Entanglement Phase Transitions

Tsung-Cheng Lu (Perimeter)

Tim Hsieh (Perimeter)

Kai-Hsin Wu (Boston U.)

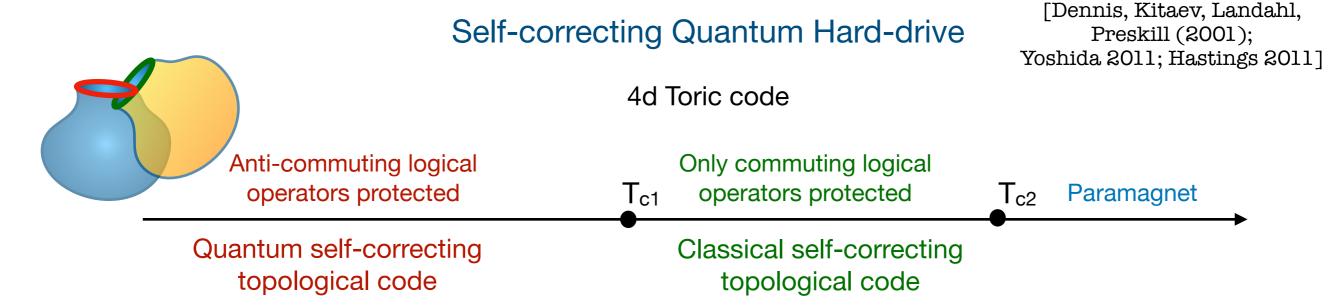
Chia-Min Chung (Neils Bohr Inst.)

Ying-Jer Kao (National Taiwan U.)

Information protection at thermal equilibrium

(a few examples)

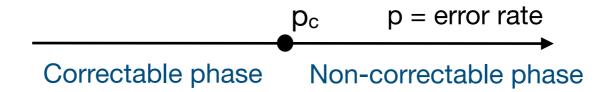
Self-correcting Classical Hard-drives



Information protection out-of-equilibrium

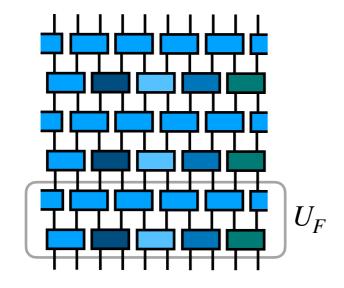
(a few examples)

Active quantum error-correction



[Shor 1996; Knill, Laflamme, Zurek 1997; Kitaev 1997; Aharonov, Ben-Or 1999;...]

Many-body localized phase



[Basko, Aleiner, Altshuler 2005; Oganesyan, Huse 2007, Pal, Huse 2010;...]

Many-body Quantum Zeno effect.

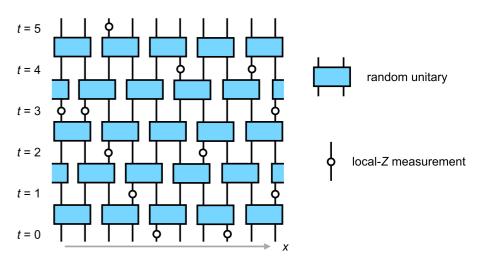


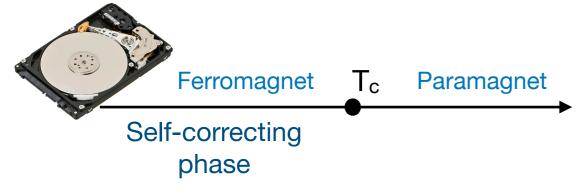
Figure from [Li, Chen, Fisher 2018]

[Li, Chen, Fisher 2018; Skinner, Ruhman, Nahum 2018; Chan et al 2019; Gullans, Huse, 2019; Bao et al 2019; Jian et al 2019...]

Information protection and Ergodicity Breaking

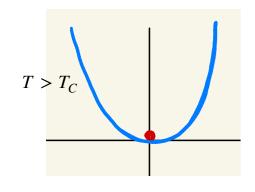
Classical hard-drive

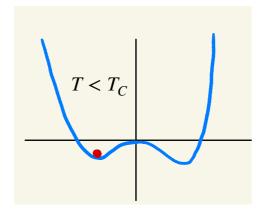
Self-correcting due to (mild) ergodicity breaking.



Can be diagnosed by a local order parameter (= magnetization)

$$\lim_{h_{SSB}\to 0^+, T=T_c^+} S - \lim_{h_{SSB}\to 0^+, T=T_c^-} S = \log(2)$$

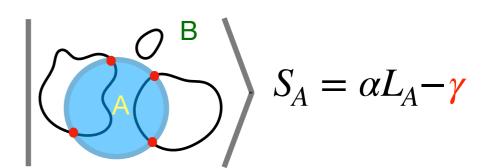




Quantum hard-drive

At T = 0, topological entanglement entropy serves as an order parameter.

What about finite T?

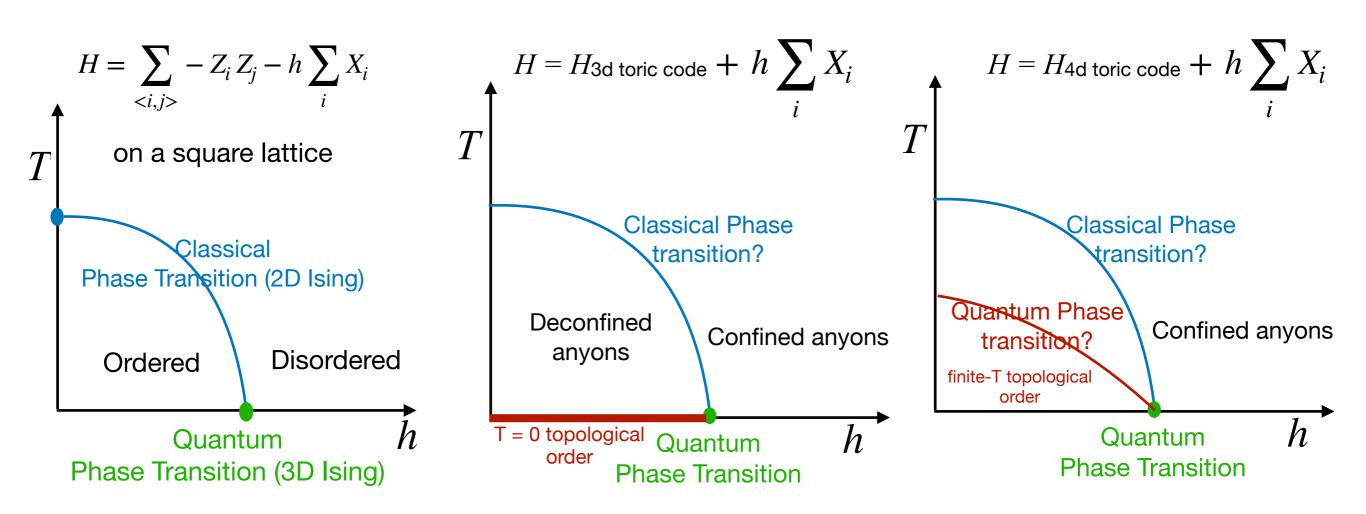


"Quantum ergodicity breaking phase" T_c

$$\lim_{T=T_c^+} ?? - \lim_{T=T_c^-} ?? \neq 0$$

Broader question:

Distinguishing Quantum from Classical Transitions



If a finite temperature transition really classical,

quantum entanglement must be short-ranged despite a diverging correlation length.

If finite-T correlation length is finite, Gibbs state can be prepared with a small depth channel.

Swingle, McGreevy 2016; Wu, Hsieh 2018; Qi, Maldacena 2018; Brandao, Kastoryano 2019; Cottrell et al 2019, Chapman et al 2019.

If finite-T correlation length *diverges*, but the correlations fully classical, perhaps one can still prepare the corresponding Gibbs state with polynomial resources?

If finite-T correlation length is finite, Gibbs state can be prepared with a small depth channel.

Swingle, McGreevy 2016; Wu, Hsieh 2018; Qi, Maldacena 2018; Brandao, Kastoryano 2019; Cottrell et al 2019, Chapman et al 2019.

If finite-T correlation length *diverges*, but the correlations fully classical, perhaps one can still prepare the corresponding Gibbs state with polynomial resources?

Zeroth Order question:

When is a mixed state unentangled ("separable")?

Separability Criterion for Mixed States

[Werner 1989] If
$$\rho = \sum p_i \; \rho_{i,A} \otimes \rho_{i,B}$$
 with $p_i > 0$

in *some* basis, then the expectation value of any operator can be reproduced by an ensemble of unentangled pure states. Therefore, such states are unentangled or "separable".

Separability Criterion for Mixed States

[Werner 1989] If
$$\rho = \sum p_i \; \rho_{i,A} \otimes \rho_{i,B}$$
 with $p_i > 0$

in *some* basis, then the expectation value of any operator can be reproduced by an ensemble of unentangled pure states. Therefore, such states are unentangled or "separable".

A more physical definition for local many-body systems

If $\rho=\sum_i p_i |\psi_i\rangle\langle\psi_i|$ where each $|\psi_i\rangle$ is short-ranged entangled (\Rightarrow no topological order or long-range

correlations), then ρ is "short-ranged entangled mixed-state".

Separability in Toric codes in various dimensions

Consider 2d toric code at finite-T: $\rho = e^{-\beta H}/Z = e^{-\beta E_n} |E_n\rangle\langle E_n|/Z$

$$\lambda_A$$
 X Each eigenstate $|E_n\rangle$ is of course topologically ordered.
 X Let's rewrite ρ as

$$\lambda_B Z egin{bmatrix} Z \ p \ Z \end{bmatrix}$$

$$Z \qquad \rho = \frac{1}{Z} e^{-\beta H} = \frac{1}{Z} e^{-\beta H/2} \sum_{m} |m\rangle \langle m| \, e^{-\beta H/2} = \sum_{m} p_m \, |\phi_m\rangle \langle \phi_m|$$

$$\lambda_B Z \qquad p \qquad Z \qquad \text{where } \{ \, |m\rangle \} = \text{set of all product states in the X-basis}$$

$$|\phi_m\rangle \sim \sum_{\text{loop configs.}|C\rangle} e^{-\text{Area enclosed by loop} \times \log(\tanh(\beta \lambda_B/2))} |C\rangle$$

 $\Rightarrow |\phi_m\rangle$ not topologically ordered at any non-zero T since large loops suppressed.

Similar arguments lead to the following conclusion

$$e^{-\beta H}/Z = \sum_m p_m |\phi_m\rangle \langle \phi_m|$$
 Not topologically ordered, area-law ground-state

whenever $T > min(T_A, T_B)$ where T_A , T_B correspond to the critical temperatures of the classical Hamiltonians

temperatures of the classical Hamiltonians
$$-\lambda_A \sum_s A_s \quad \underline{X} \quad X \quad -\lambda_B \sum_p B_p \quad \underline{Z} \quad p \quad Z$$

Dimension	T_A	T_B
2D	$\frac{O(\lambda_A)}{\log L}$	$\frac{O(\lambda_B)}{\log L}$
3D	$\frac{O(\lambda_A)}{\log L}$	$O(\lambda_B)$
4D	$O(\lambda_A)$	$O(\lambda_B)$

[Tsung-Cheng Lu, Hsieh, TG 2019]

Similar arguments lead to the following conclusion

$$e^{-\beta H}/Z = \sum_m p_m |\phi_m\rangle \langle \phi_m|$$
 Not topologically ordered, area-law ground-state

whenever $T > min(T_A, T_B)$ where T_A , T_B correspond to the critical temperatures of the classical Hamiltonians

temperatures of the classical Hamiltonians
$$-\lambda_A \sum_s A_s \quad \underline{X} \quad X \quad -\lambda_B \sum_p B_p \quad \underline{Z} \quad p \quad Z$$

Dimension	T_A	T_B	
2D	$\frac{O(\lambda_A)}{\log L}$	$rac{O(\lambda_B)}{\log L}$	
3D	$\frac{O(\lambda_A)}{\log L}$	$O(\lambda_B)$	How to quantify non-separability?
4D	$O(\lambda_A)$	$O(\lambda_B)$	

[Tsung-Cheng Lu, Hsieh, TG 2019]

Quantifying Mixed-State Entanglement

"Entanglement Negativity": $E_N = \log \left(|\rho^{T_B}|_1 \right)$ [Eisert, Plenio 1999; Vidal, Werner 2001]

- Entanglement monotone [Plenio 2005], zero for separable states (but can be zero also for non-separable states).
- Upper bounds the rate of conversion of the mixed state to Bell pairs ("distillation rate").
- Satisfies an area law for thermal states of local Hamiltonians [Sherman, Devakul, Hastings, Singh 2015].
- Calculable! (unlike most other mixed-state measures).
- Recent progress on measurement using randomized unitaries [Elben et al 2019] (tomorrow's talk).

Several condensed matter applications: Negativity of CFTs (Calabrese, Cardy, Tonni 2012), Ground state of toric code and TQFTs (Lee, Vidal 2013; Castelnovo 2013; Wen, Matsuura, Ryu 2016), Characterizing SPTs (Shapourian, Shiozaki, Ryu 2017), Probe of chaos and scrambling (Kudler-Flam et al 2019),...

Let's study non-local part of negativity as a candidate order parameter for finite-T topological order.

$$E_N = \alpha L^{d-1} - E_{N,topo}$$

Focus on toric code in d = 2, 3, 4.

(Area-law coefficient α for 2D toric code studied in Hart, Castelnovo 2018.)

Example: 2D toric code in the limit $\lambda_B \rightarrow \infty$.

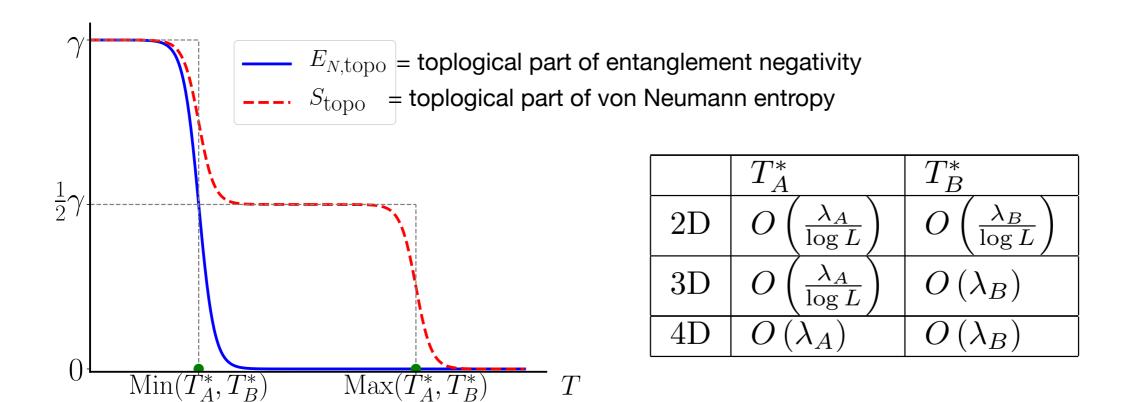
Topological negativity $E_{N,topo}$ behaves very different than the subleading contribution S_{topo} to von Neumann entropy

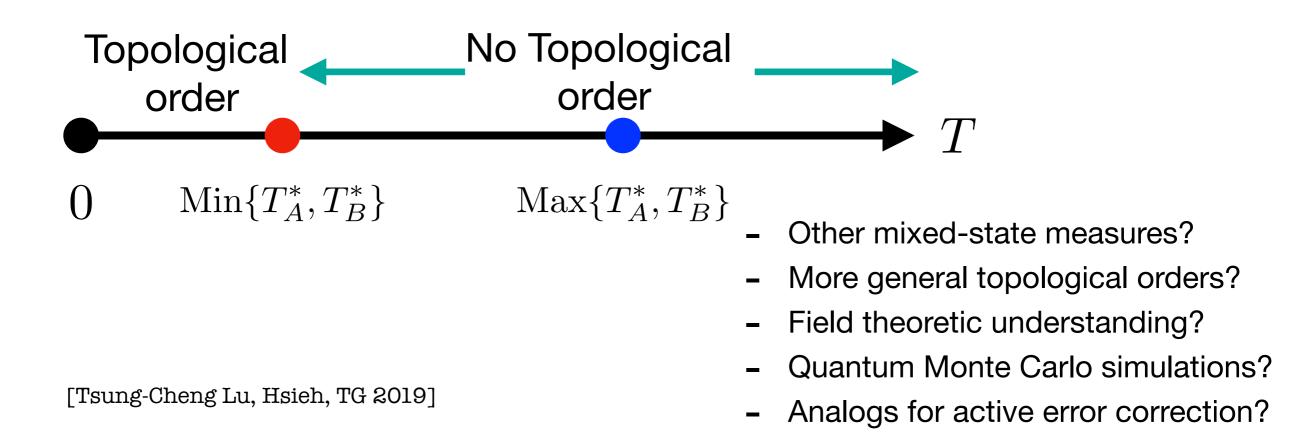
$$\lambda_A = 1 \quad \begin{array}{c|c} X & \\ X & \\$$

$$-\log\left\{\frac{1}{2} + \frac{\binom{L}{\frac{L}{2}+1}}{2\left(x^{1/2} + x^{-1/2}\right)^{L}}\left[\frac{1}{x} {}_{2}F_{1}(1, -\frac{L}{2}+1; \frac{L}{2}+2; -\frac{1}{x}) - x {}_{2}F_{1}(1, -\frac{L}{2}+1; \frac{L}{2}+2; -x)\right]\right\}$$

 $_2F_1(a,b;c;d)$: hypergeometric function $x = \tanh(\beta \lambda_A)$

Summary of results for toric code in d = 2, 3, 4

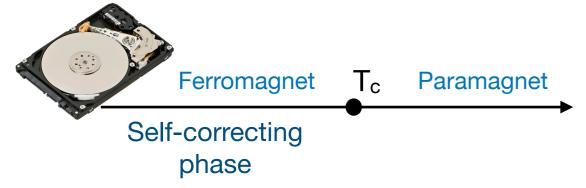




Information protection and Ergodicity Breaking

Classical hard-drive

Self-correcting due to (mild) ergodicity breaking.



Can be diagnosed by a local order parameter (= magnetization)

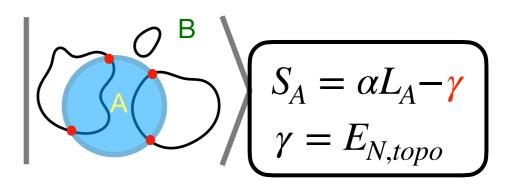
$$\lim_{h_{SSB} \to 0^{+}, T = T_{c}^{+}} S - \lim_{h_{SSB} \to 0^{+}, T = T_{c}^{-}} S = \log(2)$$

$$T > T_{c}$$

Quantum hard-drive

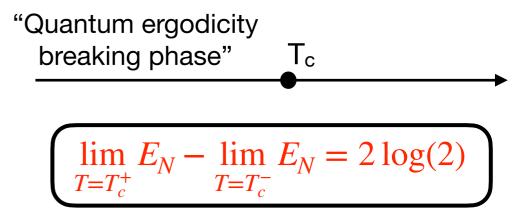
At T = 0, topological entanglement entropy serves as an order parameter.

What about finite T?



Negativity a candidate order parameter.

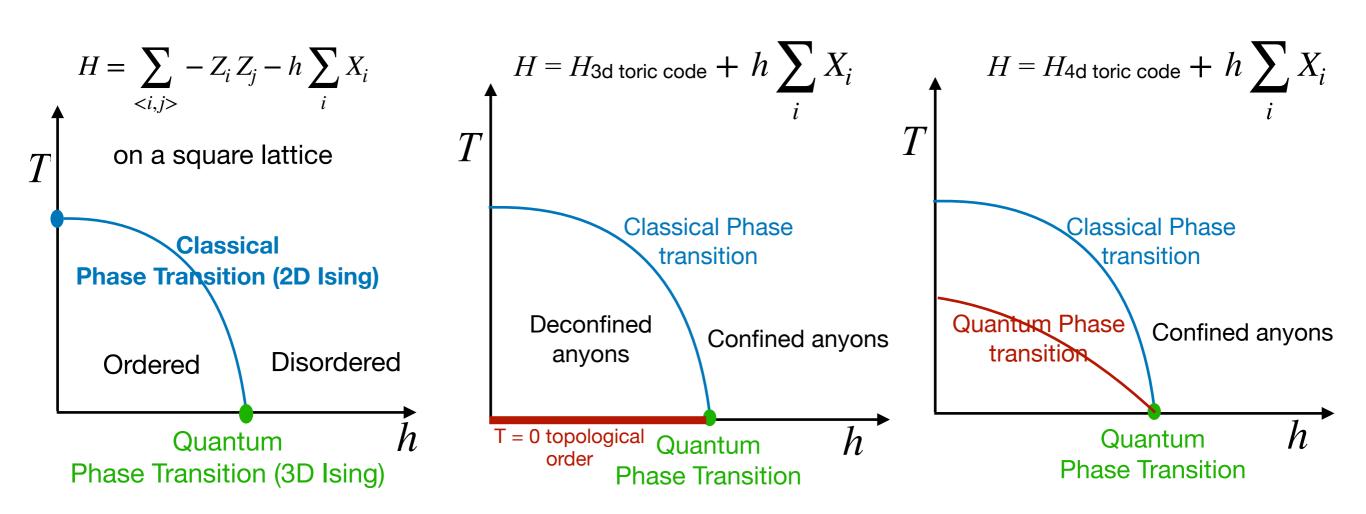
4d Toric code:



[Tsung-Cheng Lu, Hsieh, TG 2019; More recent work: Tsung-Cheng Lu, Vijay 2022-Relation to SPT order at the entanglement boundary]

Broader question:

Distinguishing Quantum from Classical Transitions



If finite temperature transition really classical,

quantum entanglement must be short-ranged despite a diverging correlation length.

Consider the transverse field Ising model on square lattice...

$$H = \sum_{\langle i,j \rangle} - Z_i Z_j - h \sum_i X_i$$

Although we can't calculate negativity $E_N = \log(|\rho^{T_B}|_1)$

one can calculate a closely related quantity in Quantum Monte Carlo:

$$\tilde{R_3} = \log \left(\frac{\operatorname{trace} \left(\rho^{T_B} \right)^3}{\operatorname{trace} \left(\rho^3 \right)} \right)$$

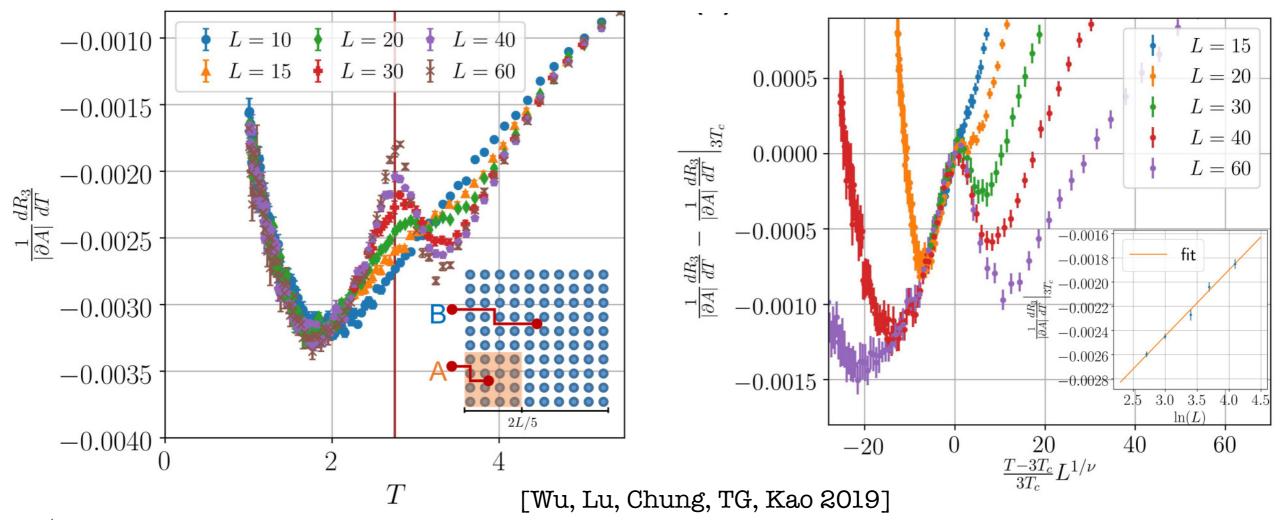
Not an entanglement measure, but in 1+1-D CFTs, has same scaling as negativity.

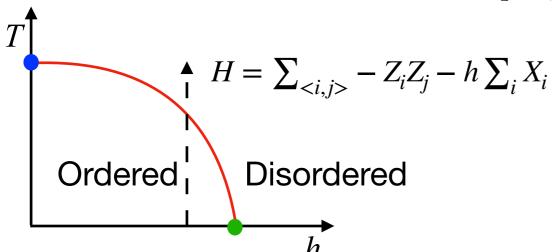
[Calabrese, Cardy, Tonni 2012]

Singularity in the area-law coefficient

Temperature derivative of Renyi negativity

Scaling collapse

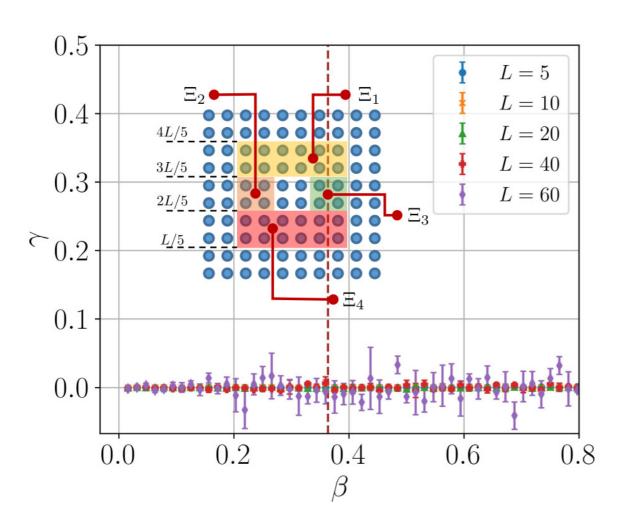


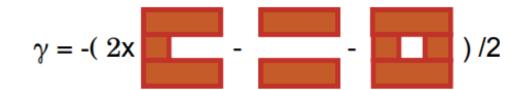


Entropy: For $T < T_c$, $S(h_{SSB} = 0) - \lim_{h_{SSB} \to 0^+} S = \log(2)$

Negativity: For $0 < T < T_c$, $E_N(h_{SSB} = 0) - \lim_{h_{SSB} \to 0^+} E_N = 0$

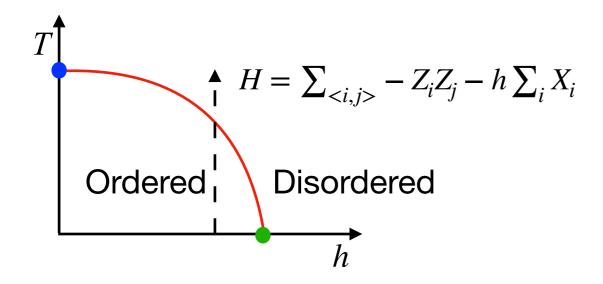
Long-range part of Renyi negativity

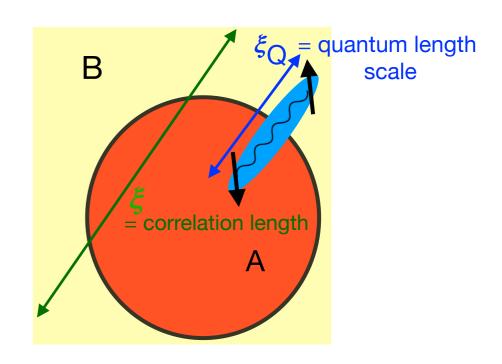




(similar to Levin-Wen scheme to extract topological EE).

[Wu, Lu, Chung, TG, Kao 2019]

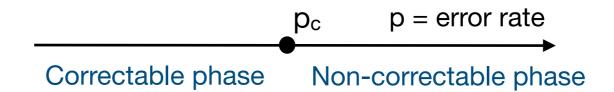




Information protection out-of-equilibrium

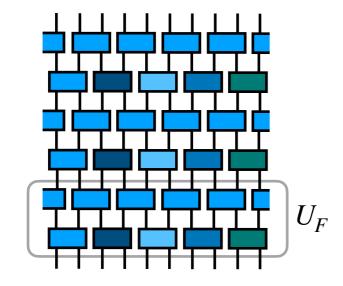
(a few examples)

Active quantum error-correction



[Shor 1996; Knill, Laflamme, Zurek 1997; Kitaev 1997; Aharonov, Ben-Or 1999;...]

Many-body localized phase



[Basko, Aleiner, Altshuler 2005; Oganesyan, Huse 2007, Pal, Huse 2010;...]

Many-body Quantum Zeno effect.

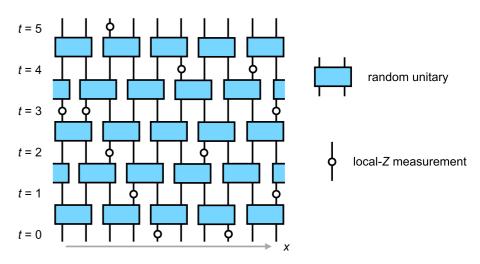


Figure from [Li, Chen, Fisher 2018]

[Li, Chen, Fisher 2018; Skinner, Ruhman, Nahum 2018; Chan et al 2019; Gullans, Huse, 2019; Bao et al 2019; Jian et al 2019...]

Broader question: Phases of Quantum Dynamics?

Infinitely rich variety of quantum phases of matter at T = 0. Fermi liquids, superconductors, quantum Hall phases, Mott insulators, ...

How rich is the landscape of time-evolved many-body states?

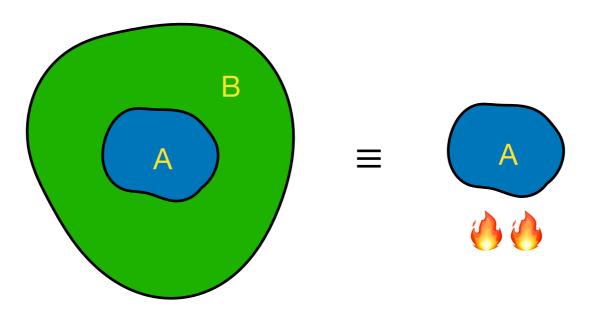
$$|\psi_t\rangle = e^{-iHt}|\psi_0\rangle$$

Unfortunately, quantum chaos is an obstacle to find novel phases of quantum dynamics.

Broader question: Phases of Quantum Dynamics?

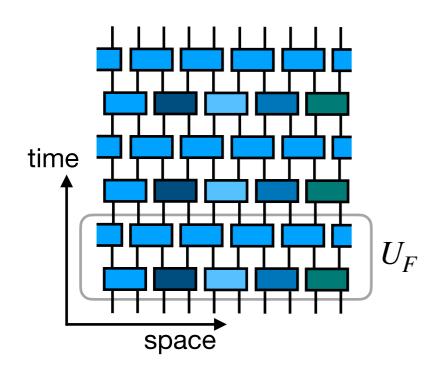
$$|\psi_t\rangle = e^{-iHt}|\psi_0\rangle$$

If a many-body system is chaotic, a small subsystem behaves as if it was in thermal equilibrium. [Deutsch 1991; Srednicki 1994]



To obtain new physics non-thermal physics, one needs to impede entanglement growth.

One route: spatial disorder.

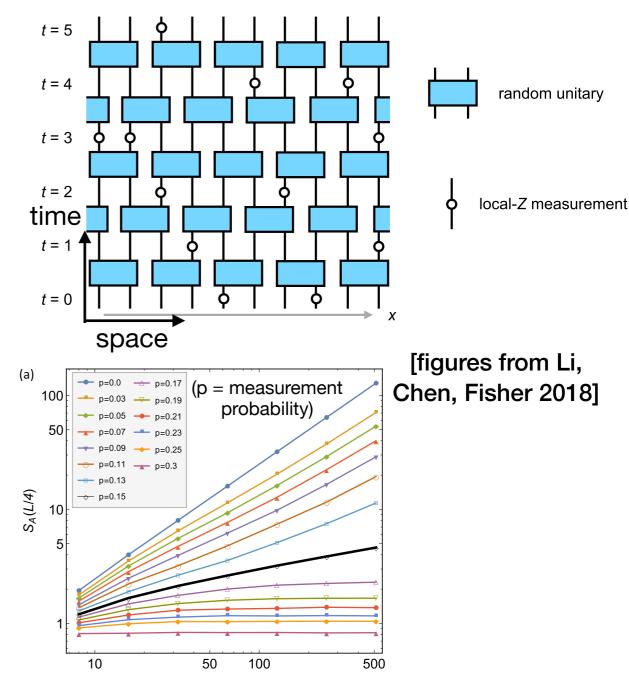


Absence of Diffusion in Certain Random Lattices

P. W. Anderson
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received October 10, 1957)

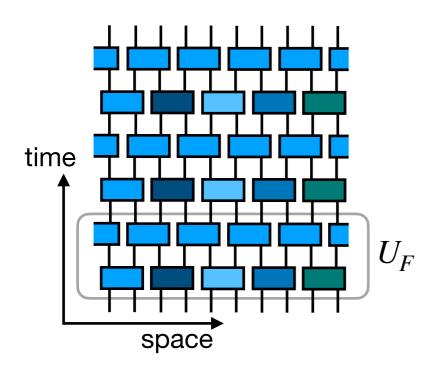
Single-body localization: [Anderson 1958];
Many-body localization: [Basko, Aleiner, Altshuler 2005;
Oganesyan, Huse 2007, Pal, Huse 2010, ...]

Another route: Quantum Zeno effect.



[Li, Chen, Fisher 2018; Skinner, Ruhman, Nahum 2018; Chan et al 2019; Gullans, Huse, 2019; Bao et al 2019; Jian et al 2019...]

One route: spatial disorder.



Absence of Diffusion in Certain Random Lattices

P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received October 10, 1957)

Single-body localization: [Anderson 1958];
Many-body localization: [Basko, Aleiner, Altshuler 2005;
Oganesyan, Huse 2007, Pal, Huse 2010, ...]

A puzzle: Consider time evolution with:

$$H = \int dx \, \left[(\nabla \phi(x))^2 + \Pi^2(x) + m^2(x) \, \phi^2(x) + u(x) \, \phi^4(x) \right]$$
$$[\hat{\phi}(x), \hat{\Pi}(x')] = i \, \delta(x - x')$$

Or, alternatively the following Floquet operator

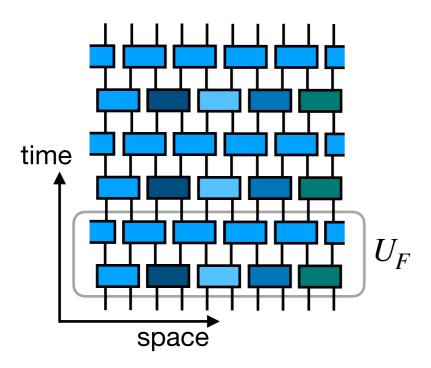
$$U_{F} = e^{i\sum_{x} \hat{\Pi}^{2}(x)} e^{i\sum_{x} (\hat{\phi}(x+1) - \hat{\phi}(x))^{2}} e^{i\sum_{x} V(\hat{\phi}(x), x)}$$
$$[\hat{\phi}(x), \hat{\Pi}(x')] = i \delta_{x,x'}$$

 $V(\hat{\phi}(x), x)$ arbitrary function of x, e.g.,

$$V(\hat{\phi}(x), x) = m^2(x) \,\hat{\phi}^2(x) + u(x) \,\hat{\phi}^4(x) + \dots$$

Can either of these systems show many-body localization? What about Bose-Hubbard model which looks somewhat similar?

One route: spatial disorder.

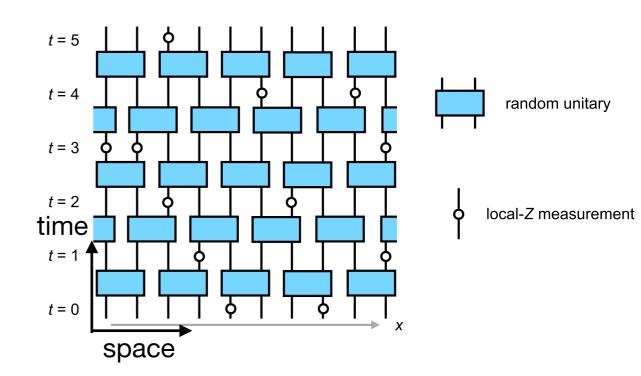


Unitary evolution

Requires time-translation

No post-selection required

Another route: Quantum Zeno effect.

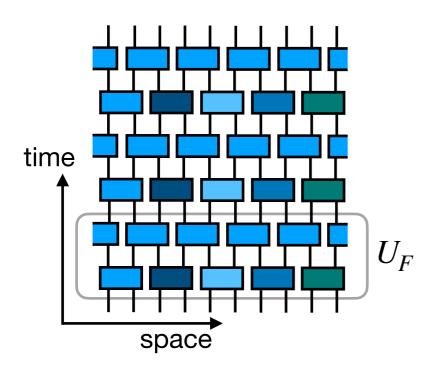


Non-unitary evolution

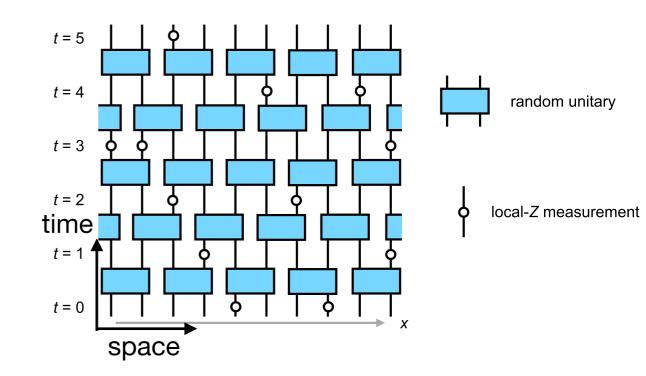
Time-translation not required

Post-selection required

One route: spatial disorder.



Another route: Quantum Zeno effect.

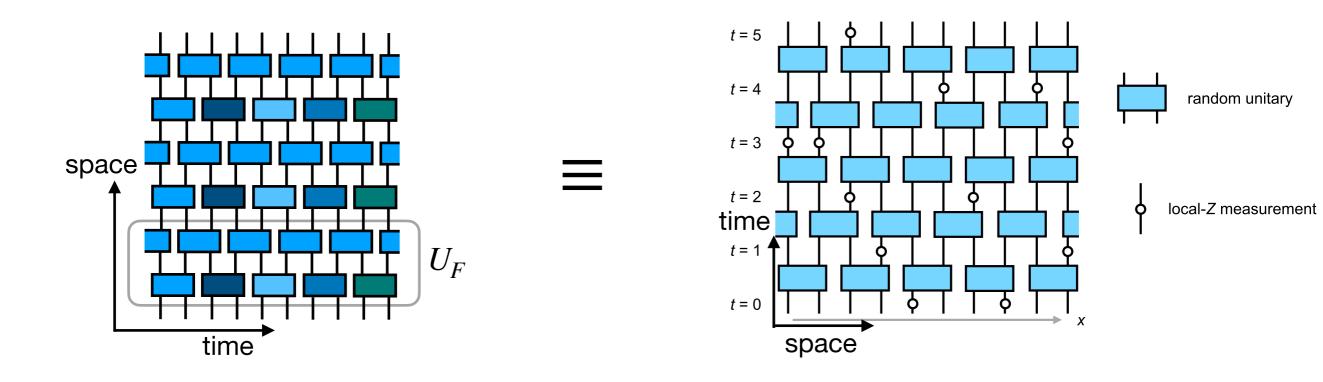


Main result

"Space-time rotation" of a circuit that hosts localization transition yields a new circuit that hosts a Zeno-type transition.

One route: spatial disorder.

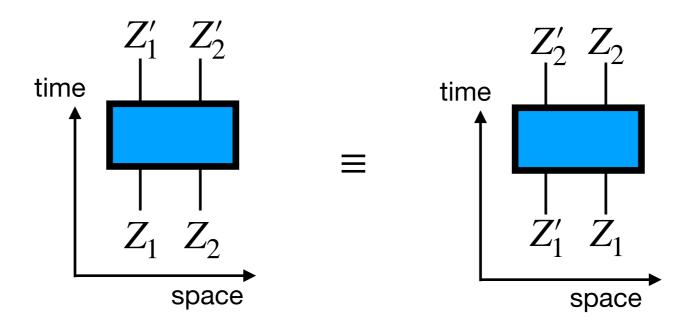
Another route: Quantum Zeno effect.



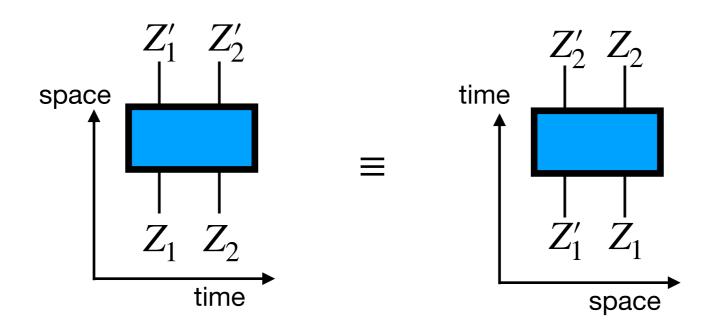
Main result

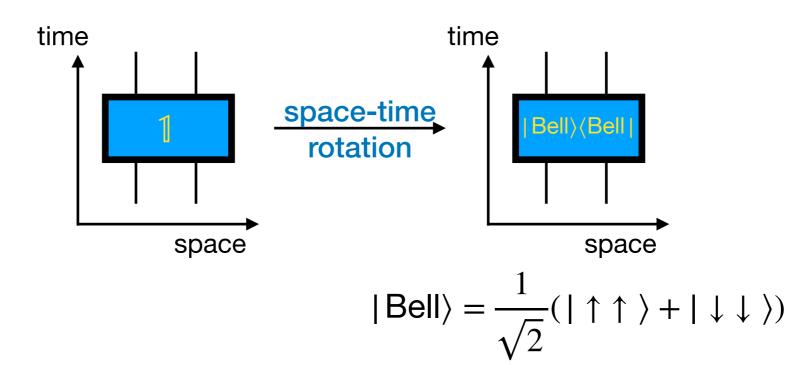
"Space-time rotation" of a circuit that hosts localization transition yields a new circuit that hosts a Zeno-type transition.

Space-time rotation of a circuit

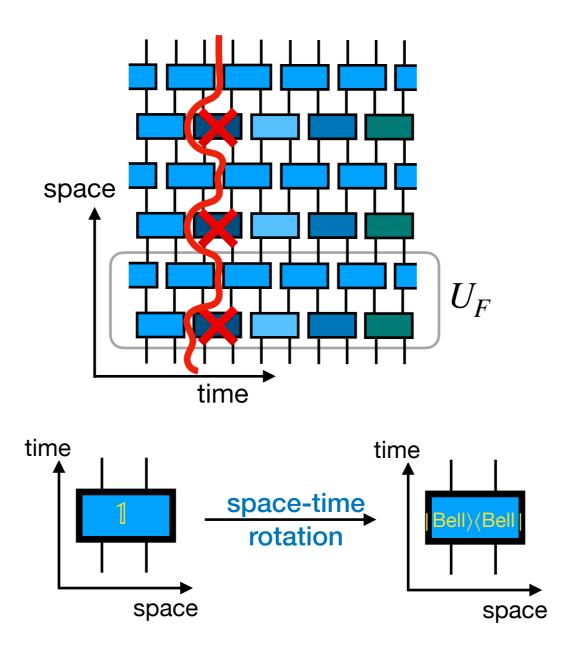


Space-time rotation of a circuit





[Akila, Waltner, Gutkin, Guhr 2016; Bertini, Kos, Prosen 2018; Napp et al 2020; Ippoliti, Khemani 2020,..., cf. Betsuyaku 1984 (imaginary time)] Consider extreme limit of localization where the system separates into two decoupled regions



Example # 1: Space-time dual of a single-particle localization transition

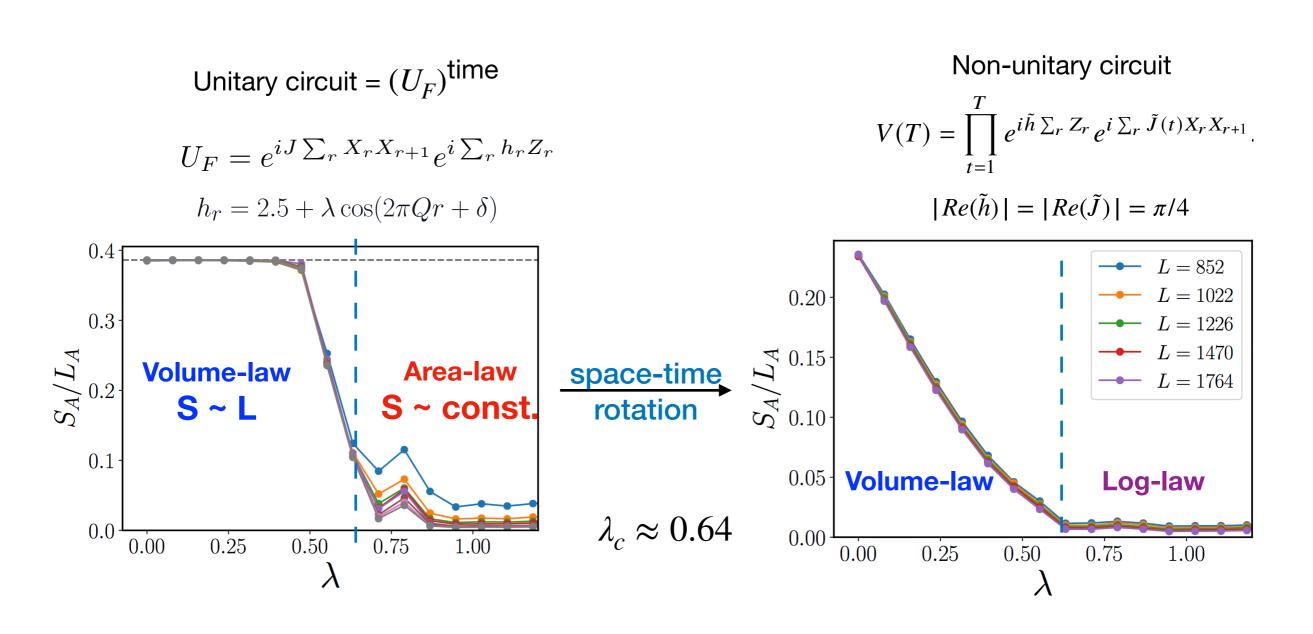
$$U_F = e^{iJ\sum_r X_r X_{r+1}} e^{i\sum_r h_r Z_r} \qquad \text{Unitary circuit} = (U_F)^{\text{time}}$$

$$h_r$$
 quasi-periodic, $h_r=2.5+\lambda\cos(2\pi Qr+\delta)$ $Q=\frac{2}{1+\sqrt{5}}$ "Floquet Aubry-Andre-Harper" model

Space-time dual also free-fermion circuit, albeit non-hermitian.

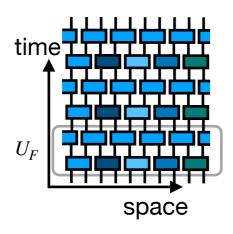
Previous works on free fermion systems shows that one doesn't expect volume law entanglement for generic non-Hermitian Hamiltonians [Jian et al 2020; Chen et al 2020; Tang, Chen, Zhu 2001;...]. For non-unitary circuits consisting of unitary evolution+ only projective measurements, this can be argued fairly rigorously [Cao, Tilloy, De Luca 2019; Fidkowski, Haah, Hastings 2020].

Example # 1: Space-time dual of a single-particle localization transition

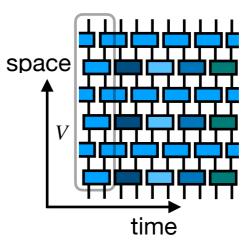


[TG, Tsung-Cheng Lu 2021]

Basic Intuition



$$U_F = e^{iJ\sum_r X_r X_{r+1}} e^{i\sum_r h_r Z_r}$$
$$h_r = 2.5 + \lambda \cos(2\pi Qr + \delta)$$



$$V(T) = \prod_{t=1}^{T} e^{i\tilde{h}\sum_{r} Z_{r}} e^{i\sum_{r} \tilde{J}(t)X_{r}X_{r+1}}.$$

$$\tilde{J}(t) = -\pi/4 + \frac{i}{2}\log(\tan h_{t})$$

$$\tilde{h} = \tan^{-1}(-ie^{-2iJ})$$

When h_t for $some\ t$ becomes π , the non-unitary circuit at that time-slice corresponds to a pure projector. In the original unitary circuit, this condition corresponds to vanishing of Jordan-Wigner Majorana hopping on $some\ bond.$

$$\Rightarrow \lambda_c = \pi - 2.5 \approx 0.64$$

Example # 2: Space-time dual of a unitary 2+1D circuit

$$U_F = e^{-i\frac{\pi}{4}\sum_{\langle ij\rangle}J_{ij}Z_iZ_j}e^{-i\frac{\pi}{4}\sum_i h_iX_i}$$

t x y t t

independent random variables $J_{ij}, h_i = 0, 1$

Probability p, 1-p

The space-time rotated non-unitary circuit consists of only unitaries and forced measurements.

Both rotated and unrotated circuits can be simulated efficiently since they consist of Clifford gates.

Example # 2: Space-time dual of a unitary 2+1D circuit

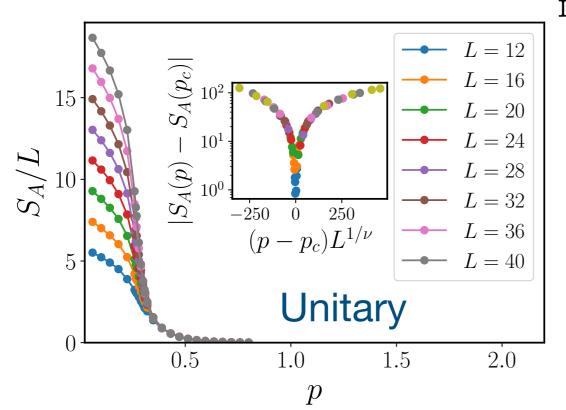
$$U_F = e^{-i\frac{\pi}{4}\sum_{\langle ij\rangle}J_{ij}Z_iZ_j}e^{-i\frac{\pi}{4}\sum_i h_iX_i}$$

 $\begin{array}{c} \downarrow \\ \downarrow \\ \times \\ \end{array}$

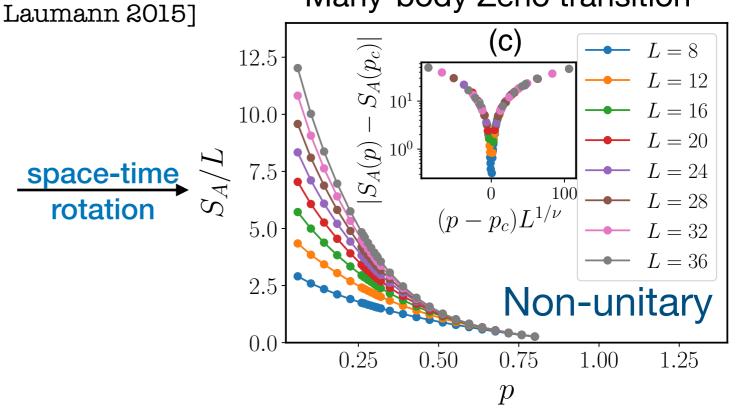
independent random variables $J_{ij}, h_i = 0, 1$

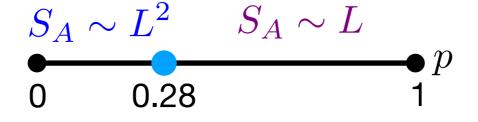
Probability p, 1-p

"Floquet Clifford Localization transition" [Chandran,



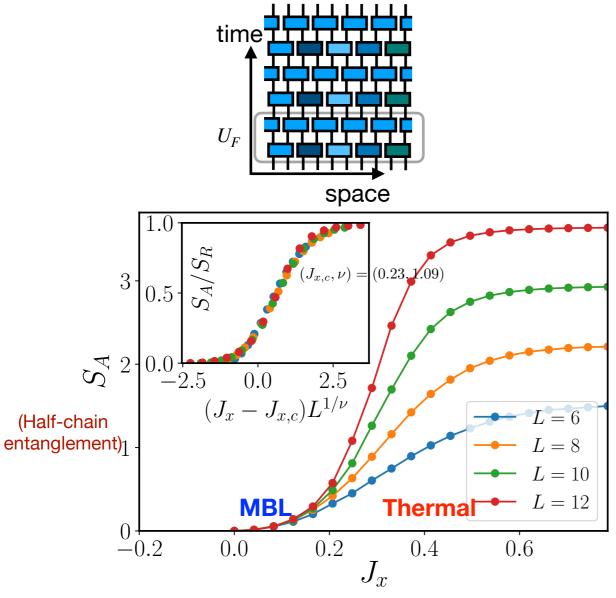
"Many-body Zeno transition"





[TG, Tsung-Cheng Lu 2021]

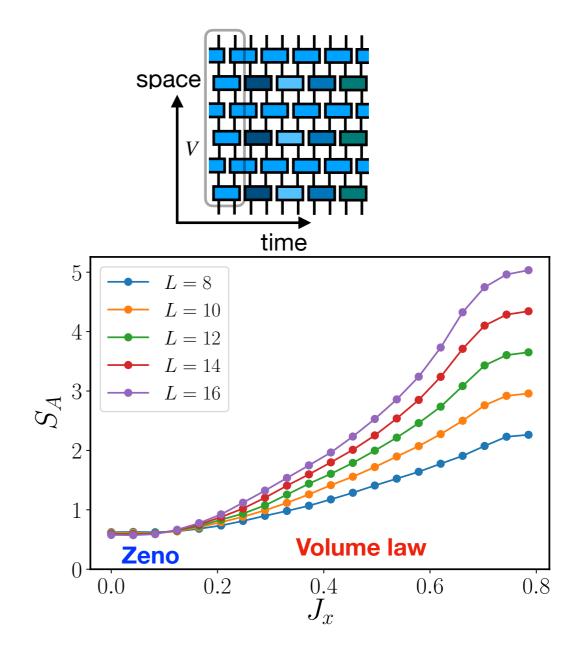
Example # 3: Rotation of Floquet-MBL circuit



 $U_F = e^{iJ_x \sum_r X_r} e^{-i\tau \sum_r Z_r Z_{r+1} - i\tau \sum_r h_r Z_r}$

 $\tau = 0.8$, $h_{\rm r}$: random Gaussian variable

[Ponte et al 2015; Abanin, De Roeck, Huveneers 2016; Zhang, Khemani, Huse 2016]

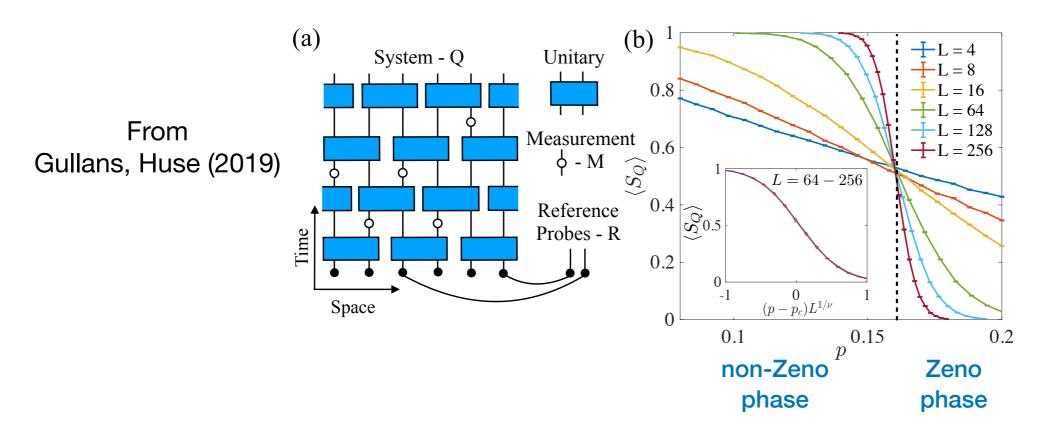


$$V(T) = \prod_{t=1}^{T} V_t, \quad V_t = e^{i\tilde{J}_x \sum_r X_r} e^{i\tilde{J}_z \sum_r Z_r Z_{r+1} - i\tau h(t) \sum_r Z_r}$$

Translationally invariant in space Disordered in time

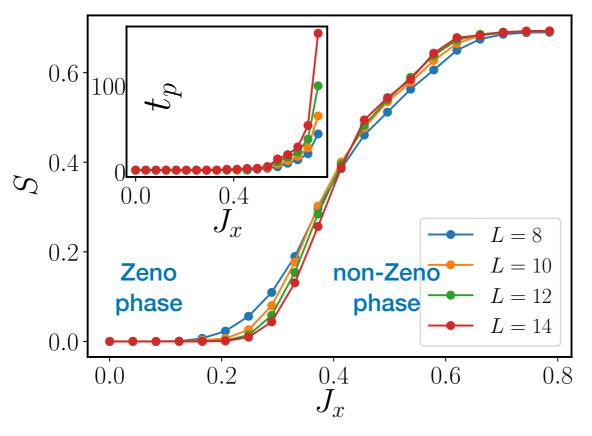
Probing Zeno transition using purification dynamics of a reference-qubit

Gullans, Huse (2019) proposed coupling a reference-qubit to the system of interest, and studying its long-time entanglement.



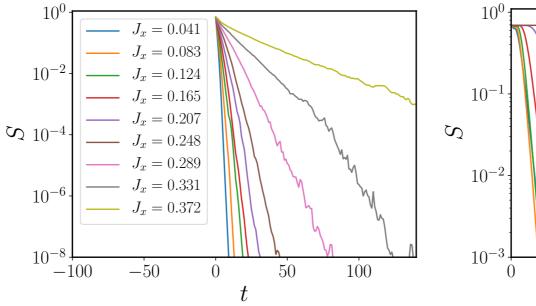
In the Zeno phase, the qubit purifies itself in O(1) time. In the non-Zeno phase, the purification time is exponential in system size.

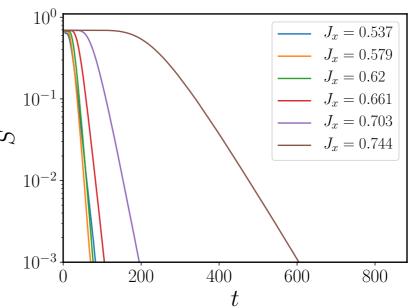
Purification dynamics in the space-time dual of Floquet MBL



Inset: Purification time = O(1) in the Zeno phase. Super-linear in the non-Zeno ("error-correcting") phase

Time dependence of reference-qubit entanglement





Implications for shallow circuits?

Efficient classical simulation of random shallow 2D quantum circuits

John Napp* Rolando L. La Placa[†] Alexander M. Dalzell[‡] Fernando G. S. L. Brandão[§] Aram W. Harrow[¶] March 10, 2020

It was shown that a class of shallow circuits with gates chosen from a certain random distribution can be efficiently simulated classically via space-time rotation. In the regime of classical simulatability, the rotated circuit was argued to have area-law EE.

One may wonder if this result generalizes to other circuits/Hamiltonians...

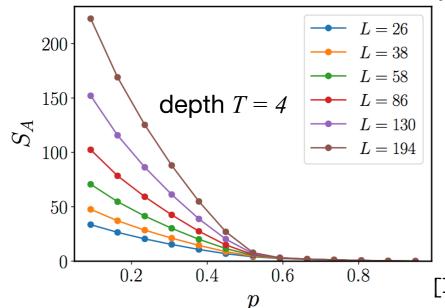
A couple conjectures:

- 1. Time evolution of translationally invariant, shallow, chaotic circuits typically cannot be simulated using polynomial resources (the rotated circuit will likely have volume law entanglement). Consistent with [Bermejo-Vega et al 2017].
- 2. Tuning randomness in a 2d shallow circuit/Hamiltonian can sometimes drive a transition between area to volume law in the rotated non-unitary circuit. How generic is this? (is Clifford circuit too special for this feature?)

Implications for shallow circuits?

$$U = \prod_{t=1}^{T} \left[e^{-i\pi/4\sum_{\langle r,r'\rangle} J(r,r',t) \, Z(r) \, Z(r')} e^{-i\pi/4\sum_{r} h(r,t) \, X(r)} \right]$$
 (space-time randomness)

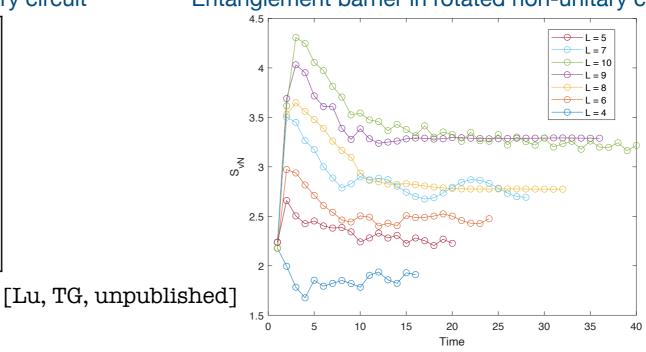
Disorder tuned transition in rotated non-unitary circuit



 $U = e^{-i\sum_{\langle r,r'\rangle} Z(r) Z(r')} e^{-ih\sum_r X(r)}$

(translationally invariant)

Entanglement barrier in rotated non-unitary circuit



A couple conjectures:

- 1. Time evolution of translationally invariant, shallow, chaotic circuits likely cannot be simulated using polynomial resources (the rotated circuit will likely have volume law entanglement). Consistent with [Bermejo-Vega et al 2017].
- 2. Tuning randomness in a 2d shallow circuit/Hamiltonian can sometimes drive a transition between area to volume law in the rotated non-unitary circuit. How generic is this? (is Clifford circuit too special for this feature?)

Summary and a few questions...

- Topological negativity seemingly a candidate order parameter for finite-T topological order.
- Mixed-state entanglement provides a sharper distinction between classical and quantum phase transitions.
- Space-time rotation provides a connection between two distinct mechanisms of entanglement obstruction in a class of circuits (localization ↔ Zeno).
- "Industrial" applications of negativity? e.g., optimize parameters in a noisy quantum computer by maximizing negativity between qubits.
- Are there models where singularity exists *only* in quantum correlations at finite temperature? "Truly quantum finite-T phase transitions".
- Calculation of mixed-state entanglement measures other than negativity?

A puzzle: Consider coupled oscillators...

$$U_F = e^{i\sum_{x} \hat{P}^{2}(x)} e^{i\sum_{x} \left(\hat{\phi}(x+1) - \hat{\phi}(x)\right)^{2}} e^{i\sum_{x} V(\hat{\phi}(x), x)}$$

 $[\hat{\phi}(x), \hat{P}(x')] = i\delta_{x,x'} \quad V(\hat{\phi}(x), x)$ arbitrary function of x, e.g.,

$$V(\hat{\phi}(x), x) = m^2(x) \,\hat{\phi}^2(x) + u(x) \,\hat{\phi}^4(x) + \dots$$

Can this circuit show many-body localization?

Most likely not, because the space-time rotated circuit is unitary, and random along the time direction.

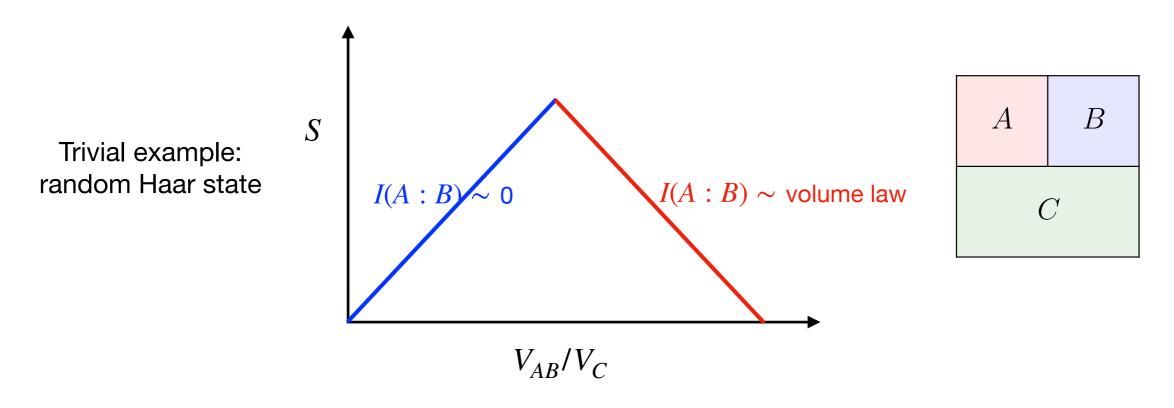
Similar to Exact Spectral Form Factor in a Minimal Model of Many-Body Quantum Chaos

Bruno Bertini, Pavel Kos, and Tomaž Prosen (2018)

Is it exactly solvable for arbitrary potentials $V(\hat{\phi}(x), x)$?

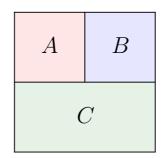
Detecting absence of thermalization using mixed-state entanglement

When a system does not thermalize, expectation that the entanglement between two subsystems A, B must be "large".



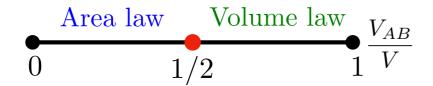
How to quantify this without polluting with classical correlations? Implications for localized, integrable and scar states?

Summary of Results



Non-integrable

eigenstates

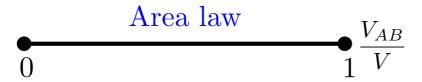


Integrable

eigenstates

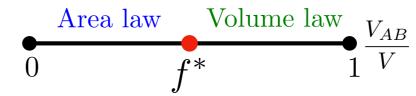
MBL

eigenstates



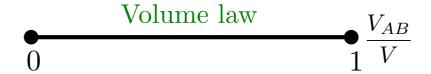
Non-integrable

long-time states



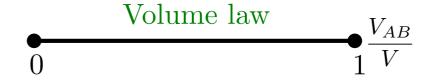
Integrable

long-time states

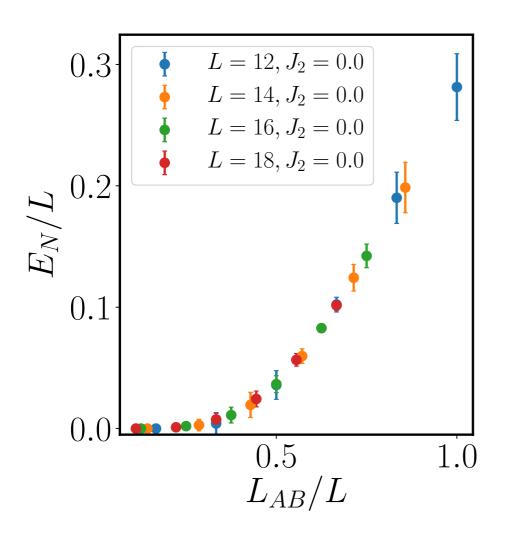


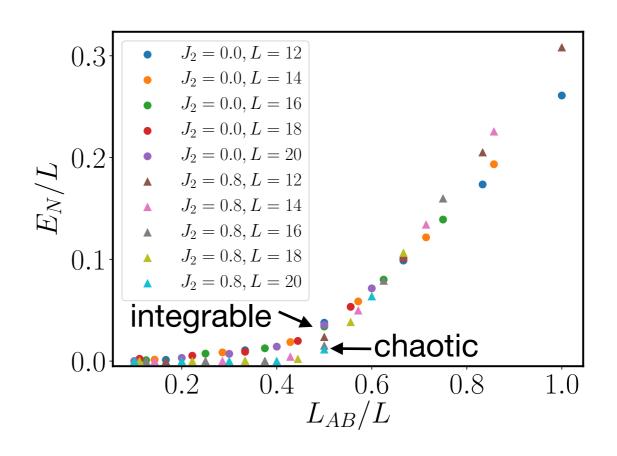
MBL

long-time states



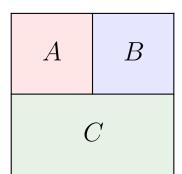
Volume-law negativity in integrable systems



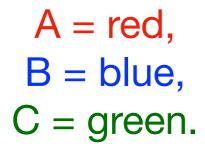


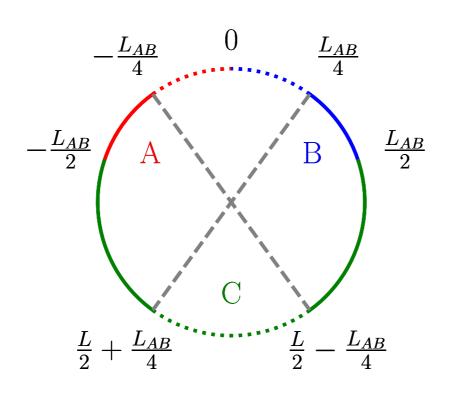
Eigenstates

Time-evolved states



Quasiparticle picture for integrable systems





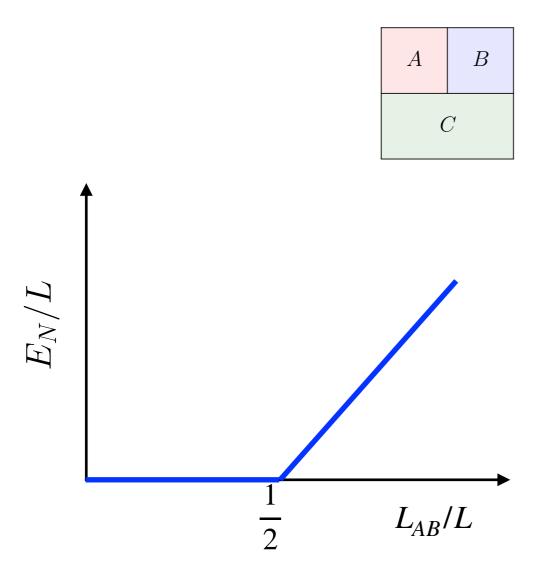
For quasiparticles to generate entanglement between A,B, one of them belongs to A, and the other to B.

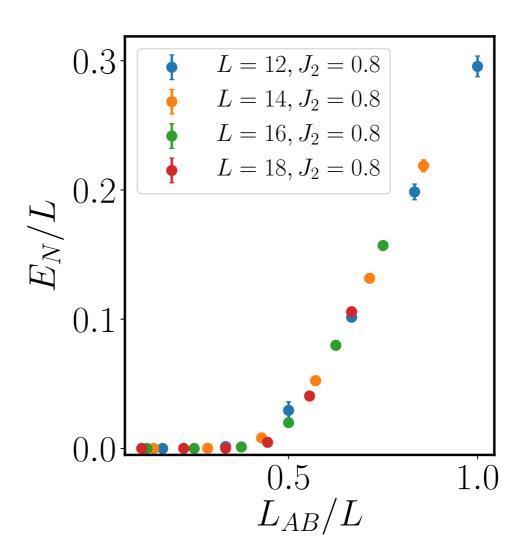
of quasiparticles that A and B can share $\propto L_{\!AB}$

Fraction of time these quasiparticles can entangle $\propto L_{AB}/L$

 \Rightarrow Time averaged entanglement $\sim (L_{AB}/L) L_{AB} = \text{volume law}$

Negativity transition in a chaotic system





Random Haar state

[Auburn 2012; Bhosale, Tomsovic, Lakshminarayan 2012; Shapourian, Liu, Kudler-Flam, Vishwanath 2020]

Chaotic eigenstate

$$H = \sum_{i=1}^{L} \left(J_1 \mathbf{S}_i \cdot \mathbf{S}_{i+1} + J_2 S_i^z S_{i+2}^z \right)$$

Negativity transition as a probe of chaos

Integrable Vs Chaotic

$$H = \sum_{i=1}^{L} \left(J_1 \mathbf{S}_i \cdot \mathbf{S}_{i+1} + J_2 S_i^z S_{i+2}^z \right)$$

Chaotic Vs Many-body localized

$$H = \sum_{i=1}^{L} \left(J_1 \mathbf{S}_i \cdot \mathbf{S}_{i+1} + J_2 S_i^z S_{i+1}^z - h_i S_{i+1}^z \right)$$

