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Information protection at thermal equilibrium

(a few examples)

Self-correcting Classical Hard-drives

2d Classical Ising model 3d Toriccode at T >0

3d deconfined

Ferromagnet .-I-C Paramagnet Phase at T> 0 TC Paramagnet
> @ >
Self-correcting Self-correcting
repetition code topological code

[Dennis, Kitaev, Landahl,

Self-correcting Quantum Hard-drive Preskill (2001);
Yoshida 2011; Hastings 2011]

4d Toric code
Anti-commuting logical Only commuting logical
operators protected Tec1 operators protected Tco Paramagnet
@ o >
Quantum self-correcting Classical self-correcting

topological code topological code



Information protection out-of-equilibrium

(a few examples)

Active quantum error-correction

Pc p = error rate
® >

Correctable phase Non-correctable phase

[Shor 1996; Knill, Laflamme, Zurek 1997; Kitaev 1997,
Aharonov, Ben-Or 1999;...]

Many-body localized phase Many-body Quantum Zeno effect.
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Figure from [Li, Chen, Fisher 2018]
[Basko, Aleiner, Altshuler 2005; [Li, Chen, Fisher 2018; Skinner, Ruhman, Nahum 2018;

Oganesyan, Huse 2007, Pal, Huse 2010;...] Chan et al 2019; Gullans, Huse, 2019; Bao et al 2019; Jian et al 2019...



Information protection and Ergodicity Breaking

Classical hard-drive

Self-correcting due to (mild)
ergodicity breaking.

Ferromagnet T, Paramagnet
® >

Self-correcting
phase

Can be diagnosed by a local order
parameter (= magnetization)

Im S -— Im S =log(2)
hSSB_>O+’T:T:- hSSB_>O+’T:TC_

T>TC§ { \T<Tc )
N N\

Quantum hard-drive

At T = 0, topological entanglement

entropy serves as an order parameter.

What about finite T?

“Quantum ergodicity
breaking phase” Te
®

Iim 7?7 — Iim 7?7 # 0
T=T* T=T:



Broader question:

Distinguishing Quantum from Classical Transitions

H= Z —ZiZj—hZXi

R <i,j> i

on a square lattice

lassical

Phase Trangition (2D Ising)

Ordered

Disordered

Quantum
Phase Transition (3D Ising)

h

T

R H = H3d toric code + h 2 Xi
l

Classical Phase

Deconfined
anyons

Phase Transition

T

H = H4d toric code + h Z Xi
l

Classical Phase
ransition?

transi Confined anyons

finite-T topological

order

>

h

Quantum
Phase Transition

If a finite temperature transition really classical,
quantum entanglement must be short-ranged despite

a diverging correlation length.



If finite-T correlation length is finite,
Gibbs state can be prepared with a small depth channel.

Swingle, McGreevy 2016; Wu, Hsieh 2018; Qi, Maldacena 2018;
Brandao, Kastoryano 2019; Cottrell et al 2019, Chapman et al 2019.

If finite-T correlation length diverges, but the correlations fully classical, perhaps

one can still prepare the corresponding Gibbs state with polynomial resources?



If finite-T correlation length is finite,
Gibbs state can be prepared with a small depth channel.

Swingle, McGreevy 2016; Wu, Hsieh 2018; Qi, Maldacena 2018;
Brandao, Kastoryano 2019; Cottrell et al 2019, Chapman et al 2019.

If finite-T correlation length diverges, but the correlations fully classical, perhaps

one can still prepare the corresponding Gibbs state with polynomial resources?

Zeroth Order question:

When is a mixed state unentangled (“separable”)?



Separability Criterion for Mixed States

[Werner 1989] If p = Z Pi Pia ®pip With p, >0

In some basis, then thelexpectation value of any operator can be
reproduced by an ensemble of unentangled pure states. Therefore,
such states are unentangled or “separable”.



Separability Criterion for Mixed States

[Werner 1989] If p = Z Pi Pia ®pip With p, >0

In some basis, then thelexpectation value of any operator can be
reproduced by an ensemble of unentangled pure states. Therefore,
such states are unentangled or “separable”.

A more physical definition for local many-body systems

Iif p = Zpi | w;)(y;| where each | ) is short-ranged
i

entangled (= no topological order or long-range

correlations), then p is “short-ranged entangled mixed-state”.



Separability in Toric codes in various dimensions

Consider 2d toric code at finite-T: p = e P1/Z = e P5|E WE, |/Z

Y X Each eigenstate |En) Is of course topologically ordered.
Ay e
X Let’s rewrite p as
1 1
_ _,BH _ _ ,-BH]/2 -BH /2 _
Z p=_ePl=—e ;|m> (ml e —;pm|¢m> (¢l
A5 Z| p |Z
where { |m)} = set of all product states in the X-basis

‘¢m> ~ Z p—Area enclosed by loop X log(tanh(B8AB/2)) ‘C>
loop configs.|C')

=> | ¢m) not topologically ordered at any non-zero T
since large loops suppressed.



Similar arguments lead to the following conclusion

6_BH/Z — me‘¢m><¢m’
m k_ Not topologically

ordered, area-law
ground-state

whenever T > min(Ta, Tg) where Ta, Ts correspond to the critical
temperatures of the classical Hamiltonians

Y Z
—ﬂAZS Ag X : — Ap Zp Bp
. ¢ Z| p |Z
X
Z
Dimension T4 Ts
OAa) O(AB)
2D log L log L
O(Aa)
3D log L O(AB)
4D O(Aa)  O(Ag)

[Tsung-Cheng Lu, Hsieh, TG 2019]



Similar arguments lead to the following conclusion

e_BH/Z — me‘¢m><¢m’
m k_ Not topologically

ordered, area-law
ground-state

whenever T > min(Ta, Tg) where Ta, Ts correspond to the critical
temperatures of the classical Hamiltonians

b'e /
—Aa 2 As _X — _/lBZpo .
X 2 r
/
Dimension T4 Ts

OM\a) O(AB)

2D log L log L |
O(Xa) How to quantify
3D log L O(AB) non-separability?

4D O(M4) OOp) —

[Tsung-Cheng Lu, Hsieh, TG 2019]




Quantifying Mixed-State Entanglement

“Entanglement Negativity”: Ey = log ( | pTB \1) %ﬁlsﬁrtwljelffég ;22?];

* Entanglement monotone [Plenio 2005], zero for separable states (but can be

zero also for non-separable states).
* Upper bounds the rate of conversion of the mixed state to Bell pairs (“distillation rate”).
e Satisfies an area law for thermal states of local Hamiltonians [Sherman,
Devakul, Hastings, Singh 2015].
e (Calculable! (unlike most other mixed-state measures).
e Recent progress on measurement using randomized unitaries [Elben et al

2019] (tomorrow’s talk).

Several condensed matter applications: Negativity of CFTs (Calabrese, Cardy, Tonni 2012),
Ground state of toric code and TQFTs (Lee, Vidal 2013; Castelnovo 2013; Wen, Matsuura,
Ryu 2016), Characterizing SPTs (Shapourian, Shiozaki, Ryu 2017), Probe of chaos and
scrambling (Kudler-Flam et al 2019),...



Let’s study non-local part of negativity as a candidate

order parameter for finite-T topological order.

_ d—1
EN = aL o EN,tOpO

Focus on toric code ind =2, 3, 4.

(Area-law coefficient a for 2D toric code studied in Hart, Castelnovo 2018.)



Example: 2D toric code in the limit Az —w.

Topological negativity En topo behaves very different than the
subleading contribution Siopo to VONn Neumann entropy

¥ X log(2) 0.7 « =40 V
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Summary of results for toric code ind =2, 3, 4

7 \ —— Ly topo = toplogical part of entanglement negativity
v
\\ ——. Stopo = toplogical part of von Neumann entropy
.\“
* b
‘ TA TB
A AB
2D O(logL) O(logL)
Aa
3D | 0 (24:) | 0(An)
D[ 0() | 005

T

Topological I No Topological |
order order
0  Min{T}, T3} Max{T}, T}

[Tsung-Cheng Lu, Hsieh, TG 2019]

Other mixed-state measures?
More general topological orders?
Field theoretic understanding?
Quantum Monte Carlo simulations?
Analogs for active error correction?



Information protection and Ergodicity Breaking

Classical hard-drive

Self-correcting due to (mild)
ergodicity breaking.

Ferromagnet T, Paramagnet
® >

Self-correcting
phase

Can be diagnosed by a local order
parameter (= magnetization)

Im S -— Im S =log(2)
hSSB_>O+’T:T:- hSSB_>O+’T:TC_

T >T, \T<Tc )

N\ | N/

Quantum hard-drive

At T = 0, topological entanglement
entropy serves as an order parameter.
What about finite T?

0 ° 2
@)=

=L
Y N,topo P

Negativity a candidate order parameter.

4d Toric code:

“Quantum ergodicity
breaking phase” .Tc

>

(lim E, — lim E, =2 log(2)]
T=T* T=T-

[Tsung-Cheng Lu, Hsieh, TG 2019;
More recent work: Tsung-Cheng Lu, Vijay 2022-
Relation to SPT order at the entanglement boundary]



Broader question:
Distinguishing Quantum from Classical Transitions

H = Z —ZiZj—hZXi R H = H3d toric code + hZXl A H = Had toric code + hZXl
A <t,]> l i [
T on a square lattice T I
¢

Classical Phase Classical Phase
transition transition

Phase Tranhsition (2D Ising)

Deconfined Confined anyons . _Phase Confined anyons
Ordered Disordered anyons
> > >
Quantum h T=0 g’rgg'rogica' Quantum h Quantum h
Phase Transition (3D Ising) Phase Transition Phase Transition

If finite temperature transition really classical,
quantum entanglement must be short-ranged despite
a diverging correlation length.



Consider the transverse field Ising model on square lattice...
H = 2<i,j> — 42— hziXi

Although we can’t calculate negativity E, = log ( IpTBll)

one can calculate a closely related quantity in Quantum
Monte Carlo:

trace (,()TB)3

R. =1
= %% Yrace (p3)

Not an entanglement measure, but in
1+1-D CFTs, has same scaling as negativity.
[Calabrese, Cardy, Tonni 2012]



Singularity in the area-law coefficient

Temperature derivative of Renyi negativity Scaling collapse
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Entropy: ForT < T,, S(hgs =0)— lim S =log(2)

hssg—0"

Ordered :

Disordered

> Negativity: For 0 < T < T,, Ey(hgey =0)— lim E, =0
h hgsg—0"




Long-range part of Renyi negativity
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[Wu, Lu, Chung, TG, Kao 2019] J;Q = quantum length
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Information protection out-of-equilibrium

(a few examples)

Active quantum error-correction

Pc p = error rate
® >

Correctable phase Non-correctable phase

[Shor 1996; Knill, Laflamme, Zurek 1997; Kitaev 1997,
Aharonov, Ben-Or 1999;...]

Many-body localized phase Many-body Quantum Zeno effect.
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Figure from [Li, Chen, Fisher 2018]
[Basko, Aleiner, Altshuler 2005; [Li, Chen, Fisher 2018; Skinner, Ruhman, Nahum 2018;

Oganesyan, Huse 2007, Pal, Huse 2010;...] Chan et al 2019; Gullans, Huse, 2019; Bao et al 2019; Jian et al 2019...



Broader question: Phases of Quantum Dynamics?

Infinitely rich variety of quantum phases of matter at T = 0.
Fermi liquids, superconductors, quantum Hall phases, Mott insulators, ...

How rich is the landscape of time-evolved many-body states?

[,y = e " [yp)

Unfortunately, qguantum chaos is an obstacle to find
novel phases of quantum dynamics.



Broader question: Phases of Quantum Dynamics?

[y = e [yy)

If a many-body system is chaotic, a small subsystem behaves
as if it was in thermal equilibrium. [Deutsch 1991;

Srednicki 1994

& &

To obtain new physics non-thermal physics,

one needs to impede entanglement growth.



How to obstruct entanglement growth?

One route: spatial disorder.

time

>
space

Absence of Diffusion in Certain Random Lattices

P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received October 10, 1957)

Single-body localization: [Anderson 1958]7;
Many-body localization: [Basko, Aleiner, Altshuler 2005;
Oganesyan, Huse 2007, Pal, Huse 2010, ...]

Sa(LI4)

space

|70 e (h = measurement

[ == p=0.07 —=— p=0.23

p=0.03 —+— p=0.19

p=0.05 —e= p=0.21 probability)

—v— p=0.09 p=0.25
—&= p=0.11 —— p=0.3
—=— p=0.13

—o— p=0.15

10 50 100 500

Another route: Quantum Zeno effect.

random unitary

+ local-Z measurement

[figures from Li,

{ Chen, Fisher 2018]

[Li, Chen, Fisher 2018; Skinner, Ruhman, Nahum 2018;

Chan et al 2019; Gullans, Huse, 2019; Bao et al 2019; Jian et al 2019...]



How to obstruct entanglement growth?

One route: spatial disorder. A puzzle: Consider time evolution with:

H = de [(Vp(x0))* + TT(x) + m(x) p(x) + u(x) p*(x)]

[p(x), TI(x)] = i 6(x — x')

Or, alternatively the following Floquet operator

~ ) ~ n 2 A
UF — eizx Hz(x)e l Zx <¢(X +1) - ¢(X)) eizx V(¢(X), x)

space

(), TI(x)] = i 6,

Absence of Diffusion in Certain Random Lattices V(dg(x) x) arbitrary function of x, e.g.

P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received October 10, 1957) V(d(x), x) = m2(x) p*(x) + u(x) p*(x) + ...

Can either of these systems show many-body
localization? What about Bose-Hubbard model

Single-body localization: [Anderson 1958];
Many-body localization: [Basko, Aleiner, Altshuler 20085; _ o
Oganesyan, Huse 2007, Pal, Huse 2010, ...] which looks somewhat similar?



How to obstruct entanglement growth?

One route: spatial disorder.

time

>
space

Unitary evolution

Requires time-translation

No post-selection required

t=5

t=4

t

3

t=2
time

e

;

?

.

t=1
t=0

space

Non-unitary evolution

o o

Another route: Quantum Zeno effect.

random unitary

+ local-Z measurement

Time-translation not required

Post-selection required



How to obstruct entanglement growth?

One route: spatial disorder.

t=5

t=4

t=3

t=2
time

Main result

e

Another route: Quantum Zeno effect.

;

?

?

?

random unitary

.

§ + local-Z measuremen t
X

“Space-time rotation” of a circuit that hosts localization
transition yields a new circuit that hosts a Zeno-type transition.

[TG, Tsung-Cheng Lu 2021; Ippoliti, Rakovszky, Khemani 2021 ]



How to obstruct entanglement growth?

One route: spatial disorder.

space
A

t=5
t=4
t=3

t=2
time

Main result

e

Another route: Quantum Zeno effect.

;

?

?

?

random unitary

.

§ + local-Z measuremen t
X

“Space-time rotation” of a circuit that hosts localization
transition yields a new circuit that hosts a Zeno-type transition.

[TG, Tsung-Cheng Lu 2021; Ippoliti, Rakovszky, Khemani 2021 ]



Space-time rotation of a circuit

/ /
Z, Z, Zé Z,
time time
A

Zy Z

space space

[AKkila, Waltner, Gutkin, Guhr 2016, Bertini, Kos, Prosen 2018;
Napp et al 2020; Ippoliti, Khemani 2020,..., cf. Betsuyaku 1984 (imaginary time)]



Space-time rotation of a circuit

Z, 7, Z, 7,

space time
A

/
Z, Z,
. >
time space
time time
N A
space-time, | Belly(Bell|
rotation
> >
space space

|Ben>=%<m>+|m>

[AKkila, Waltner, Gutkin, Guhr 2016, Bertini, Kos, Prosen 2018;
Napp et al 2020; Ippoliti, Khemani 2020,..., cf. Betsuyaku 1984 (imaginary time)]



Consider extreme limit of localization where the
system separates into two decoupled regions

space
A
time

time time

A A

space-time
- > | Bell)(Bell |
rotation
> >

space space



Example # 1: Space-time dual of a
single-particle localization transition

. . )
h, quasi-periodic, h, = 2.5+ Acos(2rQr +8) Q = —

“Floquet Aubry-Andre-Harper” model

Space-time dual also free-fermion circuit, albeit non-hermitian.

Previous works on free fermion systems shows that one doesn’t expect volume law
entanglement for generic non-Hermitian Hamiltonians [Jian et al 2020; Chen et al 2020; Tang,
Chen, Zhu 2001;...]. For non-unitary circuits consisting of unitary evolution+ only projective

measurements, this can be argued fairly rigorously [Cao, Tilloy, De Luca 2019; Fidkowski, Haah,
Hastings 2020].



Example # 1: Space-time dual of a
single-particle localization transition

. L. i Non-unitary circuit
Unitary circuit = (UF)hme - y
_ ihY, Z, iY, J(t)X, X1
UF — eiJ 2 XrXrqa ei 2y hr 2y V(1) 1 c c |
hy = 2.5+ Acos(2rQr + 0) |Re(h)| = |Re(J)| = /4
0.4 —+————
| | —e— L =852
| 0.20 | o— L =1022
0.3 | L=122
N | : T 0.151 | T L=1470
= 0. Volume-law 1\ | Area-law space-t|me> = e [ — 1764
= S~L I S ~const] rotation T g1 :
0.1 |
0.051 Volume-law |
N\,
0.0— 1.~ 0.64 | . . . .
0.00 025 ¢ 0000 055 050 0.5 L0o
A

[TG, Tsung-Cheng Lu 2021 ]



Basic Intuition

time sSpace

Ur
>
space o
T ~ ~
UF _ ez'J Do XrXrg ei > hrZ, V(T) _ H ez’h >, Zreq; > J(t)XrXr—l—l.
t=1 ,
hy = 2.5+ Xcos(2mQr + 6) J(t) = —m/4 + % log (tan h;)

h = tan~!(—ie= %)

When h, for some t becomes 7, the non-unitary circuit

at that time-slice corresponds to a pure projector. In the original
unitary circuit, this condition corresponds to vanishing of
Jordan-Wigner Majorana hopping on some bond.

> A =1—-2.5~0.64



Example # 2: Space-time dual of a unitary 2+1D circuit

Up = e 17 2apJiiZiZj p=i% Li hiX;

independent random variables .J;;, h; = 0,1

Probability p, 1-p

The space-time rotated non-unitary circuit
consists of only unitaries and forced measurements.

Both rotated and unrotated circuits can be simulated
efficiently since they consist of Clifford gates.

[TG, Tsung-Cheng Lu 2021]



Example # 2: Space-time dual of a unitary 2+1D circuit

: , t X
Up = e i % 2 JiiZiZj g1 % 2i hiXi [ y [ ;
X t

independent random variables .J;;, h; = 0,1

Probability p, 1-p

“Floquet Clifford Localization transition” [Chandran, “Many-body Zeno transition”
Laumann 2015]

12.51
10.01

: ~
space-tlme> 3 7.1

rotation W
5.0
2.5
. . . 0.0

0.5 1.0 1.5 2.0
p

= [ [TG, Tsung-Cheng Lu 2021]



Example # 3: Rotation of Floquet-MBL circuit

time

1.0

o

310.5- =

9o

Y,
0 2] 0'955‘&.010
(Half-chain (Jo = Joe) LMY —e— L =6
entanglement)] | L =
—e— L =10
Thermal—*— L =12
V02 0.0 0.2 0.4 0.6

UF _ ein > Xy e—iT dr Ly Zy1—iT ), h Z,
7 = (0.8, h, : random Gaussian variable

[Ponte et al 2015; Abanin, De Roeck, Huveneers 2016;
Zhang, Khemani, Huse 2016]
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time
5_
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<
N
2_
1_
Zeno Volume law
01— . . . .
0.0 0.2 0.4 0.6 0.8
Sy

T
V(T) - 1—[ ‘/t, ‘/t - ein Zr Xr eiJZ Zr ZrZr+1_iTh(t) Zr Z,

t=1

Translationally invariant in space
Disordered in time



Probing Zeno transition using purification dynamics
of a reference-qubit

Gullans, Huse (2019) proposed coupling a reference-qubit to
the system of interest, and studying its long-time entanglement.

(a) . (b) 1 | ‘ : —+L=4
System - Q Unitary ERp
- # 0.3 ; L=16 -
 L=64
From Measurement |
Gullans, Huse (2019) o-M 3
n : L =64 — 256

- Reference 04 ‘
g Probes - R ' ;
= 0.2 5

-1 0 1

Space 0  (pep)L
0.1 0.15 0.2
non-Zeno Y Zeno
phase phase

In the Zeno phase, the qubit purifies itself in O(1) time.
In the non-Zeno phase, the purification time is exponential in system size.



Purification dynamics
In the space-time dual of Floguet MBL

0.6-100 -~
) )
041 ¢ e L .
) 0.0 0.4 Inset: Purification time = O(1) in the
J. Zeno phase. Super-linear in
091 . the non-Zeno (“error-correcting”)
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0.0 —— L=14
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v
10
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J, = 0.083 J, = 0.579
. 10721 —— J,=0.124 J, = 0.62
Time dependence  L—0165 J, = 0.661
T — J, =0.207 J, = 0.703
of reference-qubit v | — 70 P
entanglement o020
1071 J _ 0372
10-8 . . . 1 . . . .
—100 —50 0 100 0 200 400 600 800
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Implications for shallow circuits?

Efficient classical simulation of random shallow 2D quantum
circuits

John Napp* Rolando L. La Placa’ Alexander M. Dalzell*
Fernando G. S. L. Brandao® Aram W. Harrow1

March 10, 2020

It was shown that a class of shallow circuits with gates chosen from a
certain random distribution can be efficiently simulated classically via space-time rotation.
In the regime of classical simulatability, the rotated circuit was argued to have area-law EE.
One may wonder if this result generalizes to other circuits/Hamiltonians...

A couple conjectures:

1. Time evolution of translationally invariant, shallow, chaotic circuits typically cannot
be simulated using polynomial resources (the rotated circuit will likely have volume
law entanglement). Consistent with [Bermejo-Vega et al 2017].

2. Tuning randomness in a 2d shallow circuit/Hamiltonian can sometimes drive a
transition between area to volume law in the rotated non-unitary circuit. How generic is
this? (is Clifford circuit too special for this feature?)



Implications for shallow circuits?
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U = H [e in Zm,) r,r nNr) ,~in 2, h(r.p) (7’)] U=¢ lz<r’r/> Z(r) Z(r )e—lh Zr X(r)
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(space-time randomness) (translationally invariant)
Disorder tuned transition in rotated non-unitary circuit Entanglement barrier in rotated non-unitary circuit
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' ' P ' ' [Lu, TG, unpublished]
A couple conjectures: fime

1. Time evolution of translationally invariant, shallow, chaotic circuits likely cannot be
simulated using polynomial resources (the rotated circuit will likely have volume law
entanglement). Consistent with [Bermejo-Vega et al 20171].

2. Tuning randomness in a 2d shallow circuit/Hamiltonian can sometimes drive a
transition between area to volume law in the rotated non-unitary circuit. How generic is
this? (is Clifford circuit too special for this feature?)



Summary and a few questions...

* Topological negativity seemingly a candidate order parameter for finite-T

topological order.

 Mixed-state entanglement provides a sharper distinction between classical

and quantum phase transitions.

e Space-time rotation provides a connection between two distinct mechanisms

of entanglement obstruction in a class of circuits (localization < Zeno).

e “Industrial” applications of negativity? e.g., optimize parameters in a noisy

quantum computer by maximizing negativity between qubits.

* Are there models where singularity exists only in quantum correlations at finite

temperature? “Truly quantum finite-T phase transitions”.

e Calculation of mixed-state entanglement measures other than negativity?



A puzzle: Consider coupled oscillators...
[ = ol 2P0, 12, ( (x+ 1)~ (x)) iy V($(), x)
=

[q’A)(x), IA’(x’)] = 00y V(qg(x),x) arbitrary function of x, e.g.,
V($(), x) = m*(x) §7(x) + u(x) ¢*(0) + ...
Can this circuit show many-body localization?

Most likely not, because the space-time rotated circuit is unitary,
and random along the time direction.

Similar to Exact Spectral Form Factor in a Minimal Model of Many-Body Quantum Chaos

Bruno Bertini, Pavel Kos, and Tomaz Prosen

(2018)

s it exactly solvable for arbitrary potentials V(¢?(x), X)?



Detecting absence of thermalization
using mixed-state entanglement

When a system does not thermalize, expectation that the
entanglement between two subsystems A, B must be “large”.

A

S

Trivial example:
random Haar state

I(A : B) ~ volume law

Vas! Ve

How to quantify this without polluting with classical correlations?

Implications for localized, integrable and scar states?



Summary of Results
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[Lu, Grover 2020]



Volume-law negativity in integrable systems
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Quasiparticle picture for integrable systems

Lap U Lap
4 4
\\ //
_Lup \ / Lap
A = red, 2 A \\\ /// B 2
B = blue, A For quasiparticles to generate
C = RN entanglement between A,B,
= green. // . \\ one of them belongs to A,
...... and the other to B.
L _|_ ﬂ --------- L . LAB
2 4 2 4

# of quasiparticles that A and B can share « L,

Fraction of time these quasiparticles can entangle o« L,5/L

= Time averaged entanglement ~ (LAB/L) L,p = volume law

[Cardy, Calabrese 2005]



Negativity transition in a
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Random Haar state

[Auburn 2012; Bhosale, Tomsovic, Lakshminarayan 2012;
Shapourian, Liu, Kudler-Flam, Vishwanath 2020]

chaotic system

$ L=12,J1,=08 6
L=14,J,=0.8
¥ L=16,J,=08
$ L=18,J,=08
¢
o
8
o
o
$
Lame c00 00 ® |
0.5 1.0
LAB/L

Chaotic eigenstate

L
H = Z (Jlsi . Si+1 + JQSL.ZSI.Z+2)
i=1



0.3

Ev/L

0.1

0.01-

Negativity transition as a probe of chaos
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