇣
J1Si · Si+1 + J2Sz

i
Sz

i+2

⌘
. (6)

We set J1 = 1 and impose periodic boundary conditions. At
J2 = 0, this Hamiltonian is integrable64 while the term pro-
portional to J2 breaks integrability. In the former case, the
energy spectrum exhibits Poissonian statistics, while in the lat-
ter case, it exhibits the Gaussian-orthogonal ensemble (GOE)
level statistics. In any finite-size system, instead of an abrupt
transition at J2 = 0, one would observe a crossover between
these two regimes as a function of J2, and we chose J2 = 0.8 as
a representative of the non-integrable regime, a point at which
the level statistics is clearly GOE.

First consider the non-integrable case, i.e., J2 = 0.8 and
perform an exact diagonalization using translation symmetry
and Sz =

Õ
L

i=1 Sz

i
conservation. We divide the spin chain

into three subregions A, B, and C of size LAB/2, LAB/2,
and L � LAB similar to the setup in Sec.II and calculate the
negativity EN between A and B in each of the mixed states
⇢AB corresponding to individual eigenstates. We then take an
average of negativity over all eigenstates in the energy win-
dow E/L 2 (�0.05, 0). In the upper left panel of Fig.2, we
find EN/L ⇠ 0 for LAB/L < 1/2 while EN/L deviates from
zero and grows with LAB/L for LAB/L > 1/2, suggesting
negativity between A and B exhibits an area (volume) law for
LAB/L < 1/2 (LAB/L > 1/2), similar to the behavior of a ran-
dom pure state. Right at the critical point, i.e., LAB/L = 1/2,
one observes that EN/L decreases when increasing the system
size L, suggesting it might vanish as L ! 1 although it is hard
to conclude this unequivocally due to limited system sizes in
ED. The data shown here focus only on the eigenstates close
to infinite temperature, but we find that eigenstates at finite
temperatures exhibit the area-law to volume-law transition as
well (see Appendix.B 1).

Next, consider the integrable point J2 = 0. We numerically
find that negativity of finite-energy density eigenstates between
A and B of equal size exhibits a volume law for any LAB/L,
indicating the absence of entanglement transition (see Fig.2
upper right panel). We also introduce an anisotropy in the spin
chain to break the SU(2) symmetry down to U(1), and check
that the the subsystem negativity is volume-law for any LAB/L
as well (see Appendix.B 2).

It’s also instructive to plot subsystem negativity for all eigen-
states with respect to their energy densities E/L (lower panel
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FIG. 2: The subsystem negativity EN , negativity between
two subsystems A and B, of eigenstates in Sz =

Õ
L

i=1 Sz

i
= 0

and momentum k = 0 sector for the model defined in Eq.6.
Upper left/right panel: in the non-integrable (J2 = 0.8) /
integrable (J2 = 0.0) system, EN divided by the total sys-
tem size L as a function of LAB/L averaged over all eigen-
states in the energy window E/L 2 (�0.05, 0) with error
bars shown. Lower panel: EN/L plotted with E/L for in-
tegrable (J2 = 0.0, marked with circles) and non-integrable
(J2 = 0.8, marked with crosses) of all eigenstates at L = 18.

in Fig.2). We find a distinct contrast between integrable sys-
tems (J2 = 0) and non-integrable systems (J2 = 0.8). At a
given fixed energy density, EN/L has a much broader distri-
bution at J2 = 0.0 compared to J2 = 0.8. This suggests that in
non-integrable systems, subsystem negativity of finite-energy
density eigenstates is possibly a universal (smooth) function
of energy density, in a way similar to expectation values of
local operators3, or even entanglement measures such as bi-
partite Renyi entropies6,65. Note that in both integrable and
non-integrable models, although their low-energy eigenstates
(i.e. those eigenstates with zero energy density above ground
states) show a non-vanishing EN/L in the figure, we expect
such result is due to a finite-size e�ect. Since these states do
not possess an extensive bipartite entanglement, their subsys-
tem negativity EN will naturally have a vanishing volume-law
coe�cient in the thermodynamic limit L ! 1.

LAB /L
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the volume-law coe�cient of chaotic eigenstates, and show
that the third Renyi negativity R3 computed from such ansatz
exhibits an area-law to volume-law transition at VAB/V = 1/2,
analogous to negativity. As for the integrable systems, we
analytically calculate the subsystem negativity averaged over
all eigenstates in free fermions for any spatial dimensions, and
find a volume-law scaling for arbitrary VAB/V .

A. Numerical Observations

We consider a spin-1/2 chain of size L with periodic bound-
ary condition. The model Hamiltonian reads
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We set J1 = 1 and impose periodic boundary conditions. At
J2 = 0, this Hamiltonian is integrable64 while the term pro-
portional to J2 breaks integrability. In the former case, the
energy spectrum exhibits Poissonian statistics, while in the lat-
ter case, it exhibits the Gaussian-orthogonal ensemble (GOE)
level statistics. In any finite-size system, instead of an abrupt
transition at J2 = 0, one would observe a crossover between
these two regimes as a function of J2, and we chose J2 = 0.8 as
a representative of the non-integrable regime, a point at which
the level statistics is clearly GOE.

First consider the non-integrable case, i.e., J2 = 0.8 and
perform an exact diagonalization using translation symmetry
and Sz =

Õ
L

i=1 Sz

i
conservation. We divide the spin chain

into three subregions A, B, and C of size LAB/2, LAB/2,
and L � LAB similar to the setup in Sec.II and calculate the
negativity EN between A and B in each of the mixed states
⇢AB corresponding to individual eigenstates. We then take an
average of negativity over all eigenstates in the energy win-
dow E/L 2 (�0.05, 0). In the upper left panel of Fig.2, we
find EN/L ⇠ 0 for LAB/L < 1/2 while EN/L deviates from
zero and grows with LAB/L for LAB/L > 1/2, suggesting
negativity between A and B exhibits an area (volume) law for
LAB/L < 1/2 (LAB/L > 1/2), similar to the behavior of a ran-
dom pure state. Right at the critical point, i.e., LAB/L = 1/2,
one observes that EN/L decreases when increasing the system
size L, suggesting it might vanish as L ! 1 although it is hard
to conclude this unequivocally due to limited system sizes in
ED. The data shown here focus only on the eigenstates close
to infinite temperature, but we find that eigenstates at finite
temperatures exhibit the area-law to volume-law transition as
well (see Appendix.B 1).

Next, consider the integrable point J2 = 0. We numerically
find that negativity of finite-energy density eigenstates between
A and B of equal size exhibits a volume law for any LAB/L,
indicating the absence of entanglement transition (see Fig.2
upper right panel). We also introduce an anisotropy in the spin
chain to break the SU(2) symmetry down to U(1), and check
that the the subsystem negativity is volume-law for any LAB/L
as well (see Appendix.B 2).

It’s also instructive to plot subsystem negativity for all eigen-
states with respect to their energy densities E/L (lower panel
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FIG. 2: The subsystem negativity EN , negativity between
two subsystems A and B, of eigenstates in Sz =
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and momentum k = 0 sector for the model defined in Eq.6.
Upper left/right panel: in the non-integrable (J2 = 0.8) /
integrable (J2 = 0.0) system, EN divided by the total sys-
tem size L as a function of LAB/L averaged over all eigen-
states in the energy window E/L 2 (�0.05, 0) with error
bars shown. Lower panel: EN/L plotted with E/L for in-
tegrable (J2 = 0.0, marked with circles) and non-integrable
(J2 = 0.8, marked with crosses) of all eigenstates at L = 18.

in Fig.2). We find a distinct contrast between integrable sys-
tems (J2 = 0) and non-integrable systems (J2 = 0.8). At a
given fixed energy density, EN/L has a much broader distri-
bution at J2 = 0.0 compared to J2 = 0.8. This suggests that in
non-integrable systems, subsystem negativity of finite-energy
density eigenstates is possibly a universal (smooth) function
of energy density, in a way similar to expectation values of
local operators3, or even entanglement measures such as bi-
partite Renyi entropies6,65. Note that in both integrable and
non-integrable models, although their low-energy eigenstates
(i.e. those eigenstates with zero energy density above ground
states) show a non-vanishing EN/L in the figure, we expect
such result is due to a finite-size e�ect. Since these states do
not possess an extensive bipartite entanglement, their subsys-
tem negativity EN will naturally have a vanishing volume-law
coe�cient in the thermodynamic limit L ! 1.

Negativity transition in a chaotic system

Entanglement transitions as a probe of qausiparticles and quantum thermalization

Tsung-Cheng Lu1 and Tarun Grover1

1Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA

We provide evidence that a mixed-state entanglement protocol can be used to detect absence of thermalization,
be it due to well-defined quasiparticles or many-body localization. For representative states of self-thermalizing
systems, either eigenstates or states obtained by long-time evolution of a product state, the protocol shows a
sharp transition from an area-law scaling to a volume-law scaling as the subsystem fraction is tuned from less
than one-half to more than one-half of the total system. In contrast, for eigenstates or long-time evolved states
of a system with quasiparticles, the same protocol yields a volume-law scaling irrespective of the subsystem
fraction. For many-body localized systems, it shows an area-law scaling for eigenstates, and volume-law scaling
for long-time evolved product states, irrespective of the subsystem fraction. The protocol is defined as follows:
we consider a tripartite system �⌫⇠, and study the scaling of entanglement negativity between � and ⌫. We
provide a combination of numerical observations and analytical arguments in support of our conjecture.

I. INTRODUCTION

Consider a system where eigenstate thermalization hypoth-
esis (ETH)1–5 holds true. For a finite-energy density pure state
of such a system, the reduced density matrix of a subsystem is
thermal when the ratio 5 of a subsystem to the total system ap-
proaches zero. However, this is no longer true when 5 is$ (1),
e.g., Renyi entropies do not match their thermal counterpart6–8.
This e�ect is most dramatic when 5 > 1/2, a regime where en-
tanglement entropy decreases with increasing subsystem size,
indicating that the rest of the system is acting as a poor ‘thermal
bath’ for the subsystem. Monogamy of entanglement suggests
that if one were to divide the subsystem further into two parts,
these parts would be highly entangled with each other in this
regime. Equivalently, one expects that when 5 > 1/2, the
reduced density matrix of the subsystem would have a large
bipartite mixed-state entanglement. Does there exist a sharp
transition as function of 5 in the mixed-state entanglement of
the subsystem? How does this behavior changes when one
considers product states that have been evolved for a long time
with an integrable or a many-body localized Hamiltonian?

Motivated by above questions, in this work we discuss a new
kind of entanglement transition which occurs within a single
quantum state without tuning any parameters in the Hamilto-
nian. Our setup is as follows: we divide a system described by
a pure state into three regions labelled by �, ⌫, ⇠, and study
the entanglement between � and ⌫, see Fig.1. Since �

–
⌫

(⌘ �⌫) is not a closed system, one requires a mixed state en-
tanglement measure to characterize the entanglement between
� and ⌫, which we chose as the entanglement negativity9–11

(below just negativity for brevity). We find that for systems that
satisfy ETH, there is sharp transition in the bipartite negativity
between the subsystems � and ⌫ as a function of 5 = +�⌫/+ :
when 5 < 1/2, negativity is area-law, while when 5 > 1/2,
it is volume-law. In strong contrast, in the finite-energy den-
sity eigenstates of integrable systems, as well as time-evolved
states with a many-body localized Hamiltonian, we provide
evidence that the bipartite negativity is always volume-law,
irrespective of the ratio 5 . One outcome of these observations
is that, for a disordered interacting system, at a fixed 5 < 1/2,
there exists a transition from area-law negativity in the ETH
regime to volume-law negativity in the many-body localized
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FIG. 1: Given a pure state in a tripartite system, we study
the entanglement negativity ⇢# between two subsystems �

and ⌫. In non-integrable systems, given finite-energy density
eigenstates or time-evolved states at long time from simple
product states, subsystem negativity ⇢# exhibits a a tran-
sition from area-law phase to volume-law phase by tuning
the subsystem volume fraction +�⌫/+ . In integrable sys-
tems studied here, which can be interacting (solvable by Bethe
ansatz) or non-interacting (such as free fermions), given finite-
energy density eigenstates or time-evolved states at long time
from simple product states, ⇢# exhibits a volume law for any
+�⌫/+ . In many-body localized (MBL) systems, ⇢# exhibits
an area law in eigenstates and a volume law in time-evolved
states at long time from simple product states for any +�⌫/+ .

regime.
In fact, this kind of entanglement transition has been noticed

in the study of random pure states12–14. When +�⌫/+ < 1/2,
negativity ⇢# between �, ⌫ is zero in thermodynamic limit,
while for +�⌫/+ , ⇢# scales with the number of spins in �⌫,
i.e. exhibiting a volume entanglement. Below, we provide an
intuitive understanding for this entanglement transition, and
also extend this result to a new class of states called ‘random
stabilizer states’. We will also show analytically that Renyi

Random Haar state Chaotic eigenstate
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III. SUBSYSTEM NEGATIVITY OF EIGENSTATES IN
NON-INTEGRABLE SYSTEMS VS INTEGRABLE SYSTEMS

We first consider a class of local spin-chain Hamiltonians,
and numerically study negativity corresponding to their eigen-
states using a protocol identical to that in the last section.
We find that in non-integrable systems, there is an area-law to
volume-law transition at VAB/V = 1/2, reminiscent of the ran-
dom states studied in the previous section, while for integrable
systems, subsystem negativity always exhibits a volume-law
scaling for arbitrary VAB/V . To further support our numer-
ical result, using eigenstate thermalization hypothesis (ETH)
in non-integrable systems, we analytically prove the area law
in the subsystem negativity for VAB/V < 1/2. Furthermore,
we propose an ‘ergodic tripartite states’ ansatz to characterize
the volume-law coe�cient of chaotic eigenstates, and show
that the third Renyi negativity R3 computed from such ansatz
exhibits an area-law to volume-law transition at VAB/V = 1/2,
analogous to negativity. As for the integrable systems, we
analytically calculate the subsystem negativity averaged over
all eigenstates in free fermions for any spatial dimensions, and
find volume-law scaling for arbitrary VAB/V .

A. Numerical Observations

We consider a spin-1/2 chain of size L with periodic bound-
ary condition. The model Hamiltonian reads

H =
L’
i=1

⇣
J1Si · Si+1 + J2Sz

i Sz
i+2

⌘
. (7)

We set J1 = 1 and impose periodic boundary conditions. At
J2 = 0, this Hamiltonian is integrable48 while the term pro-
portional to J2 breaks integrability. In the former case, the
energy spectrum exhibits Poissonian statistics, while in the lat-
ter case, it exhibits the Gaussian-orthogonal ensemble (GOE)
level statistics. In any finite size system, instead of an abrupt
transition at J2 = 0, one would observe a cross-over between
these two regimes as a function of J2, and we chose J2 = 0.8 as
a representative of the non-integrable regime, a point at which
the level statistics is clearly GOE.

First consider the non-integrable case, i.e., J2 = 0.8 and
perform an exact diagonalization using translation symmetry
and Sz =

ÕL
i=1 Sz

i conservation. We divide the spin chain
into three subregions A, B, and C of size LAB/2, LAB/2,
and L � LAB similar to the set-up in Sec.II and calculate the
negativity EN between A and B in each of the mixed states
⇢AB corresponding to individual eigenstates. We then take an
average of negativity over all eigenstates in the energy win-
dow E/L 2 (�0.05, 0). In the upper left panel of Fig.2, we
find EN/L ⇠ 0 for LAB/L < 1/2 while EN/L deviates from
zero and grows with LAB/L for LAB/L > 1/2, suggesting
negativity between A and B exhibits an area (volume) law for
LAB/L < 1/2(LAB/L > 1/2), similar to the behavior of a ran-
dom pure state. At the critical point LAB/L = 1/2, one sees a
finite-size e�ect that EN/L decreases when increasing the sys-
tem size L, hinting it will vanish as L ! 1. The data shown

FIG. 2: The subsystem negativity EN , negativity between two
subsystems A and B, of eigenstates in Sz =

ÕL
i=1 Sz

i = 0 and
momentum k = 0 sector for the model Eq.7. Upper left/right
panel: in the non-integrable/integrable system, EN divided
by the total system size L as a function of LAB/L averaged
over all eigenstates with E/L 2 (�0.05, 0) with error bars
shown. Lower panel: EN/L plotted with E/L for J2 = 0.0
(integrable) and J2 = 0.8 (non-integrable) of all eigenstates.

here focus only on the eigenstates close to infinite temperature,
but we find that eigenstates at finite temperatures exhibit the
area-law to volume-law transition as well (see Appendix.C 1).

Next, consider the integrable point J2 = 0. We numerically
find that negativity of finite energy density eigenstates between
A and B of equal size exhibits a volume law for any LAB/L,
indicating the absence of entanglement transition (see Fig.2
upper right panel). We also introduce an anisotropy in the spin
chain to break the SU(2) symmetry down to U(1), and check
that the the subsystem negativity is volume-law for any LAB/L
as well (see Appendix.C 2).

It’s also instructive to plot subsystem negativity for all eigen-
states with respect to their energy densities E/L (lower panel
in Fig.2). We find a distinct contrast between integrable sys-
tems (J2 = 0) and non-integrable systems (J2 = 0.8). At a
given fixed energy density, EN/L has a much broader distri-
bution at J2 = 0.0 compared to J2 = 0.8. This suggests that in
non-integrable systems, subsystem negativity of finite energy
density eigenstates is possibly a universal (smooth) function of
energy density, in a way similar to expectation values of local
operators3, or even entanglement measures such as bipartite

1
2

[Auburn 2012; Bhosale, Tomsovic, Lakshminarayan 2012;

Shapourian, Liu, Kudler-Flam, Vishwanath 2020]
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FIG. 4: Subsystem negativity EN as a function LAB/L
in 1D free fermion model (defined in Eq.13) with nearest
neighboring hopping . Left: averaged EN over randomly
chosen 105 eigenstates for L = 200 with error bar speci-
fied. Right: Long time EN of a state | (t)i for large t
evolved from a product state at t = 0 (| 0i =

ŒL�1
i=1,3, · · · c†i |0i

where |0i is a vacuum state). The data shown are the av-
eraged EN in the time interval [1000, 1200]. Leading or-
der refers to EN =

1
4
LAB

L LAB (Eq.16), and the next lead-

ing order refers to EN =


1
4
LAB

L �
5
24

⇣
LAB

L

⌘2
�

LAB (Eq.17).

LAB/L ! VAB/V , i.e. the volume and the subsystem volume
fraction of A

–
B. Second, the results are irrespective of the

hopping amplitude and the geometry of the partition.

IV. SUBSYSTEM NEGATIVITY FOR A QUANTUM
QUENCH

We now show that similar to its behavior in eigenstates, sub-
system negativity of long-time evolved states also distinguishes
an integrable system from a non-integrable system: the former
exhibits volume-law scaling for any VAB/V while the later ex-
hibits an entanglement transition from area-law to volume-law
at VAB/V = 1/2. The numerical result can be seen from Fig.5,
where we consider the spin chain Hamiltonian (Eq.7) with
the initial state | 0i as a Néel state, and study the subsystem
negativity for its time-evolved state | (t)i = e�iHt

| 0i. We
also study the long-time negativity for a initial product state
evolved by a free fermion Hamiltonian, and find it exhibits a
volume-law as well (see Fig.4 right). In the following, we will
provide analytical understanding for these numerical results.

A. Non-integrable systems

For the quantum quench in non-integrable systems, we ana-
lytically prove an area-law bound of subsystem negativity for
VAB/V < 1/2. To start, given a time-evolved state | (t)i, its
reduced density matrix on A

–
B is
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FIG. 5: Comparison of a non-integrable Hamiltonian (J2 =
0.8) and an interacting integrable Hamiltonian (J2 = 0.0)
defined in Eq.7 for negativity EN between two subsys-
tems A and B in a time-evolved state | (t)i at large
t. While the former exhibits an area-law to volume-
law transition at LAB/L = 1/2, the latter exhibits a
volume-law scaling for any LAB/L. The data shown are
the average of negativity over t = 1000, 1001, · · · , 1009.

⇢AB(t) =
’
mn

cmc⇤ne�i(Em�En)t trC (|mi hn|) , (18)

where cm is the overlap between eigenstates |miand the initial
state :cm = hm| 0i, and Em denotes the energy by |mi. For
VAB/V < 1/2, ⇢AB(t) generically equilibrates as t ! 1

53, and
thus the infinite-time reduced density matrix can be replaced
by its infinite-time average:

⇢AB(t ! 1) = lim
T!1

1
T

π T

0
dt ⇢AB(t) =

’
m

|cm |2⇢AB,m,

(19)
where ⇢AB,m is the reduced density matrix from the eigenstate
|mi: ⇢AB,m = trC (|mi hm|). Next we bound the one norm of
the partially transposed density matrix

���⇢TBAB(t ! 1)

���
1
=

�����
’
m

|cm |2⇢TBAB,m

�����
1



’
m

|cm |2
���⇢TBAB,m

���
1

 Max |mi

���⇢TBAB,m
���

1
(20)

Since all eigenstates satisfy area-law subsystem negativity for
VAB/V < 1/2 as proved in Eq.11, negativity EN between A
and B follows an area law as well by taking a logarithm in the
above inequality.

B. Integrable systems

For quench in integrable systems, the quasiparticle picture,
first introduced in Ref.16, has successfully described entangle-
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III. SUBSYSTEM NEGATIVITY OF EIGENSTATES IN
NON-INTEGRABLE SYSTEMS VS INTEGRABLE SYSTEMS

We first consider a class of local spin-chain Hamiltonians,
and numerically study negativity corresponding to their eigen-
states using a protocol identical to that in the last section.
We find that in non-integrable systems, there is an area-law to
volume-law transition at VAB/V = 1/2, reminiscent of the ran-
dom states studied in the previous section, while for integrable
systems, subsystem negativity always exhibits a volume-law
scaling for arbitrary VAB/V . To further support our numer-
ical result, using eigenstate thermalization hypothesis (ETH)
in non-integrable systems, we analytically prove the area law
in the subsystem negativity for VAB/V < 1/2. Furthermore,
we propose an ‘ergodic tripartite states’ ansatz to characterize
the volume-law coe�cient of chaotic eigenstates, and show
that the third Renyi negativity R3 computed from such ansatz
exhibits an area-law to volume-law transition at VAB/V = 1/2,
analogous to negativity. As for the integrable systems, we
analytically calculate the subsystem negativity averaged over
all eigenstates in free fermions for any spatial dimensions, and
find volume-law scaling for arbitrary VAB/V .

A. Numerical Observations

We consider a spin-1/2 chain of size L with periodic bound-
ary condition. The model Hamiltonian reads

H =
L’
i=1

⇣
J1Si · Si+1 + J2Sz

i Sz
i+2

⌘
. (7)

We set J1 = 1 and impose periodic boundary conditions. At
J2 = 0, this Hamiltonian is integrable48 while the term pro-
portional to J2 breaks integrability. In the former case, the
energy spectrum exhibits Poissonian statistics, while in the lat-
ter case, it exhibits the Gaussian-orthogonal ensemble (GOE)
level statistics. In any finite size system, instead of an abrupt
transition at J2 = 0, one would observe a cross-over between
these two regimes as a function of J2, and we chose J2 = 0.8 as
a representative of the non-integrable regime, a point at which
the level statistics is clearly GOE.

First consider the non-integrable case, i.e., J2 = 0.8 and
perform an exact diagonalization using translation symmetry
and Sz =

ÕL
i=1 Sz

i conservation. We divide the spin chain
into three subregions A, B, and C of size LAB/2, LAB/2,
and L � LAB similar to the set-up in Sec.II and calculate the
negativity EN between A and B in each of the mixed states
⇢AB corresponding to individual eigenstates. We then take an
average of negativity over all eigenstates in the energy win-
dow E/L 2 (�0.05, 0). In the upper left panel of Fig.2, we
find EN/L ⇠ 0 for LAB/L < 1/2 while EN/L deviates from
zero and grows with LAB/L for LAB/L > 1/2, suggesting
negativity between A and B exhibits an area (volume) law for
LAB/L < 1/2(LAB/L > 1/2), similar to the behavior of a ran-
dom pure state. At the critical point LAB/L = 1/2, one sees a
finite-size e�ect that EN/L decreases when increasing the sys-
tem size L, hinting it will vanish as L ! 1. The data shown

FIG. 2: The subsystem negativity EN , negativity between two
subsystems A and B, of eigenstates in Sz =

ÕL
i=1 Sz

i = 0 and
momentum k = 0 sector for the model Eq.7. Upper left/right
panel: in the non-integrable/integrable system, EN divided
by the total system size L as a function of LAB/L averaged
over all eigenstates with E/L 2 (�0.05, 0) with error bars
shown. Lower panel: EN/L plotted with E/L for J2 = 0.0
(integrable) and J2 = 0.8 (non-integrable) of all eigenstates.

here focus only on the eigenstates close to infinite temperature,
but we find that eigenstates at finite temperatures exhibit the
area-law to volume-law transition as well (see Appendix.C 1).

Next, consider the integrable point J2 = 0. We numerically
find that negativity of finite energy density eigenstates between
A and B of equal size exhibits a volume law for any LAB/L,
indicating the absence of entanglement transition (see Fig.2
upper right panel). We also introduce an anisotropy in the spin
chain to break the SU(2) symmetry down to U(1), and check
that the the subsystem negativity is volume-law for any LAB/L
as well (see Appendix.C 2).

It’s also instructive to plot subsystem negativity for all eigen-
states with respect to their energy densities E/L (lower panel
in Fig.2). We find a distinct contrast between integrable sys-
tems (J2 = 0) and non-integrable systems (J2 = 0.8). At a
given fixed energy density, EN/L has a much broader distri-
bution at J2 = 0.0 compared to J2 = 0.8. This suggests that in
non-integrable systems, subsystem negativity of finite energy
density eigenstates is possibly a universal (smooth) function of
energy density, in a way similar to expectation values of local
operators3, or even entanglement measures such as bipartite
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FIG. 6: We divide a one dimensional ring into subregion
A (red), B (blue), and C (green), and study negativity be-
tween A and B. Only those quasiparticle pairs generated in
the dashed regions can be shared between A and B to con-
tribute entanglement between these two regions at some time.

ment growth in many-body systems54–56. Here we adopt this
picture to provide a heuristic argument for volume-law subsys-
tem negativity at any LAB/L. Since an initial state typically
has a finite energy density with respect to the post-quench
Hamiltonian, each point in space is a source of quasiparticle
pairs, and the two particles in each pair are entangled and
propagating with opposite momentum. These quasiparticles
have infinite lifetime due to the integrability of systems. A
quasiparticle pair contribute to the entanglement between two
spatial regions A and B only when one particle is in A and the
its partner is in B. Therefore, the total amount of entanglement
between A and B can be obtained by counting the number of
such quasiparticle pairs.

To proceed, given a 1D chain with periodic boundary condi-
tion, let A be the spatial interval (�LAB/2, 0), B = (0, LAB/2),
and C is the rest of the chain (see Fig.6), at t = 0, quasipar-
ticle pairs with di�erent momenta k are generated uniformly
in space. It is not hard to see that only when a pair is gener-
ated within the spatial intervalI = (�LAB/4, LAB/4)

–
(L/2�

LAB/4, L/2+ LAB/4) (marked by dashed lines), the two parti-
cles can reside in A and B simultaneously at some later times
to entangle A and B. Now we consider the two particles in
a pair with propagation velocity v(k) and v(�k) = �v(k),
For a quasiparticle pair generated at x within the interval
(�LAB/4, LAB/4), two particles initially both belong to either
A or B, and they begin to entangle A and B at t1 = |x/v | until
one of the particle first moves in to C at t2 = (LAB/2� |x |)/|v |.
Due to the periodic boundary condition, in a time period
T = L/|v |, the time duration for two particles simultaneously
in A and B is 2(t2 � t1) in a period. Thus the entanglement
between A and B contributed from the quasiparticle pair is
s(k)2(t2� t1)/T , where s(k) is the amount of entanglement car-
ried by the pair, which is determined by the thermal entropy of
the generalized Gibbs ensemble (GGE)54. Since entanglement
negativity between complementary systems is the same as the
S1/2, Renyi entropy of index 1/2, s(k) should be chosen as S1/2
for computing negativity. Since all quasiparticle pairs emitted

from I = (�LAB/4, LAB/4)
–
(L/2 � LAB/4, L/2 + LAB/4)

with all possible momenta contribute to entanglement, one
finds long time averaged negativity between A and B reads

EN = 2
π

dk
π

�
LAB

4

�
LAB

4

dx s(k)
✓

LAB

L
�

4|x |
L

◆

= 2
π

dks(k)
✓

LAB

4L

◆
LAB,

(21)

which scales with the subsystem volume LAB with a volume-
law coe�cient ⇠ LAB/L for any subsystem volume fraction.
In sum, quasiparticle picture allows to predict a volume-law
scaling in the quench dynamics of negativity: EN ⇠ L2

AB/L
is because the number of quasiparticle pairs that can entangle
A and B scales with LAB, and the fraction of time duration in
which a pair entangles A and B in a period scales with LAB/L.

V. LONG-TIME SUBSYSTEM NEGATIVITY
DISTINGUISHES MBL FROM ETH PHASE

Finally we discuss how signatures in subsystem negativity
distinguish MBL phase from ETH phase. Deep in the MBL
phase, all eigenstates are localized, exhibiting area-law scaling
in the entanglement entropy between two complementary sys-
tems. Furthermore, eigenstates can be e�ciently described by
matrix product states of finite bond dimension57. Therefore,
negativity between two subsystem A and B naturally follows
an area-law scaling for any LAB/L. Despite the presence of
localized eigenstates, initial product states under time evolu-
tion in the MBL phase at long time exhibit volume-law scal-
ing of bipartite entanglement entropy58, which can be under-
stood as a dephasing mechanism given by an e�ective "l-bits"
Hamiltonian59–61. Here we study the long-time evolved state,
and find that the negativity between two subsystems exhibits
a volume-law scaling as well. To obtain MBL phase, we in-
troduce on-site random fields on spins in Eq.7 to obtain the
model Hamiltonian

H =
L’
i=1

⇣
J1Si · Si+1 + J2Sz

i Sz
i+1 � hiSz

i+1

⌘
, (22)

where hi is randomly drawn from [�w,w]. Choosing the initial
state as a Néel state | 0i, we study the negativity of the state
| (t)i = e�iHt

| 0i at large t. We compare w = 1 (ETH
phase) and w = 5 (MBL phase) in the long-time negativity
EN between A and B. We find EN has a volume-law scaling
in the MBL phase, similar to the cases of integrable systems
discussed before, in contrast to the area-law to volume-law
transition in the ETH phase, see Fig.7, upper panel.

To build intuition for the volume-law subsystem negativity
in the MBL phase, we consider the mutual information be-
tween A and B. As shown in Ref.62, the bipartite negativity
for a single region of size ` scales as S ⇠ ` � `2

/L where L is
the total system size. This implies that the mutual information
between A and B is a volume law even when LAB/L < 1/2,
unlike the ETH phase where it is an area-law. We verified
this explicitly in our ED study, as shown in Fig.7, lower panel.
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FIG. 7: Comparison of the ETH Hamiltonian (w = 1)
and the MBL Hamiltonian (w = 5) in subsystem nega-
tivity EN (upper panel) and mutual information I (lower
panel) as a function LAB/L for a time-evolved state | i
at t = 1000. The data for L = 12, 14, 16 pre-
sented are averaged over 200, 100, 100 random samples.

Given that mutual information seems to follow the same scal-
ing as subsystem negativity in all the other examples we have
considered so far, this indicates that the subsystem negativity
also satisfies a volume law for all LAB/L.

VI. COMPARISON WITH MUTUAL INFORMATION

In all systems studied so far in this paper, both the subsystem
negativity and the mutual information exhibit the same scaling
law as a function of the subsystem size fraction. Since mutual
information is not a mixed state entanglement measure, it is
natural to ask whether there are physical situations related to
quantum thermalization where these two quantities can quali-
tatively behave di�erently, and therefore necessitate a mixed-
state entanglement (such as subsystem negativity) based pro-
tocol? We now present a few physical scenarios where that is
indeed the case.

First, consider separable states ⇢ =
Õ

i pi⇢Ai ⌦ ⇢Bi , whereÕ
i pi = 1 with pi � 0, and ⇢Ai , ⇢Bi are density matrices on

A, B. Such states manifestly have zero negativity, but they
allow for a volume-law mutual information between A and B
as we show below. Such a construction relies on the intuition
that mutual information measures the amount of information
gained regarding one system by observing the other. Therefore
one can imagine that when the number of is are exponentially

large in the total system volume, observing a subsystem (say
A) gives a great amount of knowledge for the other (B), which
can result in a volume-law mutual information. A concrete ex-
ample is given by the so-called thermo-mixed double states63,
which has been proposed as a typical mixed state of a two-sided
black hole:

⇢TMD =
’
n

e��En

Z
|ni hn|A ⌦ |ni hn|B , (23)

where Z =
Õ

n e��En . It is not di�cult to see that the mutual
information I(A, B) = SA + SB � SAB = Sth , where Sth is the
extensive thermal entropy of a canonical ensemble for Hamil-
tonian H =

Õ
n En |ni hn| at inverse temperature �. Hence

⇢TMD constitutes a class of states whose negativity and mu-
tual information behave qualitatively di�erent.

As an example motivated by condensed matter physics, con-
sider eigenstates of a ‘quantum disentangled liquid’ (QDL)64.
The Hilbert space of QDL consists of two kinds of parti-
cles, ‘heavy’ and ‘light’, with the property that a projec-
tive measurement of the heavy (light) particles results in a
wavefunction of the light (heavy) particles that has an area-
law (volume-law) bipartite entanglement. As an example,
consider the following wavefunction where the sets {R} and
{r} denote coordinates of the heavy and light particles re-
spectively: | i =

Õ
R Det

�
eiki .R j

� p
p({R})|�Ri |Ri. Here

Det
�
eiki .R j

�
denotes a slater determinant wavefunction with

volume-law entanglement, state |�Ri is a state in the Hilbert
space of light particles with area-law entanglement, and p({R})
is some probability distribution over the configurations of
the heavy particles. As a specific example, let’s now as-
sume that the states |�Ri are all product states of the form
|�Ri = |�RiA |�RiB where |�RiA and |�R0 iA are orthonormal
whenever {R} and {R0

} are distinct. Similarly, |�RiB and
|�R0 iB are also orthonormal. Then the density matrix for light
particles is given by ⇢ =

Õ
R p(R)|�Rih�R |, which is clearly

separable. The mutual information, on the other hand, is given
by �

Õ
R p(R) log p(R), which is volume-law since the number

of distinct states in the set {R} scale exponentially with the
system size. We note that an explicit demonstration of the
area-law subsystem negativity for QDL-like states was pro-
vided in Ref.65 in 1D Hubbard model supplemented with a
nearest neighbor repulsive interaction66.

As a final example, consider an initial state which does not
have a sharply defined energy density with respect to a non-
integrable Hamiltonian H. To be concrete, let’s assume that
the initial state has support over two distinct energy densities
which correspond to inverse temperatures �1 and �2. Unitary
evolution of this state with H for su�ciently long time will lead
to a reduced density matrix of a region AB (with VAB/V ⌧ 1)
that may be appoximated as: ⇢AB ⇡ p e��1HAB

ZAB (�1)
+(1�p) e

��2HAB

ZAB (�2)
.

Here ZAB denotes the partition function, and 0 < p < 1. By an
argument similar to that in Eq.20, one finds that the negativity
of this state is area-law. However, the mutual information is
generically expected to be volume-law. This can be seen by
explicitly calculating the mutual second Renyi entropy between
A and B, or alternatively by noticing that the logarithm of ⇢AB
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